Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Bacterial Culture
2.3. Spiking of Bovine Fecal Samples Using Salmonella as a Model
2.4. Capture Efficiency of MNPs
2.5. Analytical Specificity of GNPs Biosensor in Detecting Salmonella enterica spp.
2.6. Analytical Sensitivity of GNPs Biosensor in Detecting Salmonella enterica spp.
2.7. Analysis of Field Bovine Fecal Samples
3. Results
3.1. Capture Efficiency of MNPs
3.2. Analytical Specificity of GNPs Biosensor in Detecting Salmonella enterica spp.
3.3. Analytical Sensitivity of GNPs Biosensor in Detecting Salmonella enterica spp.
3.4. Analysis of Field Bovine Fecal Samples
4. Discussion
Coating | Bacteria | Matrix | Capture Efficiency | Detection Method | LOD | Reference |
---|---|---|---|---|---|---|
Glycan-coated MNPs (chitosan) | E. coli O157:H7, Salmonella enterica spp., C. jejuni, and L. monocytogenes | Bovine fecal sample | 99–100% | Magnetic nanoparticles | 1 CFU/mL | This study |
Dextrin-capped GNPs | E. coli O157:H7, Salmonella enterica spp., C. jejuni, and L. monocytogenes | Bovine fecal sample | N/A | Plasmonic/colorimetric | 2.9 µg/µL, which is 5.3 × 105 cells | This study |
Glycan (not specified), cysteine–glycan | S. Enteritidis, E. coli O157:H7, B. cereus | Milk | 73–90% | N/A | N/A | [31] |
Mannose and galactose | E. coli | PBS | 80–88% | BacTiter-Glo assay | N/A | [34] |
Biotinylated mono- and biantennary di-/trisaccharide | E. coli (UPEC) | PBS | 17–34% | BacTiter-Glo™ assay | N/A | [32] |
Lysine-SCGs | E. coli O157:H7 | Sausage | >90% | Colorimetric | 30.8 CFU/mL | [33] |
gold@platinum nanocatalyst (Au@PtNCs) | Salmonella | N/A | N/A | Colorimetric | 350 CFU/mL | [41] |
Gold nanoparticles and asymmetric PCR | S. Typhimurium | Lettuce | N/A | Colorimetric | 2.56 CFU/mL | [42] |
Urease-induced silver metallization on the surface of gold nanorods (AuNR) | Salmonella Choleraesuis | Pasteurized whole milk | N/A | Colorimetric ELISA | 1.21 × 102 cfu/mL and 1.21 × 101 cfu/mL | [43] |
DNA-functionalized gold nanoparticles | S. aureus, S. Typhimurium, S. Enteritidis | Cheese, chicken, lettuce, omelet, and potato salad | N/A | Plasmon-assisted colorimetric detection | 1 CFU/mL | [44] |
Oligonucleotide–gold nanoparticles | Salmonella spp. | Blueberries and chicken meat | N/A | Optical/colorimetric | <10 CFU/mL | [45] |
5. Study Limitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heredia, N.; García, S. Animals as sources of foodborne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. The European Union summary report on trends and sources of zoonoses, zoonotic agents, and foodborne outbreaks in 2016. EFSA J. 2017, 15, 4329.
- Tack, D.M.; Marder, E.P.; Griffin, P.; Cieslak, P.R.; Dunn, J.; Hurd, S.; Scallan, E.; Lathrop, S.; Muse, A.; Ryan, P.; et al. Preliminary incidence and trends of infections with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US Sites, 2015–2018. Morb. Mortal. Wkly. Rep. 2019, 68, 369. [Google Scholar] [CrossRef] [PubMed]
- Schneider, G.; Schweitzer, B.; Steinbach, A.; Pertics, B.Z.; Cox, A.; Kőrösi, L. Antimicrobial Efficacy and Spectrum of Phosphorous-Fluorine Co-Doped TiO2 Nanoparticles on the Foodborne Pathogenic Bacteria Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. Foods 2021, 10, 1786. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Food Safety 2022. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 3 March 2023).
- Mi, F.; Guan, M.; Hu, C.; Peng, F.; Sun, S.; Wang, X. Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: A review. Analyst 2021, 146, 429–443. [Google Scholar] [CrossRef] [PubMed]
- Dumen, E.; Ekici, G.; Ergin, S.; Bayrakal, G.M. Presence of foodborne pathogens in seafood and risk ranking for pathogens. Foodborne Pathog. Dis. 2020, 17, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Aydin, M.; Khatiwara, A.; Dolan, M.C.; Gilmore, D.F.; Bouldin, J.L.; Ahn, S.; Ricke, S.C. Current and emerging technologies for rapid detection and characterization of Salmonella in poultry and poultry products. Food Microbiol. 2014, 38, 250–262. [Google Scholar] [CrossRef]
- Duan, N.; Xu, B.; Wu, S.; Wang, Z. Magnetic Nanoparticles-based Aptasensor Using Gold Nanoparticles as Colorimetric Probes for the Detection of Salmonella typhimurium. Anal. Sci. 2016, 32, 431–436. [Google Scholar] [CrossRef]
- Juncker, D.; Bergeron, S.; Laforte, V.; Li, H. Cross-reactivity in antibody microarrays and multiplexed sandwich assays: Shedding light on the dark side of multiplexing. Curr. Opin. Chem. Biol. 2014, 18, 29–37. [Google Scholar] [CrossRef]
- Shen, Y.; Xu, L.; Li, Y. Biosensors for rapid detection of Salmonella in food: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 149–197. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Yang, G.; Li, H.; Du, D.; Lin, Y. Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal. Chem. 2015, 87, 230–249. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Lan, L.; Yao, Y.; Zhao, F.; Ping, J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. TrAC Trends Anal. Chem. 2018, 102, 236–249. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Aghaie, T.; Avan, A.; Vatankhah, A.; Ghaffari, M.R.S. Colorimetric detection based on gold nanoparticles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). Sens. Bio-Sens. Res. 2018, 20, 1–8. [Google Scholar] [CrossRef]
- Khansili, N.; Rattu, G.; Krishna, P.M. Label-free optical biosensors for food and biological sensor applications. Sens. Actuators B Chem. 2018, 265, 35–49. [Google Scholar] [CrossRef]
- Pérez-López, B.; Merkoçi, A. Nanomaterials based biosensors for food analysis applications. Trends Food Sci. Technol. 2011, 22, 625–639. [Google Scholar] [CrossRef]
- Chen, J.; Park, B. Recent Advancements in Nanobioassays and Nanobiosensors for Foodborne Pathogenic Bacteria Detection. J. Food Prot. 2016, 79, 1055–1069. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Zhang, X.; Kumar, A.; Zou, G.; Zhang, X.; Liang, X.J. Long genomic DNA amplicons adsorption onto unmodified gold nanoparticles for colorimetric detection of Bacillus anthracis. Chem. Commun. 2013, 49, 51–53. [Google Scholar] [CrossRef]
- Dester, E.; Kao, K.; Alocilja, E.C. Detection of Unamplified E. coli O157 DNA Extracted from Large Food Samples Using a Gold Nanoparticle Colorimetric Biosensor. Biosensors 2022, 12, 274. [Google Scholar] [CrossRef]
- Hung, Y.L.; Hsiung, T.M.; Chen, Y.Y.; Huang, Y.F.; Huang, C.C. Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J. Phys. Chem. C 2010, 114, 16329–16334. [Google Scholar] [CrossRef]
- Lim, D.; Villame, R.G.; Quiñones, G.J.; de Vera, D.; Notorio, R.; Fernando, L.; Alocilja, E. Alocilja Magnetic Nanoparticles Efficiently Capture Escherichia coli O157: H7 Isolates. PJP 2017, 2, 47. [Google Scholar] [CrossRef]
- Vetrone, S.A.; Huarng, M.C.; Alocilja, E.C. Detection of non-PCR amplified S. enteritidis genomic DNA from food matrices using a gold-nanoparticle DNA biosensor: A proof-of-concept study. Sensors 2012, 12, 10487–10499. [Google Scholar] [CrossRef] [PubMed]
- Baetsen-Young, A.M.; Vasher, M.; Matta, L.L.; Colgan, P.; Alocilja, E.C.; Day, B. Direct colorimetric detection of unamplified pathogen DNA by dextrin-capped gold nanoparticles. Biosens. Bioelectron. 2018, 101, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Bhusal, N.; Shrestha, S.; Pote, N.; Alocilja, E.C. Nanoparticle-Based Biosensing of Tuberculosis, an Affordable and Practical Alternative to Current Methods. Biosensors 2018, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Mooijman, K.A.; Pielaat, A.; Kuijpers, A.F. Validation of EN ISO 6579-1-Microbiology of the food chain-Horizontal method for the detection, enumeration and serotyping of Salmonella-Part 1 detection of Salmonella spp. Int. J. Food Microbiol 2019, 288, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Gordillo-Marroquín, C.; Gómez-Velasco, A.; Sánchez-Pérez, H.J.; Pryg, K.; Shinners, J.; Murray, N.; Muñoz-Jiménez, S.G.; Bencomo-Alerm, A.; Gómez-Bustamante, A.; Jonapá-Gómez, L.; et al. Magnetic nanoparticle-based biosensing assay quantitatively enhances acid-fast bacilli count in paucibacillary pulmonary tuberculosis. Biosensors 2018, 8, 128. [Google Scholar] [CrossRef] [PubMed]
- Ueda, S.; Umesako, S.; Mineno, J.; Kuwabara, Y. The Magnetic Immuno Polymerase Chain Reaction Assay for Detection of Salmonella from Food and Fecal Samples. Biocontrol Sci. 2000, 5, 25–32. [Google Scholar] [CrossRef]
- Dester, E.; Alocilja, E. Current Methods for Extraction and Concentration of Foodborne Bacteria with Glycan-Coated Magnetic Nanoparticles: A Review. Biosensors 2022, 12, 112. [Google Scholar] [CrossRef]
- Matta, L.L. Biosensing Total Bacterial Load in Liquid Matrices to Improve Food Supply Chain Safety Using Carbohydrate-Functionalized Magnetic Nanoparticles for Cell Capture and Gold Nanoparticles for Signaling. Ph.D. Dissertation, Biosystems Engineering, Michigan State University, East Lansing, MI, USA, 2018. Available online: https://d.lib.msu.edu/etd/19605 (accessed on 16 February 2024).
- Matta, L.L.; Alocilja, E.C. Carbohydrate Ligands on Magnetic Nanoparticles for Centrifuge-Free Extraction of Pathogenic Contaminants in Pasteurized Milk. J. Food Prot. 2018, 81, 1941–1949. [Google Scholar] [CrossRef]
- Yosief, H.O.; Weiss, A.A.; Iyer, S.S. Capture of uropathogenic E. coli by using synthetic glycan ligands specific for the pap-pilus. Chembiochem A Eur. J. Chem. Biol. 2013, 14, 251–259. [Google Scholar] [CrossRef]
- You, S.M.; Jeong, K.B.; Luo, K.; Park, J.S.; Park, J.W.; Kim, Y.R. based colorimetric detection of pathogenic bacteria in food through magnetic separation and enzyme-mediated signal amplification on paper disc. Anal. Chim. Acta. 2021, 1151, 338252. [Google Scholar] [CrossRef] [PubMed]
- El-Boubbou, K.; Gruden, C.; Huang, X. Magnetic glyco-nanoparticles: A unique tool for rapid pathogen detection, decontamination, and strain differentiation. J. Am. Chem. Soc. 2007, 129, 13392–13393. [Google Scholar] [CrossRef] [PubMed]
- Matta, L.L.; Harrison, J.; Deol, G.S.; Alocilja, E.C. Carbohydrate-functionalized nanobiosensor for rapid extraction of pathogenic bacteria directly from complex liquids with quick detection using cyclic voltammetry. IEEE Trans. Nanotechnol. 2018, 17, 1006–1013. [Google Scholar] [CrossRef]
- Ying, N.; Ju, C.; Li, Z.; Liu, W.; Wan, J. Visual detection of nucleic acids based on lateral flow biosensor and hybridization chain reaction amplification. Talanta 2017, 164, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella typhimurium detection using a surface-enhanced Raman scattering-based aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.; Ross, W.; Harwig, J. Health risk assessment of Listeria monocytogenes in Canada. Int. J. Food Microbiol. 1996, 30, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Mendonça, M.; Bhunia, A. Fiber-Optic Sensors for High Throughput Screening of Pathogens; Woodhead Publishing: Cambridge, UK, 2015; pp. 249–262. [Google Scholar]
- United States Department of Agriculture Food Safety and Inspection Service. MLG 4.13 Isolation and Identification of Salmonella from Meat, Poultry, Pasteurized Egg, Carcass, and Environmental Sponges 2023. Available online: https://www.fsis.usda.gov/sites/default/files/media_file/documents/MLG-4.13.pdf (accessed on 5 April 2024).
- Qi, W.; Zheng, L.; Hou, Y.; Duan, H.; Wang, L.; Wang, S.; Liu, Y.; Li, Y.; Liao, M.; Lin, J. A finger-actuated microfluidic biosensor for colorimetric detection of foodborne pathogens. Food Chem. 2022, 381, 131801. [Google Scholar] [CrossRef]
- Wang, L.; Wu, X.; Hu, H.; Huang, Y.; Yang, X.; Wang, Q.; Chen, X. Improving the detection limit of Salmonella colorimetry using long ssDNA of asymmetric-PCR and non-functionalized AuNPs. Anal. Biochem. 2021, 626, 114229. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Chen, X.; Huang, X.; Pei, K.; Xiong, Y.; Wu, Y.; Duan, H.; Lai, W.; Xiong, Y. Urease-induced metallization of gold nanorods for the sensitive detection of Salmonella enterica Choleraesuis through colorimetric ELISA. J. Dairy Sci. 2019, 102, 1997–2007. [Google Scholar] [CrossRef]
- Sanromán-Iglesias, M.; Garrido, V.; Gil-Ramírez, Y.; Aizpurua, J.; Grzelczak, M.; Grilló, M.J. Plasmon-assisted fast colorimetric detection of bacterial nucleases in food samples. Sens. Actuators B Chem. 2021, 349, 130780. [Google Scholar] [CrossRef]
- Quintela, I.A.; de Los Reyes, B.G.; Lin, C.S.; Wu, V.C. Simultaneous colorimetric detection of a variety of Salmonella spp. in food and environmental samples by optical biosensing using oligonucleotide-gold nanoparticles. Front. Microbiol. 2019, 10, 1138. [Google Scholar] [CrossRef] [PubMed]
Bacteria | Strain |
---|---|
Salmonella Typhimurium | ATCC 13311 |
Listeria monocytogenes | ATCC 19117 |
Escherichia coli O157:H7 | 61593 |
Campylobacter jejuni | ATCC 33560 |
Target Gene | Probe Name | Sequence (5′–3′) | Tm | Target Bacteria |
---|---|---|---|---|
invA | InvA-F-Biosensor | /5AmMC6/CGC TTC GCC GTT CGC GCG CGG CAT CCG CAT CAA TAA TAC C | 72.4 °C | Salmonella enterica spp. |
Lmo0733-F-Biosensor | /5AmMC6/TA TAC GGT AGA ATA GGT TAA CTG TCC AGT TCC ATT TTT AAC | 60.1 °C | Listeria monocytogenes | |
yeeS | 0157-1-Biosensor | /5AmMC6/AG TCT TGG TGC TGC TCT GAC ATT TTT GGA CTT AGG TAT AG | 64.3 °C | Escherichia coli O157:H7 |
Cj0415 | Cj0414-1-Biosensor | /5AmMC6/GG ATG GAC TGG AGG TAT AGT GGC TGC AGA GCT TAC TAA AG | 62.6 °C | Campylobacter jejuni |
Sample Number | E. coli O157:H7 | L. monocytogenes | C. jejuni | S. typhimurium | ||||
---|---|---|---|---|---|---|---|---|
GNPs | PCR | GNPs | PCR | GNPs | PCR | GNPs | PCR | |
125 | − | − | − | − | − | − | + | + |
139 | + | + | + | + | + | − | + | + |
152 | − | − | + | + | + | + | + | + |
158 | + | + | + | − | + | + | + | + |
167 | − | − | + | + | + | + | + | + |
168 | − | − | + | + | + | + | + | + |
174 | + | − | + | − | + | + | + | + |
176 | + | − | + | − | + | + | + | + |
180 | + | + | + | − | − | − | + | + |
182 | − | − | + | − | + | + | + | + |
185 | − | − | + | − | − | − | + | + |
186 | − | + | + | − | − | − | + | + |
190 | − | − | + | + | + | + | + | + |
191 | + | + | + | − | + | + | + | + |
192 | + | + | + | − | + | + | + | + |
196 | − | − | + | + | − | − | + | + |
198 | − | + | − | − | − | − | + | + |
208 | + | + | − | − | − | + | + | + |
219 | + | + | − | − | + | + | + | + |
222 | + | + | − | − | − | − | + | + |
225 | + | + | − | − | + | − | + | + |
226 | − | − | − | − | + | + | + | + |
227 | + | + | + | + | + | + | + | + |
238 | + | + | − | − | + | + | + | + |
244 | − | − | − | − | + | + | + | + |
245 | − | − | − | − | + | + | + | + |
251 | − | + | − | − | − | − | + | + |
260 | − | − | − | − | − | − | + | + |
261 | + | + | + | + | − | − | + | + |
262 | + | + | − | − | + | + | + | + |
273 | − | − | − | − | + | + | − | − |
274 | + | + | + | + | − | − | + | + |
275 | + | + | + | + | − | − | − | − |
276 | − | − | + | + | + | − | − | − |
277 | + | − | − | − | + | + | − | − |
278 | + | + | − | − | + | + | − | − |
279 | − | − | − | − | + | + | − | − |
280 | − | − | + | + | + | + | − | − |
GNPs + | GNPs − | PCR + | PCR − | |
---|---|---|---|---|
S. Typhimurium | 31 | 7 | 31 | 7 |
E. coli O157:H7 | 19 | 19 | 19 | 19 |
C. jejuni | 25 | 13 | 23 | 15 |
L. monocytogenes | 21 | 17 | 12 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazy, A.; Nyarku, R.; Faraj, R.; Bentum, K.; Woube, Y.; Williams, M.; Alocilja, E.; Abebe, W. Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples. Microorganisms 2024, 12, 1069. https://doi.org/10.3390/microorganisms12061069
Ghazy A, Nyarku R, Faraj R, Bentum K, Woube Y, Williams M, Alocilja E, Abebe W. Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples. Microorganisms. 2024; 12(6):1069. https://doi.org/10.3390/microorganisms12061069
Chicago/Turabian StyleGhazy, Ahmed, Rejoice Nyarku, Rawah Faraj, Kingsley Bentum, Yilkal Woube, McCoy Williams, Evangelyn Alocilja, and Woubit Abebe. 2024. "Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples" Microorganisms 12, no. 6: 1069. https://doi.org/10.3390/microorganisms12061069
APA StyleGhazy, A., Nyarku, R., Faraj, R., Bentum, K., Woube, Y., Williams, M., Alocilja, E., & Abebe, W. (2024). Gold Nanoparticle-Based Plasmonic Detection of Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Listeria monocytogenes from Bovine Fecal Samples. Microorganisms, 12(6), 1069. https://doi.org/10.3390/microorganisms12061069