Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Sample Collection
2.2. Isolation and Genus Confirmation of Strains
2.3. Multilocus Phylogenetic Analysis (MLPA)
2.4. ERIC-PCR Analysis
2.5. Antibiotic Susceptibility
2.6. Plasmid Transfer by Conjugation
2.7. Transformation by Electroporation
2.8. Natural Transformation
2.9. Vesiduction
2.10. Genome Sequencing
2.11. Phylogenomic Analysis
2.12. Genome Analysis
3. Results
3.1. Phenotypic and Genotypic Identification of A. trota Strains
3.2. Resistance Profiles
3.3. Plasmid Conjugal Transfer
3.4. Electroporation, Natural Transformation and Vesiduction
3.5. Identification of Foreign Genetic Elements and Putative Elements That Prevent HGT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed]
- Roger, F.; Marchandin, H.; Jumas-Bilak, E.; Kodjo, A.; Lamy, B.; The colBVH Study Group. Multilocus Genetics to Reconstruct Aeromonad Evolution. BMC Microbiol. 2012, 12, 62. [Google Scholar] [CrossRef] [PubMed]
- Figueras, M.J.; Latif-Eugenín, F.; Ballester, F.; Pujol, I.; Tena, D.; Berg, K.; Hossain, M.J.; Beaz-Hidalgo, R.; Liles, M.R. “Aeromonas intestinalis” and “Aeromonas enterica” Isolated from Human Faeces, “Aeromonas crassostreae” from Oyster and “Aeromonas aquatilis” Isolated from Lake Water Represent Novel Species. New Microbes New Infect. 2017, 15, 74–76. [Google Scholar] [CrossRef] [PubMed]
- Talagrand-Reboul, E.; Roger, F.; Kimper, J.-L.; Colston, S.M.; Graf, J.; Latif-Eugenín, F.; Figueras, M.J.; Petit, F.; Marchandin, H.; Jumas-Bilak, E.; et al. Delineation of Taxonomic Species within Complex of Species: Aeromonas media and Related Species as a Test Case. Front. Microbiol. 2017, 8, 621. [Google Scholar] [CrossRef] [PubMed]
- Baltazar-Cruz, J.; Rojas-Rios, R.; Larios-Serrato, V.; Mendoza-Sanchez, I.; Curiel-Quesada, E.; Pérez-Valdespino, A. A Class 4-like Chromosomal Integron Found in Aeromonas sp. Genomospecies paramedia Isolated from Human Feces. Microorganisms 2023, 11, 2548. [Google Scholar] [CrossRef]
- Fernández-Bravo, A.; Figueras, M.J. An Update on the Genus Aeromonas: Taxonomy, Epidemiology, and Pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [PubMed]
- Carnahan, A.M.; Chakraborty, T.; Fanning, G.R.; Verma, D.; Ali, A.; Janda, J.M.; Joseph, S.W. Aeromonas trota sp. nov., an Ampicillin-Susceptible Species Isolated from Clinical Specimens. J. Clin. Microbiol. 1991, 29, 1206–1210. [Google Scholar] [CrossRef] [PubMed]
- Huys, G.; Denys, R.; Swings, J. DNA-DNA Reassociation and Phenotypic Data Indicate Synonymy between Aeromonas enteropelogenes Schubert et al. 1990 and Aeromonas trota Carnahan et al. 1991. Int. J. Syst. Evol. Microbiol. 2002, 52, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R.; Zak, J.C.; Jeter, R.M. Sampling Bias Created by Ampicillin in Isolation Media for Aeromonas. Can. J. Microbiol. 2007, 53, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.V.; Sanyal, S.C. Enteropathogenicity of Aeromonas jandaei and A. trota. FEMS Immunol. Med. Microbiol. 1997, 17, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.; Ozaki, H.; Fujii, Y.; Kobayashi, H.; Yamanaka, H.; Arimoto, S.; Negishi, T.; Okamoto, K. Properties of Hemolysin and Protease Produced by Aeromonas trota. PLoS ONE 2014, 9, e91149. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Suresh Kanna, P.; Karkuzhali, K.; Chattopadhyay, U.K.; Pal, D. Direct Detection of Diarrheagenic Aeromonas from Faeces by Polymerase Chain Reaction (PCR) Targeting Aerolysin Toxin Gene. Eur. Rev. Med. Pharmacol. Sci. 2001, 5, 91–94. [Google Scholar] [PubMed]
- Reina, J.; Lopez, A. Gastroenteritis Caused by Aeromonas trota in a Child. J. Clin. Pathol. 1996, 49, 173–175. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-C.; Ding, L.-W.; Hsueh, P.-R. Wound Infection and Septic Shock Due to Aeromonas trota in a Patient with Liver Cirrhosis. Clin. Infect. Dis. 2007, 44, 1523–1524. [Google Scholar] [CrossRef] [PubMed]
- Dallagassa, C.B.; Surek, M.; Vizzotto, B.S.; Prediger, K.C.; Moriel, B.; Wolf, S.; Weiss, V.; Cruz, L.M.; Assis, F.E.A.; Paludo, K.S.; et al. Characteristics of an Aeromonas trota Strain Isolated from Cerebrospinal Fluid. Microb. Pathog. 2018, 116, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Darmon, E.; Leach, D.R.F. Bacterial Genome Instability. Microbiol. Mol. Biol. Rev. 2014, 78, 1–39. [Google Scholar] [CrossRef] [PubMed]
- Juhas, M.; Van Der Meer, J.R.; Gaillard, M.; Harding, R.M.; Hood, D.W.; Crook, D.W. Genomic Islands: Tools of Bacterial Horizontal Gene Transfer and Evolution. FEMS Microbiol. Rev. 2009, 33, 376–393. [Google Scholar] [CrossRef] [PubMed]
- Husnik, F.; McCutcheon, J.P. Functional Horizontal Gene Transfer from Bacteria to Eukaryotes. Nat. Rev. Microbiol. 2018, 16, 67–79. [Google Scholar] [CrossRef]
- Daubin, V.; Szöllősi, G.J. Horizontal Gene Transfer and the History of Life. Cold Spring Harb. Perspect. Biol. 2016, 8, a018036. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Beltrán, J.; DelaFuente, J.; León-Sampedro, R.; MacLean, R.C.; San Millán, Á. Beyond Horizontal Gene Transfer: The Role of Plasmids in Bacterial Evolution. Nat. Rev. Microbiol. 2021, 19, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Bennett, P.M. Genome Plasticity: Insertion Sequence Elements, Transposons and Integrons, and DNA Rearrangement. Methods Mol. Biol. 2004, 266, 71–113. [Google Scholar] [CrossRef] [PubMed]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. Annu. Rev. Microbiol. 2017, 71, 233–261. [Google Scholar] [CrossRef] [PubMed]
- Koonin, E.V.; Makarova, K.S.; Wolf, Y.I.; Krupovic, M. Evolutionary Entanglement of Mobile Genetic Elements and Host Defence Systems: Guns for Hire. Nat. Rev. Genet. 2020, 21, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Makarova, K.S.; Wolf, Y.I.; Snir, S.; Koonin, E.V. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems. J. Bacteriol. 2011, 193, 6039–6056. [Google Scholar] [CrossRef] [PubMed]
- Mayo-Muñoz, D.; Pinilla-Redondo, R.; Birkholz, N.; Fineran, P.C. A Host of Armor: Prokaryotic Immune Strategies against Mobile Genetic Elements. Cell Rep. 2023, 42, 112672. [Google Scholar] [CrossRef] [PubMed]
- Tesson, F.; Hervé, A.; Mordret, E.; Touchon, M.; d’Humières, C.; Cury, J.; Bernheim, A. Systematic and Quantitative View of the Antiviral Arsenal of Prokaryotes. Nat. Commun. 2022, 13, 2561. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Popowska, M. Insight into the Mobilome of Aeromonas Strains. Front. Microbiol. 2015, 6, 138626. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, P.-É.; Attéré, S.A.; Paquet, V.E.; Paquet, M.F.; Girard, S.B.; Farley, J.; Frenette, M.; Vincent, A.T.; Charette, S.J. Host Dependent-Transposon for a Plasmid Found in Aeromonas salmonicida subsp. salmonicida That Bears a catB3 Gene for Chloramphenicol Resistance. Antibiotics 2023, 12, 257. [Google Scholar] [CrossRef] [PubMed]
- Vincent, A.T.; Hosseini, N.; Charette, S.J. The Aeromonas salmonicida Plasmidome: A Model of Modular Evolution and Genetic Diversity. Ann. N. Y. Acad. Sci. 2021, 1488, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.-L.; Lee, T.-F.; Wu, C.-J.; Teng, S.-H.; Teng, L.-J.; Ko, W.-C.; Hsueh, P.-R. Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Can Accurately Differentiate Aeromonas dhakensis from A. hydrophila, A. caviae, and A. veronii. J. Clin. Microbiol. 2014, 52, 2625–2628. [Google Scholar] [CrossRef] [PubMed]
- Lamy, B.; Kodjo, A.; Laurent, F.; ColBVH Study Group. Identification of Aeromonas Isolates by Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry. Diagn. Microbiol. Infect. Dis. 2011, 71, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Murcia, A.J.; Monera, A.; Saavedra, M.J.; Oncina, R.; Lopez-Alvarez, M.; Lara, E.; Figueras, M.J. Multilocus Phylogenetic Analysis of the Genus Aeromonas. Syst. Appl. Microbiol. 2011, 34, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Gouy, M.; Tannier, E.; Comte, N.; Parsons, D.P. Seaview Version 5: A Multiplatform Software for Multiple Sequence Alignment, Molecular Phylogenetic Analyses, and Tree Reconciliation. Methods Mol. Biol. 2021, 2231, 241–260. [Google Scholar] [CrossRef] [PubMed]
- Guindon, S.; Dufayard, J.-F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst. Biol. 2010, 59, 307–321. [Google Scholar] [CrossRef]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef]
- Versalovic, J.; Koeuth, T.; Lupski, J.R. Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Res. 1991, 19, 6823–6831. [Google Scholar] [CrossRef]
- Hammer, O.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Paleontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Weinstein, M.P.; Patel, J.B. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: M07-A11, 11th ed.; Documents/Clinical and Laboratory Standards Institute; Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2018; ISBN 978-1-56238-836-2. [Google Scholar]
- Otero-Olarra, J.E.; Curiel-Quesada, E.; Baltazar-Cruz, J.; Aguilera-Arreola, M.G.; Pérez-Valdespino, A. Low Cassette Variability in Class 2 and Class 1 Integrons of Aeromonas spp. Isolated from Environmental Samples. Microb. Drug Resist. 2020, 26, 794–801. [Google Scholar] [CrossRef] [PubMed]
- Martínez-García, E.; Aparicio, T.; de Lorenzo, V.; Nikel, P.I. New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories. Front. Bioeng. Biotechnol. 2014, 2, 46. [Google Scholar] [CrossRef] [PubMed]
- Obranić, S.; Babić, F.; Maravić-Vlahoviček, G. Improvement of pBBR1MCS Plasmids, a Very Useful Series of Broad-Host-Range Cloning Vectors. Plasmid 2013, 70, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Sørum, H.; L’Abée-Lund, T.M.; Solberg, A.; Wold, A. Integron-Containing IncU R Plasmids pRAS1 and pAr-32 from the Fish Pathogen Aeromonas salmonicida. Antimicrob. Agents Chemother. 2003, 47, 1285–1290. [Google Scholar] [CrossRef] [PubMed]
- Green, M.R.; Sambrook, J.; Sambrook, J. Molecular Cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2012; ISBN 978-1-936113-41-5. [Google Scholar]
- Alderliesten, J.B.; Duxbury, S.J.N.; Zwart, M.P.; de Visser, J.A.G.M.; Stegeman, A.; Fischer, E.A.J. Effect of Donor-Recipient Relatedness on the Plasmid Conjugation Frequency: A Meta-Analysis. BMC Microbiol. 2020, 20, 135. [Google Scholar] [CrossRef] [PubMed]
- Dallaire-Dufresne, S.; Emond-Rheault, J.-G.; Attéré, S.A.; Tanaka, K.H.; Trudel, M.V.; Frenette, M.; Charette, S.J. Optimization of a Plasmid Electroporation Protocol for Aeromonas salmonicida subsp. salmonicida. J. Microbiol. Methods 2014, 98, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Lynch, M.D.; Gill, R.T. Broad Host Range Vectors for Stable Genomic Library Construction. Biotechnol. Bioeng. 2006, 94, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Huddleston, J.R.; Brokaw, J.M.; Zak, J.C.; Jeter, R.M. Natural Transformation as a Mechanism of Horizontal Gene Transfer among Environmental Aeromonas Species. Syst. Appl. Microbiol. 2013, 36, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Avila-Calderón, E.D.; Otero-Olarra, J.E.; Flores-Romo, L.; Peralta, H.; Aguilera-Arreola, M.G.; Morales-García, M.R.; Calderón-Amador, J.; Medina-Chávez, O.; Donis-Maturano, L.; Ruiz-Palma, M.D.S.; et al. The Outer Membrane Vesicles of Aeromonas hydrophila ATCC® 7966TM: A Proteomic Analysis and Effect on Host Cells. Front. Microbiol. 2018, 9, 2765. [Google Scholar] [CrossRef] [PubMed]
- Rumbo, C.; Fernández-Moreira, E.; Merino, M.; Poza, M.; Mendez, J.A.; Soares, N.C.; Mosquera, A.; Chaves, F.; Bou, G. Horizontal Transfer of the OXA-24 Carbapenemase Gene via Outer Membrane Vesicles: A New Mechanism of Dissemination of Carbapenem Resistance Genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 3084–3090. [Google Scholar] [CrossRef] [PubMed]
- Yaron, S.; Kolling, G.L.; Simon, L.; Matthews, K.R. Vesicle-Mediated Transfer of Virulence Genes from Escherichia coli O157:H7 to Other Enteric Bacteria. Appl. Environ. Microbiol. 2000, 66, 4414–4420. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.; Pirrung, M.; McCue, L.A. FQC Dashboard: Integrates FastQC Results into a Web-Based, Interactive, and Extensible FASTQ Quality Control Tool. Bioinformatics 2017, 33, 3137–3139. [Google Scholar] [CrossRef] [PubMed]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes De Novo Assembler. Curr. Protoc. Bioinform. 2020, 70, e102. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Rissman, A.I.; Mau, B.; Biehl, B.S.; Darling, A.E.; Glasner, J.D.; Perna, N.T. Reordering Contigs of Draft Genomes Using the Mauve Aligner. Bioinformatics 2009, 25, 2071–2073. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.-Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Ramírez, Z.Y.; Mendez-Tenorio, A.; Kato, I.; Bravo, M.M.; Rizzato, C.; Thorell, K.; Torres, R.; Aviles-Jimenez, F.; Camorlinga, M.; Canzian, F.; et al. Whole Genome Sequence and Phylogenetic Analysis Show Helicobacter pylori Strains from Latin America Have Followed a Unique Evolution Pathway. Front. Cell Infect. Microbiol. 2017, 7, 50. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A Database Tandem for Fast and Reliable Genome-Based Classification and Nomenclature of Prokaryotes. Nucleic Acids Res. 2021, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.-H.; Ha, S.-M.; Lim, J.; Kwon, S.; Chun, J. A Large-Scale Evaluation of Algorithms to Calculate Average Nucleotide Identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef] [PubMed]
- Payne, L.J.; Meaden, S.; Mestre, M.R.; Palmer, C.; Toro, N.; Fineran, P.C.; Jackson, S.A. PADLOC: A Web Server for the Identification of Antiviral Defence Systems in Microbial Genomes. Nucleic Acids Res. 2022, 50, W541–W550. [Google Scholar] [CrossRef] [PubMed]
- Wishart, D.S.; Han, S.; Saha, S.; Oler, E.; Peters, H.; Grant, J.R.; Stothard, P.; Gautam, V. PHASTEST: Faster than PHASTER, Better than PHAST. Nucleic Acids Res. 2023, 51, W443–W450. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; García-Fernández, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Møller Aarestrup, F.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Tang, H. ISEScan: Automated Identification of Insertion Sequence Elements in Prokaryotic Genomes. Bioinformatics 2017, 33, 3340–3347. [Google Scholar] [CrossRef] [PubMed]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Mestre, M.R.; Gao, L.A.; Shah, S.A.; López-Beltrán, A.; González-Delgado, A.; Martínez-Abarca, F.; Iranzo, J.; Redrejo-Rodríguez, M.; Zhang, F.; Toro, N. UG/Abi: A Highly Diverse Family of Prokaryotic Reverse Transcriptases Associated with Defense Functions. Nucleic Acids Res. 2022, 50, 6084–6101. [Google Scholar] [CrossRef] [PubMed]
- Millman, A.; Melamed, S.; Leavitt, A.; Doron, S.; Bernheim, A.; Hör, J.; Garb, J.; Bechon, N.; Brandis, A.; Lopatina, A.; et al. An Expanded Arsenal of Immune Systems That Protect Bacteria from Phages. Cell Host Microbe 2022, 30, 1556–1569. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shen, Z.; Zhang, M.; Yang, X.-Y.; Cleary, S.P.; Xie, J.; Marathe, I.A.; Kostelic, M.; Greenwald, J.; Rish, A.D.; et al. PtuA and PtuB Assemble into an Inflammasome-like Oligomer for Anti-Phage Defense. Nat. Struct. Mol. Biol. 2024, 31, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, P.H.; Touchon, M.; Rocha, E.P.C. The Interplay of Restriction-Modification Systems with Mobile Genetic Elements and Their Prokaryotic Hosts. Nucleic Acids Res. 2014, 42, 10618–10631. [Google Scholar] [CrossRef] [PubMed]
- Antine, S.P.; Johnson, A.G.; Mooney, S.E.; Leavitt, A.; Mayer, M.L.; Yirmiya, E.; Amitai, G.; Sorek, R.; Kranzusch, P.J. Structural Basis of Gabija Anti-Phage Defence and Viral Immune Evasion. Nature 2024, 625, 360–365. [Google Scholar] [CrossRef]
- Millman, A.; Melamed, S.; Amitai, G.; Sorek, R. Diversity and Classification of Cyclic-Oligonucleotide-Based Anti-Phage Signaling Systems. Nat. Microbiol. 2020, 5, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Lin, Q.; Yang, X.-Y.; Fosuah, E.; Fu, T.-M. Assembly-Mediated Activation of the SIR2-HerA Supramolecular Complex for Anti-Phage Defense. Mol. Cell 2023, 83, 4586–4599. [Google Scholar] [CrossRef]
- Tong, T.; Chen, S.; Wang, L.; Tang, Y.; Ryu, J.Y.; Jiang, S.; Wu, X.; Chen, C.; Luo, J.; Deng, Z.; et al. Occurrence, Evolution, and Functions of DNA Phosphorothioate Epigenetics in Bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, E2988–E2996. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Melamed, S.; Ofir, G.; Leavitt, A.; Lopatina, A.; Keren, M.; Amitai, G.; Sorek, R. Systematic Discovery of Antiphage Defense Systems in the Microbial Pangenome. Science 2018, 359, eaar4120. [Google Scholar] [CrossRef] [PubMed]
- Averhoff, B.; Kirchner, L.; Pfefferle, K.; Yaman, D. Natural Transformation in Gram-Negative Bacteria Thriving in Extreme Environments: From Genes and Genomes to Proteins, Structures and Regulation. Extremophiles 2021, 25, 425–436. [Google Scholar] [CrossRef]
- De Silva, L.a.D.S.; Wickramanayake, M.V.K.S.; Heo, G.-J. Virulence and Antimicrobial Resistance Potential of Aeromonas spp. Associated with Shellfish. Lett. Appl. Microbiol. 2021, 73, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Xedzro, C.; Shimamoto, T.; Shimamoto, T. Predominance of Multidrug-Resistant Gram-Negative Bacteria Isolated from Supermarket Retail Seafood in Japan. Microorganisms 2023, 11, 2935. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-J.; Hoel, S.; Lunestad, B.-T.; Lerfall, J.; Jakobsen, A.N. Aeromonas spp. Isolated from Ready-to-Eat Seafood on the Norwegian Market: Prevalence, Putative Virulence Factors and Antimicrobial Resistance. J. Appl. Microbiol. 2021, 130, 1380–1393. [Google Scholar] [CrossRef] [PubMed]
- Nagar, V.; Shashidhar, R.; Bandekar, J.R. Characterization of Aeromonas Strains Isolated from Indian Foods Using rpoD Gene Sequencing and Whole Cell Protein Analysis. World J. Microbiol. Biotechnol. 2013, 29, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Yano, Y.; Hamano, K.; Tsutsui, I.; Aue-Umneoy, D.; Ban, M.; Satomi, M. Occurrence, Molecular Characterization, and Antimicrobial Susceptibility of Aeromonas spp. in Marine Species of Shrimps Cultured at Inland Low Salinity Ponds. Food Microbiol. 2015, 47, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Latif-Eugenín, F.; Beaz-Hidalgo, R.; Figueras, M.J. Evaluation of Different Conditions and Culture Media for the Recovery of Aeromonas spp. from Water and Shellfish Samples. J. Appl. Microbiol. 2016, 121, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-J.; Ko, W.-C.; Lee, N.-Y.; Su, S.-L.; Li, C.-W.; Li, M.-C.; Chen, Y.-W.; Su, Y.-C.; Shu, C.-Y.; Lin, Y.-T.; et al. Aeromonas Isolates from Fish and Patients in Tainan City, Taiwan: Genotypic and Phenotypic Characteristics. Appl. Environ. Microbiol. 2019, 85, e01360-19. [Google Scholar] [CrossRef] [PubMed]
- Crozat, E.; Fournes, F.; Cornet, F.; Hallet, B.; Rousseau, P. Resolution of Multimeric Forms of Circular Plasmids and Chromosomes. Microbiol. Spectr. 2014, 2, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Dewan, I.; Uecker, H. A Mathematician’s Guide to Plasmids: An Introduction to Plasmid Biology for Modellers: This Article Is Part of the Microbial Evolution Collection. Microbiology 2023, 169, 001362. [Google Scholar] [CrossRef] [PubMed]
- Wein, T.; Hülter, N.F.; Mizrahi, I.; Dagan, T. Emergence of Plasmid Stability under Non-Selective Conditions Maintains Antibiotic Resistance. Nat. Commun. 2019, 10, 2595. [Google Scholar] [CrossRef]
- Chant, E.L.; Summers, D.K. Indole Signalling Contributes to the Stable Maintenance of Escherichia coli Multicopy Plasmids. Mol. Microbiol. 2007, 63, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Bello-López, J.M.; Vázquez-Ocampo, N.J.; Fernández-Rendón, E.; Curiel-Quesada, E. Inability of Some Aeromonas hydrophila Strains to Act as Recipients of Plasmid pRAS1 in Conjugal Transfer Experiments. Curr. Microbiol. 2012, 64, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Cantas, L.; Midtlyng, P.J.; Sørum, H. Impact of Antibiotic Treatments on the Expression of the R Plasmid Tra Genes and on the Host Innate Immune Activity during pRAS1 Bearing Aeromonas hydrophila Infection in Zebrafish (Danio rerio). BMC Microbiol. 2012, 12, 37. [Google Scholar] [CrossRef]
- McIntosh, D.; Cunningham, M.; Ji, B.; Fekete, F.A.; Parry, E.M.; Clark, S.E.; Zalinger, Z.B.; Gilg, I.C.; Danner, G.R.; Johnson, K.A.; et al. Transferable, Multiple Antibiotic and Mercury Resistance in Atlantic Canadian Isolates of Aeromonas salmonicida subsp. salmonicida Is Associated with Carriage of an IncA/C Plasmid Similar to the Salmonella enterica Plasmid pSN254. J. Antimicrob. Chemother. 2008, 61, 1221–1228. [Google Scholar] [CrossRef] [PubMed]
- Fengqing, H.; Song, Y. Electroporation-Mediated Transformation of Aeromonas hydrophila. Plasmid 2005, 54, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Vesel, N.; Blokesch, M. Pilus Production in Acinetobacter baumannii Is Growth Phase Dependent and Essential for Natural Transformation. J. Bacteriol. 2021, 203, e00034-21. [Google Scholar] [CrossRef] [PubMed]
- Abe, K.; Nomura, N.; Suzuki, S. Biofilms: Hot Spots of Horizontal Gene Transfer (HGT) in Aquatic Environments, with a Focus on a New HGT Mechanism. FEMS Microbiol. Ecol. 2020, 96, fiaa031. [Google Scholar] [CrossRef] [PubMed]
- Johnston, E.L.; Zavan, L.; Bitto, N.J.; Petrovski, S.; Hill, A.F.; Kaparakis-Liaskos, M. Planktonic and Biofilm-Derived Pseudomonas aeruginosa Outer Membrane Vesicles Facilitate Horizontal Gene Transfer of Plasmid DNA. Microbiol. Spectr. 2023, 11, e0517922. [Google Scholar] [CrossRef] [PubMed]
- Tran, F.; Boedicker, J.Q. Genetic Cargo and Bacterial Species Set the Rate of Vesicle-Mediated Horizontal Gene Transfer. Sci. Rep. 2017, 7, 8813. [Google Scholar] [CrossRef]
- Renelli, M.; Matias, V.; Lo, R.Y.; Beveridge, T.J. DNA-Containing Membrane Vesicles of Pseudomonas aeruginosa PAO1 and Their Genetic Transformation Potential. Microbiology 2004, 150, 2161–2169. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.P.; Rocha, E.P.C.; MacLean, R.C. Restriction-Modification Systems Have Shaped the Evolution and Distribution of Plasmids across Bacteria. Nucleic Acids Res. 2023, 51, 6806–6818. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Vincze, T.; Posfai, J.; Macelis, D. REBASE: A Database for DNA Restriction and Modification: Enzymes, Genes and Genomes. Nucleic Acids Res. 2023, 51, D629–D630. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Yu, T.; Yin, Z.; Wang, P.; Lu, X.; He, J.; Zheng, Y.; Zhou, D.; Gao, B.; Mu, K. Uncovering the Hidden Threat: The Widespread Presence of Chromosome-Borne Accessory Genetic Elements and Novel Antibiotic Resistance Genetic Environments in Aeromonas. Virulence 2023, 14, 2271688. [Google Scholar] [CrossRef] [PubMed]
- Furmanek-Blaszk, B. Phenotypic and Molecular Characteristics of an Aeromonas hydrophila Strain Isolated from the River Nile. Microbiol. Res. 2014, 169, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Johnson, M.C.; Laderman, E.; Huiting, E.; Zhang, C.; Davidson, A.; Bondy-Denomy, J. Core Defense Hotspots within Pseudomonas aeruginosa Are a Consistent and Rich Source of Anti-Phage Defense Systems. Nucleic Acids Res. 2023, 51, 4995–5005. [Google Scholar] [CrossRef] [PubMed]
- Cheng, R.; Huang, F.; Wu, H.; Lu, X.; Yan, Y.; Yu, B.; Wang, X.; Zhu, B. A Nucleotide-Sensing Endonuclease from the Gabija Bacterial Defense System. Nucleic Acids Res. 2021, 49, 5216–5229. [Google Scholar] [CrossRef] [PubMed]
- Rakesh, S.; Aravind, L.; Krishnan, A. Reappraisal of the DNA Phosphorothioate Modification Machinery: Uncovering Neglected Functional Modalities and Identification of New Counter-Invader Defense Systems. Nucleic Acids Res. 2024, 52, 1005–1026. [Google Scholar] [CrossRef] [PubMed]
- Reith, M.E.; Singh, R.K.; Curtis, B.; Boyd, J.M.; Bouevitch, A.; Kimball, J.; Munholland, J.; Murphy, C.; Sarty, D.; Williams, J.; et al. The Genome of Aeromonas salmonicida Subsp. salmonicida A449: Insights into the Evolution of a Fish Pathogen. BMC Genom. 2008, 9, 427. [Google Scholar] [CrossRef] [PubMed]
Strain | pBAMD1-2 | pBBR1MCS-3 |
---|---|---|
A. caviae 6548 * | 5.52 × 10−7 | 5.19 × 10−6 |
A. trota 3.23 | 5.44 × 10−8 | 5.94 × 10−7 |
A. trota 4.24 | 2.17 × 10−6 | 3.10 × 10−6 |
A. trota 5.3 | 4.05 × 10−9 | 0 |
A. trota 9.2 | 2.32 × 10−7 | 6.75 × 10−10 |
A. trota 9.8 | 4.51 × 10−5 | 0 |
A. trota 9.11 | 4.23 × 10−7 | 8.67 × 10−7 |
A. trota 9.12 | 3.32 × 10−8 | 4.75 × 10−7 |
Strain | Defense Systems | Protein Name |
---|---|---|
A. trota 5.9 | Class III Defense-associated reverse transcriptase (DRT) [69] | Drt3a, Drt3b |
Type II Mokosh [70] | MkoC | |
Type I Septu [71] | PtuB1, PtuA1 | |
Type I restriction-modification (RM) system (two loci) [72] | Rease I, MTase I, Specificity I | |
Type IV restriction system [72] | mREase IV | |
Gabija [73] | GajA, GajB | |
Bunzi [70] | BnzA, BnzB | |
SoFic [70] | SoFic | |
A. trota 9.1 | Class III DRT | Drt1b, RT_UG5-nitrilase |
Type I Cyclic oligonucleotide-based antiphage signaling system (CBASS) [74] | Effector, Cyclase | |
Gao 19 [75] | HerA, SIR2 | |
Phosphorothioate (PT) modification system [76] | DndB-C-D-E and DndF-G-H | |
Type I RM system | Rease I, MTase I, Specificity I | |
A. trota 9.3 | Class III DRT | Drt1b, RT_UG5-nitrilase |
Type I CBASS | Effector, Cyclase | |
Gao 19 | HerA, SIR2 | |
PT modification system | DndB-C-D-E and DndF-G-H | |
Type I RM system | Rease I, MTase I, Specificity I | |
A. trota 9.12 | Class III DRT | Drt3a, Drt3b |
Type I Septu | PtuB1, PtuA1 | |
Type I RM system | Rease I, MTase I, Specificity I | |
Type IV restriction system | mREase IV | |
Class I DRT | Drt4 | |
A. caviae 6548 * | Type I Hachiman [77] | HamA1, HamB1 |
Strain | Prophages | Insertion Sequences (IS) | Resistance Genes ** | Competence Genes * | |
---|---|---|---|---|---|
Family | Length (bp) | ||||
A. trota 5.9 | No | IS3 (1) | 1247 | blaTRU | pilA and comE genes absent. |
IS5 (2) | 1062, 1079 | ||||
A. trota 9.1 | Yes (1) | IS5 (2) | 1039, 1051 | blaTRU | |
IS256 (1) | 1326 | ||||
A. trota 9.3 | No | IS5 (2) | 1051, 989 | blaTRU | |
IS256 (1) | 1326 | ||||
A. trota 9.12 | Yes (3) | IS5 (3) | 1065, 1062, 1490 | blaTRU | |
IS3 (1) | 1115 | ||||
A. caviae 6548 | Yes (3) | IS3 (2) | 1228, 1318 | blaOXAblaMOX | |
IS30 (1) | 1974 | ||||
IS481 (1) | 1198 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otero-Olarra, J.E.; Díaz-Cárdenas, G.; Aguilera-Arreola, M.G.; Curiel-Quesada, E.; Pérez-Valdespino, A. Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms 2024, 12, 1091. https://doi.org/10.3390/microorganisms12061091
Otero-Olarra JE, Díaz-Cárdenas G, Aguilera-Arreola MG, Curiel-Quesada E, Pérez-Valdespino A. Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms. 2024; 12(6):1091. https://doi.org/10.3390/microorganisms12061091
Chicago/Turabian StyleOtero-Olarra, Jorge Erick, Gilda Díaz-Cárdenas, Ma Guadalupe Aguilera-Arreola, Everardo Curiel-Quesada, and Abigail Pérez-Valdespino. 2024. "Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material" Microorganisms 12, no. 6: 1091. https://doi.org/10.3390/microorganisms12061091
APA StyleOtero-Olarra, J. E., Díaz-Cárdenas, G., Aguilera-Arreola, M. G., Curiel-Quesada, E., & Pérez-Valdespino, A. (2024). Aeromonas trota Is Highly Refractory to Acquire Exogenous Genetic Material. Microorganisms, 12(6), 1091. https://doi.org/10.3390/microorganisms12061091