The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Histopathological Analysis
2.3. EHP Artificial Infection Experiment
2.4. Gene Expression Changes Related to Glucose Metabolism
2.5. Determination of Enzymatic Activities Related to Energy Metabolism
2.6. Transcriptome Analysis
2.7. Mitochondrial Membrane Potential and Apoptosis
2.8. Statistical Analysis
3. Results
3.1. Ultrastructural Pathology
3.2. Gene Expression Analysis
3.3. Energy-Metabolism-Related Enzyme Detection
3.4. EHP Effects on Energy Metabolism of L. vannamei Based on Transcriptome
3.5. Mitochondrial Membrane Potential Changes
3.6. Hepatopancreas Cell Apoptosis
4. Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Farzanfar, A. The use of probiotics in shrimp aquaculture. Pathog. Dis. 2010, 48, 149–158. [Google Scholar]
- Ma, R.; Wu, Y.; Li, G.; Zhao, S.; Li, L.; Fang, W. Pharmacokinetics of sarafloxacin hydrochloride in the pacific white shrimp, Litopenaeus vannamei, following multiple-dose oral administration. Aquaculture 2022, 548, 737662. [Google Scholar] [CrossRef]
- Jaroenlak, P.; Boakye, D.W.; Vanichviriyakit, R.; Williams, B.A.P.; Sritunyalucksana, K.; Itsathitphaisarn, O. Identification, characterization and heparin binding capacity of a spore-wall, virulence protein from the shrimp microsporidian, Enterocytozoon hepatopenaei (EHP). Parasites Vectors 2018, 11, 177. [Google Scholar] [CrossRef]
- Tourtip, S.; Wongtripop, S.; Stentiford, G.D.; Bateman, K.S.; Sriurairatana, S.; Chavadej, J.; Sritunyalucksana, K.; Withyachumnarnkul, B. Enterocytozoon hepatopenaei sp. nov. (Microsporida: Enterocytozoonidae), a parasite of the black tiger shrimp Penaeus monodon (Decapoda: Penaeidae): Fine structure and phylogenetic relationships. J. Invertebr. Pathol. 2009, 102, 21–29. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.F.; Han, J.E.; Aranguren, L.F.; White-Noble, B.; Schmidt, M.M.; Piamsomboon, P.; Risdiana, E.; Hanggono, B. Dense populations of the microsporidian Enterocytozoon hepatopenaei (EHP) in feces of Penaeus vannamei exhibiting white feces syndrome and pathways of their transmission to healthy shrimp. J. Invertebr. Pathol. 2016, 140, 1–7. [Google Scholar] [CrossRef]
- Jaroenlak, P.; Sanguanrut, P.; Williams, B.A.P.; Stentiford, G.D.; Flegel, T.W.; Sritunyalucksana, K.; Itsathitphaisarn, O. A Nested PCR Assay to Avoid False Positive Detection of the Microsporidian Enterocytozoon hepatopenaei (EHP) in Environmental Samples in Shrimp Farms. PLoS ONE 2016, 11, e0166320. [Google Scholar] [CrossRef]
- Liu, Y.M.; Qiu, L.; Sheng, A.Z.; Wan, X.Y.; Cheng, D.Y.; Huang, J. Quantitative detection method of Enterocytozoon hepatopenaei using TaqMan probe real-time PCR. J. Invertebr. Pathol. 2018, 151, 191–196. [Google Scholar] [CrossRef]
- Nakjang, S.; Williams, T.A.; Heinz, E.; Watson, A.K.; Foster, P.G.; Sendra, K.M.; Heaps, S.E.; Hirt, R.P.; Embley, T.M. Reduction and Expansion in Microsporidian Genome Evolution: New Insights from Comparative Genomics. Genome Biol. Evol. 2013, 5, 2285–2303. [Google Scholar] [CrossRef] [PubMed]
- Hacker, C.; Howell, M.; Bhella, D.; Lucocq, J. Strategies for maximizing ATP supply in the microsporidian Encephalitozoon cuniculi: Direct binding of mitochondria to the parasitophorous vacuole and clustering of the mitochondrial porin VDAC. Cell. Microbiol. 2014, 16, 565–579. [Google Scholar] [CrossRef]
- Boakye, D.W.; Jaroenlak, P.; Prachumwat, A.; Williams, T.A.; Bateman, K.S.; Itsathitphaisarn, O.; Sritunyalucksana, K.; Paszkiewicz, K.H.; Moore, K.A.; Stentiford, G.D.; et al. Decay of the glycolytic pathway and adaptation to intranuclear parasitism within Enterocytozoonidae microsporidia. Environ. Microbiol. 2017, 19, 2077–2089. [Google Scholar] [CrossRef]
- Luo, Y.; Shi, J.; Fang, L.; Meng, Q.; Zhang, X.; Qian, D. Development and application of a TaqMan real-time PCR assay for the detection of Enterocytozoon hepatopenaei. Chin. Vet. Sci. 2016, 46, 847–852. [Google Scholar]
- Zhang, X.; Yang, H.; Li, H.; Chen, T.; Ruan, Y.; Ren, C.; Luo, P.; Wang, Y.; Liu, B.; Li, H.; et al. Molecular Identification of Anion Exchange Protein 3 in Pacific White Shrimp. Front. Physiol. 2021, 12, 726600. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(−∆∆CT) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.M.; Wang, G.Z.; Li, S.; Chen, Z. Mitochondrial Respiration Rate and Enzyme Activity of Two Populations of Scylla paramamosain During Low Temperature Seasons. J. Xiamen Univ. (Nat. Sci.) 2018, 57, 354–362. [Google Scholar]
- Martinez-Barajas, E.; Randall, D.D. Purification and characterization of a glucokinase from young tomato (Lycopersicon esculentum L. Mill.) fruit. Planta 1998, 205, 567–573. [Google Scholar] [CrossRef]
- Zhu, B.; Lu, X.; Liu, Y.; Wu, Z.; Cai, H.; Jin, S.; Li, Z.; Xie, J.; Li, X.; Sun, F.; et al. Effects of Enterocytozoon hepatopenaei single-infection or co-infection with Vibrio parahaemolyticus on the hepatopancreas of Penaeus vannamei. Aquaculture 2022, 549, 737726. [Google Scholar] [CrossRef]
- Li, T.; Li, E.; Suo, Y.; Xu, Z.; Jia, Y.; Qin, J.G.; Chen, L.; Gu, Z. Energy metabolism and metabolomics response of Pacific white shrimp Litopenaeus vannamei to sulfide toxicity. Aquat. Toxicol. 2017, 183, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Zamzami, N.; Susin, S.A.; Marchetti, P.; Hirsch, T.; Kroemer, G. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 1996, 183, 1533–1544. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Romero, O.; Uribe-Carvajal, S.; Chiquete-Felix, N.; Muhlia-Almazan, A. Mitochondrial uncoupling proteins UCP4 and UCP5 from the Pacific white shrimp Litopenaeus vannamei. J. Bioenerg. Biomembr. 2019, 51, 103–119. [Google Scholar] [CrossRef]
- Hu, T.; Xi, J. Identification of COX5B as a novel biomarker in high-grade glioma patients. Oncotargets Ther. 2017, 10, 5463–5470. [Google Scholar] [CrossRef]
- Calvo, S.E.; Mootha, V.K. The mitochondrial proteome and human disease. Annu. Rev. Genom. Hum. Genet. 2010, 11, 25–44. [Google Scholar] [CrossRef] [PubMed]
- Hughes, R.C.; Coates, L.; Blakeley, M.P.; Tomanicek, S.J.; Langan, P.; Kovalevsky, A.Y.; García-Ruiz, J.M.; Ng, J.D. Inorganic pyrophosphatase crystals from Thermococcus thioreducens for X-ray and neutron diffraction. Acta Crystallogr. Sect. F 2012, 68, 1482–1487. [Google Scholar] [CrossRef] [PubMed]
- Salminen, T.; Kaepylae, J.; Heikinheimo, P.; Kankare, J.; Goldman, A.; Heinonen, J.; Baykov, A.A.; Cooperman, B.S.; Lahti, R. Structure and function analysis of Escherichia coli inorganic pyrophosphatase: Is a hydroxide ion the key to catalysis? Biochemistry 1995, 34, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Li, X.; Shi, C.; Wu, F.; Song, C.; Liu, Y. Effects of stocking density on growth, metabolism, and energy budget of Haliotis discus hannai Ino. Aquaculture 2018, 483, 84–95. [Google Scholar]
- Xu, C.; Li, E.; Liu, Y.; Wang, X.; Qin, J.G.; Chen, L. Comparative proteome analysis of the hepatopancreas from the Pacific white shrimp Litopenaeus vannamei under long-term low salinity stress. J. Proteom. 2017, 162, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Bushong, E.A.; Segawa, M.; Tiard, A.; Wong, A.; Brady, M.R.; Momcilovic, M.; Wolf, D.M.; Zhang, R.; Petcherski, A.; et al. Spatial mapping of mitochondrial networks and bioenergetics in lung cancer. Nature 2023, 615, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.T.; Aoki, T.; Huang, Y.T.; Hirono, I.; Wang, H.C. White spot syndrome virus induces etabolic changes resembling the Warburg effect in shrimp hemocytes in the early stage of infection. J. Virol. 2011, 85, 12919–12928. [Google Scholar] [CrossRef]
- Apún-Molina, J.P.; Robles-Romo, A.; Alvarez-Ruiz, P.; Santamaria-Miranda, A.; Arjona, O.; Racotta, I.S. Influence of stocking density and exposure to white spot syndrome virus in biological performance, metabolic, immune, and bioenergetics response of whiteleg shrimp Litopenaeus vannamei. Aquaculture 2017, 479, 528–537. [Google Scholar] [CrossRef]
Gene Name | Primer | Primer Sequence |
---|---|---|
β-actin | β-actin-F | CCGGCCGCGACCTCACAGACT |
β-actin-R | CCTCGGGGCAGCGGAACCTC | |
HK | HK-F | AGTCGCAGCAACAGGAAGTT |
HK-R | CGCTCTTCTGGCACATGATA | |
PK | PK-F | AGCTGTCTCAGCAGGTCCAT |
PK-R | AGCGAGGCCTGTACTTTGAA |
Gene ID | Gene Name | Description | Fold Change |
---|---|---|---|
LOC113799962 | DPYD | Dihydropyrimidine dehydrogenase [NADP(+)] | 2.40 |
LOC113800564 | PHGDH | D-3-phosphoglycerate dehydrogenase | 8.34 |
LOC113801308 | CG11899 | Probable phosphoserine aminotransferase | 8.60 |
LOC113802550 | tpi1b | Triosephosphate isomerase B | 0.08 |
LOC113803894 | - | Glutamine synthetase | 2.50 |
LOC113805920 | Acss1 | Acetyl-coenzyme A synthetase 2-like, mitochondrial | 0.37 |
LOC113812240 | MTHFR | Methylenetetrahydrofolate reductase | 5.72 |
LOC113815714 | PGAM2 | Phosphoglycerate mutase 2 | 0.18 |
LOC113816682 | Psph | Phosphoserine phosphatase | 3.19 |
LOC113823145 | - | Glutamine synthetase | 0.31 |
LOC113826894 | CG11899 | Probable phosphoserine aminotransferase | 9.02 |
LOC113829904 | - | Inorganic pyrophosphatase | 0.030 |
LOC113827783 | Cox5b | Cytochrome c oxidase subunit 5B, mitochondrial | 64.09 |
Monomer/Polymer | Healthy Group | EHP-Infected Group | p Value |
---|---|---|---|
The first week | 0.086 ± 0.0015 | 0.290 ± 0.0032 | * |
The second week | 0.043 ± 0.0012 | 0.062 ± 0.0014 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, R.; Zhu, B.; Xiong, J.; Chen, J. The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei. Microorganisms 2024, 12, 1208. https://doi.org/10.3390/microorganisms12061208
Ma R, Zhu B, Xiong J, Chen J. The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei. Microorganisms. 2024; 12(6):1208. https://doi.org/10.3390/microorganisms12061208
Chicago/Turabian StyleMa, Rongrong, Bo Zhu, Jinbo Xiong, and Jiong Chen. 2024. "The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei" Microorganisms 12, no. 6: 1208. https://doi.org/10.3390/microorganisms12061208
APA StyleMa, R., Zhu, B., Xiong, J., & Chen, J. (2024). The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei. Microorganisms, 12(6), 1208. https://doi.org/10.3390/microorganisms12061208