Current Insights into Host–Parasite Interactions

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Parasitology".

Deadline for manuscript submissions: closed (30 June 2024) | Viewed by 10616

Special Issue Editor


E-Mail Website
Guest Editor
School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
Interests: parasites; microbiome; hosts; gastropods; nematodes; biocontrol

Special Issue Information

Dear Colleagues,

Parasitism is the most common behavioural strategy on Earth and the ancient co-evolutionary arms race between host and parasite (or pathogen) is responsible for the evolution of the host immune system, as well as the vast arsenal of weapons pathogens use to infect hosts. This interaction warrants further attention as bacteria, nematodes, trematodes (to name a few) severely affect human health, agriculture, and biodiversity. In this wide-ranging Special Issue, we aim to gain insights into the interactions between a broad range of hosts and their parasites/pathogens. Submissions are encouraged from researchers who study behavioural responses of hosts to parasites, host immunity, molecular mechanisms of pathogenicity, microbiome changes in hosts (or parasites), genomic/genetic studies examining host or parasite responses, bacterial symbiosis, or diversity and population genetic studies. Studies on parasites/pathogens of invertebrates are particularly welcome, as well as those of mammals. 

Dr. Robbie G. Rae
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • helminths
  • pathogenic fungi
  • bacteria
  • microbiome
  • neglected tropical diseases
  • insect pathogens
  • bacterial symbiosis
  • host–parasite interactions
  • genomics of parasites
  • parasite genetic diversity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 4908 KiB  
Article
Investigation of Mutations in the crt-o and mdr1 Genes of Plasmodium vivax for the Molecular Surveillance of Chloroquine Resistance in Parasites from Gold Mining Areas in Roraima, Brazil
by Jacqueline de Aguiar Barros, Fabiana Granja, Rebecca de Abreu-Fernandes, Lucas Tavares de Queiroz, Daniel da Silva e Silva, Arthur Camurça Citó, Natália Ketrin Almeida-de-Oliveira Mocelin, Cláudio Tadeu Daniel-Ribeiro and Maria de Fátima Ferreira-da-Cruz
Microorganisms 2024, 12(8), 1680; https://doi.org/10.3390/microorganisms12081680 - 15 Aug 2024
Viewed by 866
Abstract
Plasmodium vivax causes the largest malaria burden in Brazil, and chloroquine resistance poses a challenge to eliminating malaria by 2035. Illegal mining in the Roraima Yanomami Indigenous territory can lead to the introduction of resistant parasites. This study aimed to investigate mutations in [...] Read more.
Plasmodium vivax causes the largest malaria burden in Brazil, and chloroquine resistance poses a challenge to eliminating malaria by 2035. Illegal mining in the Roraima Yanomami Indigenous territory can lead to the introduction of resistant parasites. This study aimed to investigate mutations in the pvcrt-o and pvmdr-1 genes to determine their potential as predictors of P. vivax chloroquine-resistant phenotypes. Samples were collected in two health centers of Boa Vista. A questionnaire was completed, and blood was drawn from each patient. Then, DNA extraction, PCR, amplicon purification, and DNA sequencing were performed. After alignment with the Sal-1, the amplified fragment was analyzed. Patients infected with the mutant parasites were queried in the Surveillance Information System. Among the patients, 98% (157/164) of participants were from illegal mining areas. The pvcrt-o was sequenced in 151 samples, and the K10 insertion was identified in 13% of them. The pvmdr1 was sequenced in 80 samples, and the MYF haplotype (958M) was detected in 92% of them and the TYF was detected in 8%, while the MYL was absent. No cases of recrudescence, hospitalization, or death were found. Mutations in the pvcrt-o and pvmdr-1 genes have no potential to predict chloroquine resistance in P. vivax. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

16 pages, 2316 KiB  
Article
Alteration of Trophoblast Syncytialization by Plasmodium falciparum-Infected Erythrocytes
by Carolina López-Guzmán, Ana María García and Ana María Vásquez
Microorganisms 2024, 12(8), 1640; https://doi.org/10.3390/microorganisms12081640 - 10 Aug 2024
Viewed by 1217
Abstract
Malaria during pregnancy has been associated with significant risks to both the mother and the fetus, leading to complications such as anemia, low birth weight, and increased infant mortality. The trophoblast cells, a key component of the placenta, are crucial for nutrient and [...] Read more.
Malaria during pregnancy has been associated with significant risks to both the mother and the fetus, leading to complications such as anemia, low birth weight, and increased infant mortality. The trophoblast cells, a key component of the placenta, are crucial for nutrient and oxygen exchange between mother and fetus. The differentiation of cytotrophoblasts (CTBs) into syncytiotrophoblasts (STBs) is critical for proper pregnancy development. These cells form the bi-stratified epithelium surrounding the placental villi. While previous studies have described an inflammatory activation of STB cells exposed to Plasmodium falciparum-infected erythrocytes (P. falciparum-IE) or components such as hemozoin (HZ), little is known about the direct effect this parasite may have on the epithelial turnover and function of trophoblast cells. This study aims to contribute to understanding mechanisms leading to placental damage during placental malaria using a BeWo cell line as a differentiation model. It was found that P. falciparum-IE interferes with the fusion of BeWo cells, affecting the differentiation process of trophoblast. A reduction in syncytialization could be associated with the adverse effects of infection in fetal health, altering the remodeling of the trophoblast epithelial barrier and reducing their capacity to exchange substances. However, further studies are necessary to assess alterations in the functionality of this epithelium. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

12 pages, 3249 KiB  
Article
The Pathogenic Mechanism of Enterocytozoon hepatopenaei in Litopenaeus vannamei
by Rongrong Ma, Bo Zhu, Jinbo Xiong and Jiong Chen
Microorganisms 2024, 12(6), 1208; https://doi.org/10.3390/microorganisms12061208 - 15 Jun 2024
Viewed by 1804
Abstract
Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and [...] Read more.
Enterocytozoon hepatopenaei (EHP) is a parasite in shrimp farming. EHP mainly parasitizes the hepatopancreas of shrimp, causing slow growth, which severely restricts the economic income of shrimp farmers. To explore the pathogenic mechanism of EHP, the host subcellular construction, molecular biological characteristics, and mitochondrial condition of Litopenaeus vannamei were identified using transmission electron microscopy (TEM), real-time qPCR, an enzyme assay, and flow cytometry. The results showed that EHP spores, approximately 1 μm in size, were located on the cytoplasm of the hepatopancreas. The number of mitochondria increased significantly, and mitochondria morphology showed a condensed state in the high-concentration EHP-infected shrimp by TEM observation. In addition, there were some changes in mitochondrial potential, but apoptosis was not significantly different in the infected shrimp. The qPCR results showed that the gene expression levels of hexokinase and pyruvate kinase related to energy metabolism were both upregulated in the diseased L. vannamei. Enzymatic activity showed hexokinase and lactate dehydrogenase were significantly increased in the shrimp infected with EHP, indicating EHP infection can increase the glycolysis process and decrease the oxidative phosphorylation process of L. vannamei. Previous transcriptomic data analysis results also support this conclusion. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

14 pages, 7801 KiB  
Article
In Vitro Cultivation for Glugea plecoglossi (Microsporidia) Isolated from Ayu (Plecoglossus altivelis)
by Guizong Xu, Zengyi Zhang, Qianjin Zhou, Mingyan Song, Guanjun Yang, Jinwei Kang, Zhongjie Xu, Fangjie Chen and Jiong Chen
Microorganisms 2024, 12(3), 522; https://doi.org/10.3390/microorganisms12030522 - 5 Mar 2024
Viewed by 1131
Abstract
Glugea plecoglossi is an obligate intracellular microsporidium, which poses a significant threat to ayu (Plecoglossus altivelis). In vitro cultivation models are invaluable tools for investigating intracellular microorganisms, including G. plecoglossil. In this study, we attempted to in vitro cultivate G. [...] Read more.
Glugea plecoglossi is an obligate intracellular microsporidium, which poses a significant threat to ayu (Plecoglossus altivelis). In vitro cultivation models are invaluable tools for investigating intracellular microorganisms, including G. plecoglossil. In this study, we attempted to in vitro cultivate G. plecoglossi using primary cultures derived from ayu monocytes/macrophages (MO/MΦ), a murine-derived macrophage cell line RAW264.7, and the epithelioma papulosum cyprini (EPC) cell line. The results demonstrated that MO/MΦ infected with spores exhibited a pronounced immune response which was presented by rapidly high expression levels of inflammatory cytokines, such as PaIL-1β, PaTNF-α, PaIL-10, and PaTGF-β, and detached within 96 h post-infection (hpi). Infected RAW264.7 cells remained capable of stable passage yet exhibited cellular deformation with a decrease in intracellular spores occurring around 8 days post-infection (dpi). In contrast, EPC cells promised a substantial parasite population, and the cytokine expression levels returned to normal by 8 dpi. In addition, G. plecoglossi spores recovered from EPC cells could infect young ayu, suggesting that EPC cells might be used as an in vitro cultivation system for G. plecoglossi. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

13 pages, 2232 KiB  
Article
A Microcosm Experiment Reveals the Temperature-Sensitive Release of Mucochytrium quahogii (=QPX) from Hard Clams and Pallial Fluid as a Stable QPX Reservoir
by Sabrina Geraci-Yee, Jackie L. Collier and Bassem Allam
Microorganisms 2024, 12(2), 241; https://doi.org/10.3390/microorganisms12020241 - 24 Jan 2024
Viewed by 887
Abstract
Mucochytrium quahogii, also known as QPX or Quahog Parasite Unknown, is the causative agent of QPX disease in the hard clam (Mercenaria mercenaria). Host–pathogen–environment interactions between M. quahogii, the hard clam, and temperature were explored in a microcosm experiment. [...] Read more.
Mucochytrium quahogii, also known as QPX or Quahog Parasite Unknown, is the causative agent of QPX disease in the hard clam (Mercenaria mercenaria). Host–pathogen–environment interactions between M. quahogii, the hard clam, and temperature were explored in a microcosm experiment. Hard clams were housed in individual tanks with sterile seawater under two temperature regimes: low (13 °C) temperature, which is thought to be optimal for QPX disease development, and high (20 °C) temperature, which has been shown to promote “healing” of QPX-infected clams. Hard clam tissue, pallial fluid, seawater, and shell biofilms were collected and assayed for M. quahogii. The release of M. quahogii from naturally infected live hard clams into seawater was detected only in the low temperature treatment, suggesting that temperature influences the release of potentially infectious cells. M. quahogii was commonly found in hard clam pallial fluid, even after 9 weeks in the lab, suggesting pallial fluid is a stable reservoir of M. quahogii within its primary host and that M. quahogii is not a transient component of the hard clam microbiota. Overall, results support a host-specific relationship and that M. quahogii is a commensal member of the hard clam microbiota, supporting its classification as an opportunistic pathogen. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 651 KiB  
Review
Single Cell Expression Systems for the Production of Recombinant Proteins for Immunodiagnosis and Immunoprophylaxis of Toxoplasmosis
by Karolina Sołowińska and Lucyna Holec-Gąsior
Microorganisms 2024, 12(8), 1731; https://doi.org/10.3390/microorganisms12081731 - 22 Aug 2024
Viewed by 1102
Abstract
Toxoplasmosis represents a significant public health and veterinary concern due to its widespread distribution, zoonotic transmission, and potential for severe health impacts in susceptible individuals and animal populations. The ability to design and produce recombinant proteins with precise antigenic properties is fundamental, as [...] Read more.
Toxoplasmosis represents a significant public health and veterinary concern due to its widespread distribution, zoonotic transmission, and potential for severe health impacts in susceptible individuals and animal populations. The ability to design and produce recombinant proteins with precise antigenic properties is fundamental, as they serve as tools for accurate disease detection and effective immunization strategies, contributing to improved healthcare outcomes and disease control. Most commonly, a prokaryotic expression system is employed for the production of both single antigens and multi-epitope chimeric proteins; however, the cloning strategies, bacterial strain, vector, and expression conditions vary. Moreover, literature reports show the use of alternative microbial systems such as yeast or Leishmania tarentolae. This review provides an overview of the methods and strategies employed for the production of recombinant Toxoplasma gondii antigenic proteins for the serological detection of T. gondii infection and vaccine development. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

32 pages, 2986 KiB  
Review
Neutrophils versus Protozoan Parasites: Plasmodium, Trichomonas, Leishmania, Trypanosoma, and Entameoba
by Eileen Uribe-Querol and Carlos Rosales
Microorganisms 2024, 12(4), 827; https://doi.org/10.3390/microorganisms12040827 - 19 Apr 2024
Viewed by 2949
Abstract
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At [...] Read more.
Neutrophils are the most abundant polymorphonuclear granular leukocytes in human blood and are an essential part of the innate immune system. Neutrophils are efficient cells that eliminate pathogenic bacteria and fungi, but their role in dealing with protozoan parasitic infections remains controversial. At sites of protozoan parasite infections, a large number of infiltrating neutrophils is observed, suggesting that neutrophils are important cells for controlling the infection. Yet, in most cases, there is also a strong inflammatory response that can provoke tissue damage. Diseases like malaria, trichomoniasis, leishmaniasis, Chagas disease, and amoebiasis affect millions of people globally. In this review, we summarize these protozoan diseases and describe the novel view on how neutrophils are involved in protection from these parasites. Also, we present recent evidence that neutrophils play a double role in these infections participating both in control of the parasite and in the pathogenesis of the disease. Full article
(This article belongs to the Special Issue Current Insights into Host–Parasite Interactions)
Show Figures

Figure 1

Back to TopTop