Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Operation of BESs
2.3. Analytical Methods
2.3.1. Chemical Measurements
2.3.2. Determination of Denitrification Reductase Activity
2.3.3. RNA-Seq Analysis
2.4. Statistical Analysis
3. Results and Discussions
3.1. Effect of Weak Electric Fields on Denitrification of P. stutzeri
3.2. Denitrification Enzyme Activities and Electron Utilization of P. stutzeri
3.3. Transcriptomic Analysis of P. stutzeri
3.3.1. Annotation and Enrichment of Differentially Expressed Genes
3.3.2. Metabolic Mechanism of P. stutzeri under Weak Electric Fields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Strong, P.J.; McDonald, B.; Gapes, D.J. Enhancing Denitrification Using a Carbon Supplement Generated from the Wet Oxidation of Waste Activated Sludge. Bioresour. Technol. 2011, 102, 5533–5540. [Google Scholar] [CrossRef] [PubMed]
- How, S.W.; Chua, A.S.M.; Ngoh, G.C.; Nittami, T.; Curtis, T.P. Enhanced Nitrogen Removal in an Anoxic-Oxic-Anoxic Process Treating Low COD/N Tropical Wastewater: Low-Dissolved Oxygen Nitrification and Utilization of Slowly-Biodegradable COD for Denitrification. Sci. Total Environ. 2019, 693, 133526. [Google Scholar] [CrossRef] [PubMed]
- Cecconet, D.; Sabba, F.; Devecseri, M.; Callegari, A.; Capodaglio, A.G. In Situ Groundwater Remediation with Bioelectrochemical Systems: A Critical Review and Future Perspectives. Environ. Int. 2020, 137, 105550. [Google Scholar] [CrossRef] [PubMed]
- Amanze, C.; Anaman, R.; Wu, X.; Alhassan, S.I.; Yang, K.; Fosua, B.A.; Yunhui, T.; Yu, R.; Wu, X.; Shen, L.; et al. Heterotrophic Anodic Denitrification Coupled with Cathodic Metals Recovery from On-Site Smelting Wastewater with a Bioelectrochemical System Inoculated with Mixed Castellaniella Species. Water Res. 2023, 231, 119655. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, J.; Wang, C.; Zhu, G.; Hassan, M. Weak Electric Field Effect of MFC Biocathode on Denitrification. J. Environ. Chem. Eng. 2022, 10, 108596. [Google Scholar] [CrossRef]
- Qin, S.; Liu, H.; Meng, Q.; Zhou, Y.; Xu, S.; Lichtfouse, E.; Chen, Z. Enhanced Nutrient Removal from Mixed Black Water by a Microbial Ultra-Low Weak Electrical Stimulated Anaerobic-Two Stage Anoxic/Aerobic Process. Chem. Eng. J. 2022, 434, 134615. [Google Scholar] [CrossRef]
- Rodrigo Quejigo, J.; Domínguez-Garay, A.; Dörfler, U.; Schroll, R.; Esteve-Núñez, A. Anodic Shifting of the Microbial Community Profile to Enhance Oxidative Metabolism in Soil. Soil Biol. Biochem. 2018, 116, 131–138. [Google Scholar] [CrossRef]
- Ren, W.; Wu, Q.; Deng, L.; Wang, H.; Zhang, Y.; Guo, W. Insights into Chain Elongation Mechanisms of Weak Electric-Field-Stimulated Continuous Caproate Biosynthesis: Key Enzymes, Specific Species Functions, and Microbial Collaboration. ACS EST Eng. 2023, 3, 1649–1660. [Google Scholar] [CrossRef]
- Nakamura, H.; Okamura, T.; Tajima, M.; Kawano, R.; Yamaji, M.; Ohsaki, S.; Watano, S. Enhancement of Cell Membrane Permeability by Using Charged Nanoparticles and a Weak External Electric Field. Phys. Chem. Chem. Phys. 2023, 25, 32356–32363. [Google Scholar] [CrossRef]
- Parvanova-Mancheva, T.; Beschkov, V. Microbial Denitrification by Immobilized Bacteria Pseudomonas Denitrificans Stimulated by Constant Electric Field. Biochem. Eng. J. 2009, 44, 208–213. [Google Scholar] [CrossRef]
- She, P.; Song, B.; Xing, X.-H.; van Loosdrecht, M.; Liu, Z. Electrolytic Stimulation of Bacteria Enterobacter Dissolvens by a Direct Current. Biochem. Eng. J. 2006, 28, 23–29. [Google Scholar] [CrossRef]
- Chen, F.; Li, Z.; Ye, Y.; Lv, M.; Liang, B.; Yuan, Y.; Cheng, H.-Y.; Liu, Y.; He, Z.; Wang, H.; et al. Coupled Sulfur and Electrode-Driven Autotrophic Denitrification for Significantly Enhanced Nitrate Removal. Water Res. 2022, 220, 118675. [Google Scholar] [CrossRef] [PubMed]
- Pan, D.; Shao, S.; Zhong, J.; Wang, M.; Wu, X. Performance and Mechanism of Simultaneous Nitrification–Denitrification and Denitrifying Phosphorus Removal in Long-Term Moving Bed Biofilm Reactor (MBBR). Bioresour. Technol. 2022, 348, 126726. [Google Scholar] [CrossRef] [PubMed]
- Kokko, M.; Epple, S.; Gescher, J.; Kerzenmacher, S. Effects of Wastewater Constituents and Operational Conditions on the Composition and Dynamics of Anodic Microbial Communities in Bioelectrochemical Systems. Bioresour. Technol. 2018, 258, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Dong, Y.; Sui, M.; Yu, J.; Wu, J.; Fu, D. Towards a New Understanding of Bioelectrochemical Systems from the Perspective of Microecosystems: A Critical Review. Sci. Total Environ. 2024, 908, 168410. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Cui, L.; Tang, Y.; Wen, T.; Yang, K.; Wang, Y.; Zhang, J.; Zhu, G.; Yang, X.; Hou, L.; et al. Denitrification and N2O Emission in Estuarine Sediments in Response to Ocean Acidification: From Process to Mechanism. Environ. Sci. Technol. 2022, 56, 14828–14839. [Google Scholar] [CrossRef] [PubMed]
- Kantnerová, K.; Hattori, S.; Toyoda, S.; Yoshida, N.; Emmenegger, L.; Bernasconi, S.M.; Mohn, J. Clumped Isotope Signatures of Nitrous Oxide Formed by Bacterial Denitrification. Geochim. Cosmochim. Acta 2022, 328, 120–129. [Google Scholar] [CrossRef]
- Ding, A.; Zhao, D.; Ding, F.; Du, S.; Lu, H.; Zhang, M.; Zheng, P. Effect of Inocula on Performance of Bio-Cathode Denitrification and Its Microbial Mechanism. Chem. Eng. J. 2018, 343, 399–407. [Google Scholar] [CrossRef]
- Li, Q.; Lu, H.; Tian, T.; Fu, Z.; Dai, Y.; Li, P.; Zhou, J. Insights into the Acceleration Mechanism of Intracellular N and Fe Co-Doped Carbon Dots on Anaerobic Denitrification Using Proteomics and Metabolomics Techniques. Environ. Sci. Technol. 2024, 58, 2393–2403. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, C.; Li, N.; Zou, P.; Gao, X.; Cao, Q. Nitrogen Removal Performances and Metabolic Mechanisms of Denitrification Systems Using Different Volatile Fatty Acids as External Carbon Sources. Chem. Eng. J. 2023, 474, 145998. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Prévoteau, A.; Rabaey, K. Impact of Periodic Polarization on Groundwater Denitrification in Bioelectrochemical Systems. Environ. Sci. Technol. 2021, 55, 15371–15379. [Google Scholar] [CrossRef]
- Pous, N.; Puig, S.; Dolors Balaguer, M.; Colprim, J. Cathode Potential and Anode Electron Donor Evaluation for a Suitable Treatment of Nitrate-Contaminated Groundwater in Bioelectrochemical Systems. Chem. Eng. J. 2015, 263, 151–159. [Google Scholar] [CrossRef]
- Lust, R.; Nerut, J.; Gadegaonkar, S.S.; Kasak, K.; Espenberg, M.; Visnapuu, T.; Mander, Ü. Single-Chamber Microbial Electrosynthesis Reactor for Nitrate Reduction from Waters with a Low-Electron Donors’ Concentration: From Design and Set-up to the Optimal Operating Potential. Front. Environ. Sci. 2022, 10, 938631. [Google Scholar] [CrossRef]
- Hou, Z.; Dong, W.; Wang, H.; Zhao, Z.; Li, Z.; Liu, H.; Li, Y.; Zeng, Z.; Xie, J.; Zhang, L.; et al. Response of Nitrite Accumulation to Elevated C/NO– 3-N Ratio during Partial Denitrification Process: Insights of Extracellular Polymeric Substance, Microbial Community and Metabolic Function. Bioresour. Technol. 2023, 384, 129269. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Tang, Z.; Xiao, L.; Zhang, S.; Jin, J.; Zhang, S. Effect of Electric Current Intensity on Performance of Polycaprolactone/FeS2-Based Mixotrophic Biofilm–Electrode Reactor. Bioresour. Technol. 2022, 361, 127757. [Google Scholar] [CrossRef]
- Abakari, G.; Wu, X.; He, X.; Fan, L.; Luo, G. Bacteria in Biofloc Technology Aquaculture Systems: Roles and Mediating Factors. Rev. Aquac. 2022, 14, 1260–1284. [Google Scholar] [CrossRef]
- Ruiz, B.; Le Scornet, A.; Sauviac, L.; Rémy, A.; Bruand, C.; Meilhoc, E. The Nitrate Assimilatory Pathway in Sinorhizobium Meliloti: Contribution to NO Production. Front. Microbiol. 2019, 10, 1526. [Google Scholar] [CrossRef] [PubMed]
- Kadier, A.; Singh, R.; Song, D.; Ghanbari, F.; Zaidi, N.S.; Prihartini Aryanti, P.T.; Jadhav, D.A.; Islam, M.A.; Kalil, M.S.; Nabgan, W.; et al. A Novel Pico-Hydro Power (PHP)-Microbial Electrolysis Cell (MEC) Coupled System for Sustainable Hydrogen Production during Palm Oil Mill Effluent (POME) Wastewater Treatment. Int. J. Hydrogen Energy 2023, 48, 21066–21087. [Google Scholar] [CrossRef]
- Ren, Y.; Lv, Y.; Wang, Y.; Li, X. Effect of Heterotrophic Anodic Denitrification on Anolyte pH Control and Bioelectricity Generation Enhancement of Bufferless Microbial Fuel Cells. Chemosphere 2020, 257, 127251. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, Y.; Quan, X.; Li, H. Effects of an Electric Field and Iron Electrode on Anaerobic Denitrification at Low C/N Ratios. Chem. Eng. J. 2015, 266, 241–248. [Google Scholar] [CrossRef]
- Durand, S.; Guillier, M. Transcriptional and Post-Transcriptional Control of the Nitrate Respiration in Bacteria. Front. Mol. Biosci. 2021, 8, 667758. [Google Scholar] [CrossRef] [PubMed]
- Galperin, M.Y.; Wolf, Y.I.; Makarova, K.S.; Vera Alvarez, R.; Landsman, D.; Koonin, E.V. COG Database Update: Focus on Microbial Diversity, Model Organisms, and Widespread Pathogens. Nucleic Acids Res. 2021, 49, D274–D281. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, Y.; Wang, Y.; Yang, X.; He, Q. Impacts of Chlorothalonil on Denitrification and N2O Emission in Riparian Sediments: Microbial Metabolism Mechanism. Water Res. 2019, 148, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Watzer, B.; Spät, P.; Neumann, N.; Koch, M.; Sobotka, R.; Macek, B.; Hennrich, O.; Forchhammer, K. The Signal Transduction Protein PII Controls Ammonium, Nitrate and Urea Uptake in Cyanobacteria. Front. Microbiol. 2019, 10, 1428. [Google Scholar] [CrossRef] [PubMed]
- Boulêtreau, S.; Lyautey, E.; Dubois, S.; Compin, A.; Delattre, C.; Touron-Bodilis, A.; Mastrorillo, S.; Garabetian, F. Warming-Induced Changes in Denitrifier Community Structure Modulate the Ability of Phototrophic River Biofilms to Denitrify. Sci. Total Environ. 2014, 466–467, 856–863. [Google Scholar] [CrossRef]
- Zhang, Y.; Bao, J.; Du, J.; Mao, Q.; Cheng, B. Comprehensive Metagenomic and Enzyme Activity Analysis Reveals the Inhibitory Effects and Potential Toxic Mechanism of Tetracycline on Denitrification in Groundwater. Water Res. 2023, 247, 120803. [Google Scholar] [CrossRef] [PubMed]
- Zeamari, K.; Gerbaud, G.; Grosse, S.; Fourmond, V.; Chaspoul, F.; Biaso, F.; Arnoux, P.; Sabaty, M.; Pignol, D.; Guigliarelli, B.; et al. Tuning the Redox Properties of a [4Fe-4S] Center to Modulate the Activity of Mo-bisPGD Periplasmic Nitrate Reductase. Biochim. Biophys. Acta BBA Bioenerg. 2019, 1860, 402–413. [Google Scholar] [CrossRef]
- Sparacino-Watkins, C.; Stolz, J.F.; Basu, P. Nitrate and Periplasmic Nitrate Reductases. Chem. Soc. Rev. 2013, 43, 676–706. [Google Scholar] [CrossRef]
- Zheng, X.; Su, Y.; Chen, Y.; Wan, R.; Liu, K.; Li, M.; Yin, D. Zinc Oxide Nanoparticles Cause Inhibition of Microbial Denitrification by Affecting Transcriptional Regulation and Enzyme Activity. Environ. Sci. Technol. 2014, 48, 13800–13807. [Google Scholar] [CrossRef]
- Maia, L.B.; Moura, J.J.G. How Biology Handles Nitrite. Chem. Rev. 2014, 114, 5273–5357. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Guo, Z.; Zhang, H.; Li, J.; Zhu, C.; Zhu, G. Single-Cell Raman Spectra Reveals the Cytochrome c-Mediated Electron Transfer in Nanoscale Zero-Valent Iron Coupled Denitrification Process. Chem. Eng. J. 2023, 454, 140241. [Google Scholar] [CrossRef]
- Qi, X.; Yin, H.; Zhu, M.; Shao, P.; Dang, Z. Understanding the Role of Biochar in Affecting BDE-47 Biodegradation by Pseudomonas Plecoglossicida: An Integrated Analysis Using Chemical, Biological, and Metabolomic Approaches. Water Res. 2022, 220, 118679. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Zhang, H.; White, J.C.; Chen, X.; Li, H.; Qu, X.; Ji, R. Metabolomics Reveals That Engineered Nanomaterial Exposure in Soil Alters Both Soil Rhizosphere Metabolite Profiles and Maize Metabolic Pathways. Environ. Sci. Nano 2019, 6, 1716–1727. [Google Scholar] [CrossRef]
- Hildebrandt, T.M.; Nunes Nesi, A.; Araújo, W.L.; Braun, H.-P. Amino Acid Catabolism in Plants. Mol. Plant 2015, 8, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Emmanuel, S.A.; Sul, W.J.; Seong, H.J.; Rhee, C.; Ekpheghere, K.I.; Kim, I.-S.; Kim, H.-G.; Koh, S.-C. Metagenomic Analysis of Relationships between the Denitrification Process and Carbon Metabolism in a Bioaugmented Full-Scale Tannery Wastewater Treatment Plant. World J. Microbiol. Biotechnol. 2019, 35, 149. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, R.; Zhu, Y.; Du, M.; Zhang, H.; Jiao, Z. A Systematic Study of the Antimicrobial Mechanisms of Cold Atmospheric-Pressure Plasma for Water Disinfection. Sci. Total Environ. 2020, 703, 134965. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Carbohydrate Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040568. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Guo, F.; Liu, X.; Su, X.; He, Q. Metagenomic Analysis of the Biotoxicity of Titanium Dioxide Nanoparticles to Microbial Nitrogen Transformation in Constructed Wetlands. J. Hazard. Mater. 2020, 384, 121376. [Google Scholar] [CrossRef]
Stage | COD/N | Batch Cycle Time (Days) |
---|---|---|
I | 3.5 | 5 |
II | 3.5 | 3 |
III | 2.0 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Lin, F.; Sun, J.; Li, X.; Zhu, G.; Lu, Y.; Sun, L.; Wang, H. Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways. Microorganisms 2024, 12, 1218. https://doi.org/10.3390/microorganisms12061218
Zhu X, Lin F, Sun J, Li X, Zhu G, Lu Y, Sun L, Wang H. Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways. Microorganisms. 2024; 12(6):1218. https://doi.org/10.3390/microorganisms12061218
Chicago/Turabian StyleZhu, Xuyan, Feng Lin, Ji Sun, Xin Li, Guangcan Zhu, Yongze Lu, Liwei Sun, and Hongyang Wang. 2024. "Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways" Microorganisms 12, no. 6: 1218. https://doi.org/10.3390/microorganisms12061218
APA StyleZhu, X., Lin, F., Sun, J., Li, X., Zhu, G., Lu, Y., Sun, L., & Wang, H. (2024). Effects of Weak Electric Fields on the Denitrification Performance of Pseudomonas stutzeri: Insights into Enzymes and Metabolic Pathways. Microorganisms, 12(6), 1218. https://doi.org/10.3390/microorganisms12061218