Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objectives
2.2. Histological Examination
2.3. Whole-Genome Sequencing
2.4. Bioinformatics and Statistical Analysis
3. Results
3.1. Histological
3.2. Microbiome Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rietschel, E.T.; Kirikae, T.; Schade, F.U.; Mamat, U.; Schmidt, G.; Loppnow, H.; Ulmer, A.J.; Zähringer, U.; Seydel, U.; Di Padova, F.; et al. Bacterial Endotoxin: Molecular Relationships of Structure to Activity and Function. FASEB J. 1994, 8, 217–225. [Google Scholar] [CrossRef]
- Kell, D.B.; Pretorius, E. On the Translocation of Bacteria and Their Lipopolysaccharides between Blood and Peripheral Locations in Chronic, Inflammatory Diseases: The Central Roles of LPS and LPS-Induced Cell Death. Integr. Biol. 2015, 7, 1339–1377. [Google Scholar] [CrossRef]
- Page, M.J.; Kell, D.B.; Pretorius, E. The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. Chronic Stress 2022, 6, 1–18. [Google Scholar] [CrossRef]
- Freudenberg, M.A.; Kalis, C.; Chvatchko, Y.; Merlin, T.; Gumenscheimer, M.; Galanos, C. Role of Interferons in LPS Hypersensitivity. J. Endotoxin Res. 2003, 9, 308–312. [Google Scholar] [CrossRef]
- Kulp, A.; Kuehn, M.J. Biological Functions and Biogenesis of Secreted Bacterial Outer Membrane Vesicles. Annu. Rev. Microbiol. 2010, 64, 163–184. [Google Scholar] [CrossRef]
- Brown, G.C. The Endotoxin Hypothesis of Neurodegeneration. J. Neuroinflamm. 2019, 16, 180. [Google Scholar] [CrossRef]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef]
- Wiedermann, C.J.; Kiechl, S.; Dunzendorfer, S.; Schratzberger, P.; Egger, G.; Oberhollenzer, F.; Willeit, J. Association of Endotoxemia with Carotid Atherosclerosis and Cardiovascular Disease: Prospective Results from the Bruneck Study. J. Am. Coll. Cardiol. 1999, 34, 1975–1981. [Google Scholar] [CrossRef]
- Baucells, B.J.; Sebastiani, G.; Herrero-Aizpurua, L.; Andreu-Fernández, V.; Navarro-Tapia, E.; García-Algar, O.; Figueras-Aloy, J. Effectiveness of a Probiotic Combination on the Neurodevelopment of the Very Premature Infant. Sci. Rep. 2023, 13, 10344. [Google Scholar] [CrossRef]
- Hemarajata, P.; Versalovic, J. Effects of Probiotics on Gut Microbiota: Mechanisms of Intestinal Immunomodulation and Neuromodulation. Ther. Adv. Gastroenterol. 2013, 6, 39. [Google Scholar] [CrossRef]
- Venegas, D.P.; De La Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.; Hermoso, M.A. Short Chain Fatty Acids (SCFAs)Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 424615. [Google Scholar]
- Aghamohammad, S.; Sepehr, A.; Miri, S.T.; Najafi, S.; Pourshafie, M.R.; Rohani, M. Anti-Inflammatory and Immunomodulatory Effects of Lactobacillus Spp. as a Preservative and Therapeutic Agent for IBD Control. Immun. Inflamm. Dis. 2022, 10, e635. [Google Scholar] [CrossRef] [PubMed]
- Fairfax, M.R.; Lephart, P.R.; Salimnia, H. Weissella Confusa: Problems with Identification of an Opportunistic Pathogen That Has Been Found in Fermented Foods and Proposed as a Probiotic. Front. Microbiol. 2014, 5, 91780. [Google Scholar] [CrossRef] [PubMed]
- Lakra, A.K.; Domdi, L.; Hanjon, G.; Tilwani, Y.M.; Arul, V. Some Probiotic Potential of Weissella Confusa MD1 and Weissella Cibaria MD2 Isolated from Fermented Batter. LWT 2020, 125, 109261. [Google Scholar] [CrossRef]
- Candelli, M.; Franza, L.; Pignataro, G.; Ojetti, V.; Covino, M.; Piccioni, A.; Gasbarrini, A.; Franceschi, F. Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. Int. J. Mol. Sci. 2021, 22, 6242. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, N.A.; Bahaidrah, K.A.; Mansouri, R.A.; Alsufiani, H.M.; Alghamdi, B.S. Investigation of the Optimal Dose for Experimental Lipopolysaccharide-Induced Recognition Memory Impairment: Behavioral and Histological Studies. J. Integr. Neurosci. 2022, 21, 49. [Google Scholar] [CrossRef] [PubMed]
- Batista, C.R.A.; Gomes, G.F.; Candelario-Jalil, E.; Fiebich, B.L.; de Oliveira, A.C.P. Lipopolysaccharide-Induced Neuroinflammation as a Bridge to Understand Neurodegeneration. Int. J. Mol. Sci. 2019, 20, 2293. [Google Scholar] [CrossRef] [PubMed]
- Burakova, I.; Smirnova, Y.; Gryaznova, M.; Syromyatnikov, M.; Chizhkov, P.; Popov, E.; Popov, V. The Effect of Short-Term Consumption of Lactic Acid Bacteria on the Gut Microbiota in Obese People. Nutrients 2022, 14, 3384. [Google Scholar] [CrossRef]
- Gryaznova, M.; Smirnova, Y.; Burakova, I.; Syromyatnikov, M.; Chizhkov, P.; Popov, E.; Popov, V. Changes in the Human Gut Microbiome Caused by the Short-Term Impact of Lactic Acid Bacteria Consumption in Healthy People. Probiot. Antimicrob. Proteins 2023, 1–12. [Google Scholar] [CrossRef]
- Ren, D.; Wang, D.; Rong, F.; Liu, H.; Shen, M.; Yu, H. Oral Administration of Lactobacillus Plantarum Attenuates Inflammatory Damage in Mice Challenged with Two Pathogens. Eur. J. Inflamm. 2019, 17, 1–8. [Google Scholar] [CrossRef]
- Bao, W.; He, Y.; Yu, J.; Liu, M.; Yang, X.; Ta, N.; Zhang, E.; Liang, C. Regulatory Effect of Lactiplantibacillus Plantarum 2-33 on Intestinal Microbiota of Mice With Antibiotic-Associated Diarrhea. Front. Nutr. 2022, 9, 921875. [Google Scholar] [CrossRef]
- Rosshart, S.P.; Herz, J.; Vassallo, B.G.; Hunter, A.; Wall, M.K.; Badger, J.H.; McCulloch, J.A.; Anastasakis, D.G.; Sarshad, A.A.; Leonardi, I.; et al. Laboratory Mice Born to Wild Mice Have Natural Microbiota and Model Human Immune Responses. Science 2019, 365, eaaw4361. [Google Scholar] [CrossRef]
- Shin, J.; Lee, S.; Go, M.J.; Lee, S.Y.; Kim, S.C.; Lee, C.H.; Cho, B.K. Analysis of the Mouse Gut Microbiome Using Full-Length 16S RRNA Amplicon Sequencing. Sci. Rep. 2016, 6, 29681. [Google Scholar] [CrossRef]
- Costea, P.I.; Zeller, G.; Sunagawa, S.; Pelletier, E.; Alberti, A.; Levenez, F.; Tramontano, M.; Driessen, M.; Hercog, R.; Jung, F.E.; et al. Towards Standards for Human Fecal Sample Processing in Metagenomic Studies. Nat. Biotechnol. 2017, 35, 1069–1076. [Google Scholar] [CrossRef]
- GitHub—s-Andrews/FastQC: A Quality Control Analysis Tool for High Throughput Sequencing Data. Available online: https://github.com/s-andrews/FastQC?ysclid=ljfeelfswd703292447 (accessed on 28 June 2023).
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast Gapped-Read Alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Blanco-Míguez, A.; Beghini, F.; Cumbo, F.; McIver, L.J.; Thompson, K.N.; Zolfo, M.; Manghi, P.; Dubois, L.; Huang, K.D.; Thomas, A.M.; et al. Extending and Improving Metagenomic Taxonomic Profiling with Uncharacterized Species Using MetaPhlAn 4. Nat. Biotechnol. 2023, 41, 1633–1644. [Google Scholar] [CrossRef]
- Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas, A.M.; et al. Integrating Taxonomic, Functional, and Strain-Level Profiling of Diverse Microbial Communities with BioBakery 3. eLife 2021, 10, e65088. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. In Breakthroughs in Statistics; Springer Series in Statistics; Kotz, S., Johnson, N.L., Eds.; Springer: New York, NY, USA, 1992; pp. 196–202. [Google Scholar] [CrossRef]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable Association Discovery in Population-Scale Meta-Omics Studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Ng, Q.X.; Yau, C.E.; Yaow, C.Y.L.; Chong, R.I.H.; Chong, N.Z.Y.; Teoh, S.E.; Lim, Y.L.; Soh, A.Y.S.; Ng, W.K.; Thumboo, J. What Has Longitudinal “Omics” Studies Taught Us about Irritable Bowel Syndrome? A Systematic Review. Metabolites 2023, 13, 484. [Google Scholar] [CrossRef]
- Rašková, V.; Květoňová, D.; Sak, B.; McEvoy, J.; Edwinson, A.; Stenger, B.; Kváč, M. Human Cryptosporidiosis Caused by Cryptosporidium Tyzzeri and C. Parvum Isolates Presumably Transmitted from Wild Mice. J. Clin. Microbiol. 2013, 51, 360–362. [Google Scholar] [CrossRef]
- García-Livia, K.; Martín-Alonso, A.; Foronda, P. Diversity of Cryptosporidium Spp. In Wild Rodents from the Canary Islands, Spain. Parasites Vectors 2020, 13, 445. [Google Scholar] [CrossRef]
- Widmer, G.; Köster, P.C.; Carmena, D. Cryptosporidium Hominis Infections in Non-Human Animal Species: Revisiting the Concept of Host Specificity. Int. J. Parasitol. 2020, 50, 253–262. [Google Scholar] [CrossRef]
- Maruo, T.; Sakamoto, M.; Ito, C.; Toda, T.; Benno, Y. Adlercreutzia Equolifaciens Gen. Nov., Sp. Nov., an Equol-Producing Bacterium Isolated from Human Faeces, and Emended Description of the Genus Eggerthella. Int. J. Syst. Evol. Microbiol. 2008, 58, 1221–1227. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Reciprocal Interactions between Resveratrol and Gut Microbiota Deepen Our Understanding of Molecular Mechanisms Underlying Its Health Benefits. Trends Food Sci. Technol. 2018, 81, 232–236. [Google Scholar] [CrossRef]
- Oñate, F.P.; Chamignon, C.; Burz, S.D.; Lapaque, N.; Monnoye, M.; Philippe, C.; Bredel, M.; Chêne, L.; Farin, W.; Paillarse, J.M.; et al. Adlercreutzia Equolifaciens Is an Anti-Inflammatory Commensal Bacterium with Decreased Abundance in Gut Microbiota of Patients with Metabolic Liver Disease. Int. J. Mol. Sci. 2023, 24, 12232. [Google Scholar] [CrossRef]
- Sheng, S.; Chen, J.; Zhang, Y.; Qin, Q.; Li, W.; Yan, S.; Wang, Y.; Li, T.; Gao, X.; Tang, L.; et al. Structural and Functional Alterations of Gut Microbiota in Males With Hyperuricemia and High Levels of Liver Enzymes. Front. Med. 2021, 8, 779994. [Google Scholar] [CrossRef]
- Miyake, S.; Ding, Y.; Soh, M.; Seedorf, H. Complete Genome Sequence of Duncaniella Muris Strain B8, Isolated from the Feces of C57/BL6 Mice. Microbiol. Resour. Announc. 2019, 8, e00566-19. [Google Scholar] [CrossRef]
- Wenderlein, J.; Böswald, L.F.; Ulrich, S.; Kienzle, E.; Neuhaus, K.; Lagkouvardos, I.; Zenner, C.; Straubinger, R.K. Processing Matters in Nutrient-Matched Laboratory Diets for Mice-Microbiome. Animals 2021, 11, 862. [Google Scholar] [CrossRef]
- Wang, H.; Dang, D.; Zhu, L.; Pan, M.; Zhu, J.; Lu, W.; Lu, S.; Zhao, J. Effects of Varied Sulfamethazine Dosage and Exposure Durations on Offspring Mice. Microorganisms 2024, 12, 381. [Google Scholar] [CrossRef]
- Ishnaiwer, M. Multimodal Treatment of Intestinal Carriage of Multi-drug Resistant Bacteria with Probiotics and Prebiotics. 2022. Available online: https://books.google.ru/books/about/Multimodal_Treatment_of_Intestinal_Carri.html?id=3q0e0AEACAAJ&redir_esc=y (accessed on 18 March 2024).
- Iljazovic, A.; Roy, U.; Gálvez, E.J.C.; Lesker, T.R.; Zhao, B.; Gronow, A.; Amend, L.; Will, S.E.; Hofmann, J.D.; Pils, M.C.; et al. Perturbation of the Gut Microbiome by Prevotella Spp. Enhances Host Susceptibility to Mucosal Inflammation. Mucosal Immunol. 2020, 14, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Osuna-Prieto, F.J.; Xu, H.; Ortiz-Alvarez, L.; Di, X.; Kohler, I.; Jurado-Fasoli, L.; Rubio-Lopez, J.; Plaza-Díaz, J.; Vilchez-Vargas, R.; Link, A.; et al. The Relative Abundance of Fecal Bacterial Species Belonging to the Firmicutes and Bacteroidetes Phyla Is Related to Plasma Levels of Bile Acids in Young Adults. Metabolomics 2023, 19, 54. [Google Scholar] [CrossRef]
- Johnson, E.L.; Heaver, S.L.; Walters, W.A.; Ley, R.E. Microbiome and Metabolic Disease: Revisiting the Bacterial Phylum Bacteroidetes. J. Mol. Med. 2017, 95, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Momose, Y.; Park, S.H.; Miyamoto, Y.; Itoh, K. Design of Species-Specific Oligonucleotide Probes for the Detection of Bacteroides and Parabacteroides by Fluorescence in Situ Hybridization and Their Application to the Analysis of Mouse Caecal Bacteroides-Parabacteroides Microbiota. J. Appl. Microbiol. 2011, 111, 176–184. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Yang, C.; Guo, M.; Cui, X.; Jing, Z.; Liu, Y.; Qiao, W.; Qi, H.; Zhang, H.; et al. Bacteroides Acidifaciens in the Gut Plays a Protective Role against CD95-Mediated Liver Injury. Gut Microbes 2022, 14, 2027853. [Google Scholar] [CrossRef]
- Nakajima, A.; Sasaki, T.; Itoh, K.; Kitahara, T.; Takema, Y.; Hiramatsu, K.; Ishikawa, D.; Shibuya, T.; Kobayashi, O.; Osada, T.; et al. A Soluble Fiber Diet Increases Bacteroides Fragilis Group Abundance and Immunoglobulin A Production in the Gut. Appl. Environ. Microbiol. 2020, 86, e00405-20. [Google Scholar] [CrossRef]
- Yan, S.; Zhu, Y.; Li, L.; Qin, S.; Yuan, J.; Chang, X.; Hu, S. Alginate Oligosaccharide Ameliorates Azithromycin-Induced Gut Microbiota Disorder via Bacteroides Acidifaciens-FAHFAs and Bacteroides-TCA Cycle Axes. Food Funct. 2023, 14, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Zhong, Y.; Xie, J.; Wang, Z.; Zhang, W.; Pi, Y.; Zhang, W.; Liu, L.; Luo, J.; Xu, W. Bacteroides Acidifaciens and Its Derived Extracellular Vesicles Improve DSS-Induced Colitis. Front. Microbiol. 2023, 14, 1304232. [Google Scholar] [CrossRef]
- Zitomersky, N.L.; Coyne, M.J.; Comstock, L.E. Longitudinal Analysis of the Prevalence, Maintenance, and IgA Response to Species of the Order Bacteroidales in the Human Gut. Infect. Immun. 2011, 79, 2012–2020. [Google Scholar] [CrossRef]
- Tan, H.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Isolation of Low-Abundant Bacteroidales in the Human Intestine and the Analysis of Their Differential Utilization Based on Plant-Derived Polysaccharides. Front. Microbiol. 2018, 9, 1319. [Google Scholar] [CrossRef]
- Snydman, D.R.; Jacobus, N.V.; McDermott, L.A.; Golan, Y.; Hecht, D.W.; Goldstein, E.J.C.; Harrell, L.; Jenkins, S.; Newton, D.; Pierson, C.; et al. Lessons Learned from the Anaerobe Survey: Historical Perspective and Review of the Most Recent Data (2005–2007). Clin. Infect. Dis. 2010, 50 (Suppl. S1), S26–S33. [Google Scholar] [CrossRef] [PubMed]
- Parapouli, M.; Delbès-Paus, C.; Kakouri, A.; Koukkou, A.I.; Montel, M.C.; Samelis, J. Characterization of a Wild, Novel Nisin A-Producing Lactococcus Strain with an L. Lactis Subsp. Cremoris Genotype and an L. Lactis Subsp. Lactis Phenotype, Isolated from Greek Raw Milk. Appl. Environ. Microbiol. 2013, 79, 3476–3484. [Google Scholar] [CrossRef] [PubMed]
- Ballal, S.A.; Veiga, P.; Fenn, K.; Michaud, M.; Kim, J.H.; Gallini, C.A.; Glickman, J.N.; Quéré, G.; Garault, P.; Béal, C.; et al. Host Lysozyme-Mediated Lysis of Lactococcus Lactis Facilitates Delivery of Colitis-Attenuating Superoxide Dismutase to Inflamed Colons. Proc. Natl. Acad. Sci. USA 2015, 112, 7803–7808. [Google Scholar] [CrossRef] [PubMed]
- Luerce, T.D.; Gomes-Santos, A.C.; Rocha, C.S.; Moreira, T.G.; Cruz, D.N.; Lemos, L.; Sousa, A.L.; Pereira, V.B.; De Azevedo, M.; Moraes, K.; et al. Anti-Inflammatory Effects of Lactococcus Lactis NCDO 2118 during the Remission Period of Chemically Induced Colitis. Gut Pathog. 2014, 6, 33. [Google Scholar] [CrossRef]
- Steidler, L.; Hans, W.; Schotte, L.; Neirynck, S.; Obermeier, F.; Falk, W.; Fiers, W.; Remaut, E. Treatment of Murine Colitis by Lactococcus Lactis Secreting Interleukin-10. Science 2000, 289, 1352–1355. [Google Scholar] [CrossRef] [PubMed]
- Antolín, J.; Cigüenza, R.; Salueña, I.; Vázquez, E.; Hernández, J.; Espinós, D. Liver Abscess Caused by Lactococcus Lactis Cremoris: A New Pathogen. Scand. J. Infect. Dis. 2004, 36, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Xie, X.; Du, T.; Jiang, X.; Miao, W.; Wang, T. Lactococcus Lactis, a Bacterium with Probiotic Functions and Pathogenicity. World J. Microbiol. Biotechnol. 2023, 39, 325. [Google Scholar] [CrossRef]
- Seedorf, H.; Griffin, N.W.; Ridaura, V.K.; Reyes, A.; Cheng, J.; Rey, F.E.; Smith, M.I.; Simon, G.M.; Scheffrahn, R.H.; Woebken, D.; et al. Bacteria from Diverse Habitats Colonize and Compete in the Mouse Gut. Cell 2014, 159, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Y.; Dai, N.; Yang, Y.; He, Y.; Chen, H.; Zhao, M.; Fu, X.; Chen, T.; Xing, Z. Functional Metagenomic and Metabolomics Analysis of Gut Dysbiosis Induced by Hyperoxia. Front. Microbiol. 2023, 14, 1197970. [Google Scholar] [CrossRef]
- Yue, X.; Zhou, H.; Wang, S.; Chen, X.; Xiao, H. Gut Microbiota, Microbiota-Derived Metabolites, and Graft-versus-Host Disease. Cancer Med. 2024, 13, e6799. [Google Scholar] [CrossRef]
- Almeida, A.; Mitchell, A.L.; Boland, M.; Forster, S.C.; Gloor, G.B.; Tarkowska, A.; Lawley, T.D.; Finn, R.D. A New Genomic Blueprint of the Human Gut Microbiota. Nature 2019, 568, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, S.; Musmeci, E.; Candeliere, F.; Amaretti, A.; Rossi, M. Identification of Mucin Degraders of the Human Gut Microbiota. Sci. Rep. 2021, 11, 11094. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Wu, S.; Zhang, Y.G.; Lu, R.; Xia, Y.; Dong, H.; Sun, J. Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. Clin. Ther. 2015, 37, 996–1009.e7. [Google Scholar] [CrossRef] [PubMed]
- Sisk-Hackworth, L.; Brown, J.; Sau, L.; Levine, A.A.; Tam, L.Y.I.; Ramesh, A.; Shah, R.S.; Kelley-Thackray, E.T.; Wang, S.; Nguyen, A.; et al. Genetic Hypogonadal Mouse Model Reveals Niche-Specific Influence of Reproductive Axis and Sex on Intestinal Microbial Communities. Biol. Sex Differ. 2023, 14, 79. [Google Scholar] [CrossRef] [PubMed]
- Selma, M.V.; Beltrán, D.; Luna, M.C.; Romo-Vaquero, M.; García-Villalba, R.; Mira, A.; Espín, J.C.; Tomás-Barberán, F.A. Isolation of Human Intestinal Bacteria Capable of Producing the Bioactive Metabolite Isourolithin A from Ellagic Acid. Front. Microbiol. 2017, 8, 1521. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Chandrashekharappa, S.; Bodduluri, S.R.; Baby, B.V.; Hegde, B.; Kotla, N.G.; Hiwale, A.A.; Saiyed, T.; Patel, P.; Vijay-Kumar, M.; et al. Enhancement of the Gut Barrier Integrity by a Microbial Metabolite through the Nrf2 Pathway. Nat. Commun. 2019, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, M.; Zhou, M.; Wu, L.; Yang, H.; Huang, L.; Chen, C. Isolation and Genomic Characterization of Five Novel Strains of Erysipelotrichaceae from Commercial Pigs. BMC Microbiol. 2021, 21, 125. [Google Scholar] [CrossRef]
- Chen, W.; Liu, F.; Ling, Z.; Tong, X.; Xiang, C. Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer. PLoS ONE 2012, 7, e39743. [Google Scholar] [CrossRef] [PubMed]
- Schaubeck, M.; Clavel, T.; Calasan, J.; Lagkouvardos, I.; Haange, S.B.; Jehmlich, N.; Basic, M.; Dupont, A.; Hornef, M.; Von Bergen, M.; et al. Dysbiotic Gut Microbiota Causes Transmissible Crohn’s Disease-like Ileitis Independent of Failure in Antimicrobial Defence. Gut 2016, 65, 225–237. [Google Scholar] [CrossRef]
- Labbé, A.; Ganopolsky, J.G.; Martoni, C.J.; Prakash, S.; Jones, M.L. Bacterial Bile Metabolising Gene Abundance in Crohn’s, Ulcerative Colitis and Type 2 Diabetes Metagenomes. PLoS ONE 2014, 9, e115175. [Google Scholar] [CrossRef]
- Ghimire, K.; Kasarla, R.R. Staphylococcus Nepalensis: A New Species from Nepal. J. Univers. Coll. Med. Sci. 2023, 11, 69–72. [Google Scholar] [CrossRef]
- Nováková, D.; Pantůček, R.; Petráš, P.; Koukalová, D.; Sedláček, I. Occurance of Staphylococcus Nepalensis Strains in Different Sources Including Human Clinical Material. FEMS Microbiol. Lett. 2006, 263, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Andrade-Oliveira, A.L.; Lacerda-Rodrigues, G.; Pereira, M.F.; Bahia, A.C.; Machado, E.d.A.; Rossi, C.C.; Giambiagi-deMarval, M. Tenebrio Molitor as a Model System to Study Staphylococcus Spp Virulence and Horizontal Gene Transfer. Microb. Pathog. 2023, 183, 106304. [Google Scholar] [CrossRef]
- Kuroda, M.; Yamashita, A.; Hirakawa, H.; Kumano, M.; Morikawa, K.; Higashide, M.; Maruyama, A.; Inose, Y.; Matoba, K.; Toh, H.; et al. Whole Genome Sequence of Staphylococcus Saprophyticus Reveals the Pathogenesis of Uncomplicated Urinary Tract Infection. Proc. Natl. Acad. Sci. USA 2005, 102, 13272–13277. [Google Scholar] [CrossRef] [PubMed]
- Rupp, M.E.; Soper, D.E.; Archer, G.L. Colonization of the Female Genital Tract with Staphylococcus Saprophyticus. J. Clin. Microbiol. 1992, 30, 2975–2979. [Google Scholar] [CrossRef] [PubMed]
- Al-Mathkhury, H.J.F.; Flaih, M.T.; Fleih, A.S. Role of Peptidoglycan in the Pathogenesis of Staphylococcus Saprophyticus in Mice. Baghdad Sci. J. 2021, 4, 597–602. [Google Scholar] [CrossRef]
- Bera, A.; Biswas, R.; Herbert, S.; Götz, F. The Presence of Peptidoglycan O-Acetyltransferase in Various Staphylococcal Species Correlates with Lysozyme Resistance and Pathogenicity. Infect. Immun. 2006, 74, 4598–4604. [Google Scholar] [CrossRef]
- Myhre, A.E.; Stuestøl, J.F.; Dahle, M.K.; Øverland, G.; Thiemermann, C.; Foster, S.J.; Lilleaasen, P.; Aasen, A.O.; Wang, J.E. Organ Injury and Cytokine Release Caused by Peptidoglycan Are Dependent on the Structural Integrity of the Glycan Chain. Infect. Immun. 2004, 72, 1311–1317. [Google Scholar] [CrossRef]
- Huynh, U.; Zastrow, M.L. Metallobiology of Lactobacillaceae in the Gut Microbiome. J. Inorg. Biochem. 2023, 238, 112023. [Google Scholar] [CrossRef]
- Zhang, K.; Dong, X. Selenomonas Bovis Sp. Nov., Isolated from Yak Rumen Contents. Int. J. Syst. Evol. Microbiol. 2009, 59, 2080–2083. [Google Scholar] [CrossRef]
- Jeelani, A.; Afroz Ahmed, S.; Vaqar Momin, F. Obesity-Caused by a Germ? Int. J. Sci. Res. Publ. 2013, 3, 1–3. Available online: http://www.ijsrp.org/research-paper-1301.php?rp=P13639 (accessed on 27 June 2024).
- Harakeh, S.M.; Khan, I.; Kumosani, T.; Barbour, E.; Almasaudi, S.B.; Bahijri, S.M.; Alfadul, S.M.; Ajabnoor, G.M.A.; Azhar, E.I. Gut Microbiota: A Contributing Factor to Obesity. Front. Cell. Infect. Microbiol. 2016, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Mo, S.J.; Lee, K.; Hong, H.J.; Hong, D.K.; Jung, S.H.; Park, S.D.; Shim, J.J.; Lee, J.L. Effects of Lactobacillus Curvatus HY7601 and Lactobacillus Plantarum KY1032 on Overweight and the Gut Microbiota in Humans: Randomized, Double-Blinded, Placebo-Controlled Clinical Trial. Nutrients 2022, 14, 2484. [Google Scholar] [CrossRef] [PubMed]
- Lagkouvardos, I.; Pukall, R.; Abt, B.; Foesel, B.U.; Meier-Kolthoff, J.P.; Kumar, N.; Bresciani, A.; Martínez, I.; Just, S.; Ziegler, C.; et al. The Mouse Intestinal Bacterial Collection (MiBC) Provides Host-Specific Insight into Cultured Diversity and Functional Potential of the Gut Microbiota. Nat. Microbiol. 2016, 1, 16131. [Google Scholar] [CrossRef] [PubMed]
- Lagkouvardos, I.; Lesker, T.R.; Hitch, T.C.A.; Gálvez, E.J.C.; Smit, N.; Neuhaus, K.; Wang, J.; Baines, J.F.; Abt, B.; Stecher, B.; et al. Sequence and Cultivation Study of Muribaculaceae Reveals Novel Species, Host Preference, and Functional Potential of This yet Undescribed Family. Microbiome 2019, 7, 28. [Google Scholar] [CrossRef]
- Smith, B.J.; Miller, R.A.; Schmidt, T.M. Muribaculaceae Genomes Assembled from Metagenomes Suggest Genetic Drivers of Differential Response to Acarbose Treatment in Mice. mSphere 2021, 6, e0085121. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Zhao, Y.; Huang, L.; Liu, J.; Wang, K.; Gao, X.; Zhao, X.; Wang, X. Remodeling of the Gut Microbiome by Lactobacillus Johnsonii Alleviates the Development of Acute Myocardial Infarction. Front. Microbiol. 2023, 14, 1140498. [Google Scholar] [CrossRef] [PubMed]
- Fontecave, M.; Atta, M.; Mulliez, E. S-Adenosylmethionine: Nothing Goes to Waste. Trends Biochem. Sci. 2004, 29, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Boukaba, A.; Sanchis-Gomar, F.; García-Giménez, J.L. Epigenetic Mechanisms as Key Regulators in Disease: Clinical Implications. In Epigenetic Biomarkers and Diagnostics; Academic Press: Cambridge, MA, USA, 2016; pp. 37–66. [Google Scholar] [CrossRef]
- Thomas, D.; Surdin-Kerjan, Y. Metabolism of Sulfur Amino Acids in Saccharomyces Cerevisiae. Microbiol. Mol. Biol. Rev. 1997, 61, 503–532. [Google Scholar] [CrossRef]
- Buret, A.G.; Allain, T.; Motta, J.P.; Wallace, J.L. Effects of Hydrogen Sulfide on the Microbiome: From Toxicity to Therapy. Antioxid. Redox Signal. 2022, 36, 211–219. [Google Scholar] [CrossRef]
- Frank, D.N.; St. Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-Phylogenetic Characterization of Microbial Community Imbalances in Human Inflammatory Bowel Diseases. Proc. Natl. Acad. Sci. USA 2007, 104, 13780–13785. [Google Scholar] [CrossRef] [PubMed]
- Wallace, J.L.; Wang, R. Hydrogen Sulfide-Based Therapeutics: Exploiting a Unique but Ubiquitous Gasotransmitter. Nat. Rev. Drug Discov. 2015, 14, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.K.K.; Dawson, V.L.; Dawson, T.M. S-Nitrosylation in Parkinson’s Disease and Related Neurodegenerative Disorders. Methods Enzymol. 2005, 396, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Müller, T. Catechol-O-Methyltransferase Enzyme: Cofactor S-Adenosyl-l-Methionine And Related Mechanisms. Int. Rev. Neurobiol. 2010, 95, 49–71. [Google Scholar] [CrossRef] [PubMed]
- Nieuwkoop, A.J.; Bender, R.A. Histidine Degradation in Bacteria. Handb. Microb. Metab. Amin. acids 2017, 1, 291–303. [Google Scholar] [CrossRef]
- Bender, R.A. Regulation of the Histidine Utilization (Hut) System in Bacteria. Microbiol. Mol. Biol. Rev. 2012, 76, 565–584. [Google Scholar] [CrossRef]
- Chamarande, J.; Cunat, L.; Pavlov, N.; Alauzet, C.; Cailliez-Grimal, C. Parabacteroides Distasonis Properties Linked to the Selection of New Biotherapeutics. Nutrients 2022, 14, 4176. [Google Scholar] [CrossRef]
Metrics, Microns | Control | LPS | LP | W | LA |
---|---|---|---|---|---|
Villi height | 144.23 ± 23.21 | 121.24 ± 13.27 | 102.27 ± 22.28 ** | 143.24 ± 10.46 | 131.37 ± 12.89 |
Villus thickness | 12.34 ± 2.28 | 28.72 ± 2.25 | 12.37 ± 1.23 | 14.33 ± 0.25 | 18.24 ± 1.47 |
Crypt depth | 62.89 ± 12.59 | 35.66 ± 7.65 | 57.81 ± 4.56 | 58.43 ± 3.77 | 55.67 ± 10.26 |
Crypt width | 17.64 ± 0.55 | 14.67 ± 1.21 | 18.25 ± 4.75 | 17.01 ± 2.87 | 25.49 ± 2.64 |
Brush border height | 0.87 ± 0,92 | 0.47 ± 0.44 | 0,85 ± 3,77 | 0.82 ± 0.32 | 0.52 ± 0.26 |
Feed Treatments | Observed Species | Shannon Index |
---|---|---|
Control | 276 | 3.15 |
LPS | 295 | 3.21 |
LP | 301 | 3.41 |
W | 327 | 3.28 |
LA | 269 | 3.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gryaznova, M.; Burakova, I.; Smirnova, Y.; Morozova, P.; Chirkin, E.; Gureev, A.; Mikhaylov, E.; Korneeva, O.; Syromyatnikov, M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms 2024, 12, 1341. https://doi.org/10.3390/microorganisms12071341
Gryaznova M, Burakova I, Smirnova Y, Morozova P, Chirkin E, Gureev A, Mikhaylov E, Korneeva O, Syromyatnikov M. Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms. 2024; 12(7):1341. https://doi.org/10.3390/microorganisms12071341
Chicago/Turabian StyleGryaznova, Mariya, Inna Burakova, Yuliya Smirnova, Polina Morozova, Egor Chirkin, Artem Gureev, Evgeny Mikhaylov, Olga Korneeva, and Mikhail Syromyatnikov. 2024. "Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation" Microorganisms 12, no. 7: 1341. https://doi.org/10.3390/microorganisms12071341
APA StyleGryaznova, M., Burakova, I., Smirnova, Y., Morozova, P., Chirkin, E., Gureev, A., Mikhaylov, E., Korneeva, O., & Syromyatnikov, M. (2024). Effect of Probiotic Bacteria on the Gut Microbiome of Mice with Lipopolysaccharide-Induced Inflammation. Microorganisms, 12(7), 1341. https://doi.org/10.3390/microorganisms12071341