The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. In Silico Evaluation of abfA and abfB Genes Presence in B. Longum W11 Genome
2.2. Viable Counts of B. Longum W11 in Different Sugar-Restricted Media
2.3. RNA Extraction, Quantification and Retro Transcription for Downstream Analysis
2.4. qPCR Amplification
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garzon Mora, N.; Jaramillo, A.P. Effectiveness of Probiotics in Patients with Constipation: A Systematic Review and Meta-Analysis. Cureus 2024, 16, e52013. [Google Scholar] [CrossRef] [PubMed]
- van der Schoot, A.; Helander, C.; Whelan, K.; Dimidi, E. Probiotics and synbiotics in chronic constipation in adults: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2022, 41, 2759–2777. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Wu, Y.; Zhang, M.; Chen, P.; Zhang, Z.; Wang, S. Effect of probiotics intake on constipation in children: An umbrella review. Front. Nutr. 2023, 10, 1218909. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Jiang, J.; Tian, F.; Zhao, J.; Zhang, H.; Zhai, Q.; Chen, W. Meta-analysis of randomized controlled trials of the effects of probiotics on functional constipation in adults. Clin. Nutr. 2020, 39, 2960–2969. [Google Scholar] [CrossRef] [PubMed]
- Dimidi, E.; Christodoulides, S.; Scott, S.M.; Whelan, K. Mechanisms of action of probiotics and the gastrointestinal microbiota on gut motility and constipation. Adv. Nutr. 2017, 8, 484–494. [Google Scholar] [CrossRef] [PubMed]
- Vriesman, M.H.; Koppen, I.J.N.; Camilleri, M.; Di Lorenzo, C.; Benninga, M.A. Management of functional constipation in children and adults. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 21–39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, L.; Ma, C.; Jiang, S.; Zhang, Y.; Wang, S.; Tian, F.; Xue, Y.; Zhao, J.; Zhang, H.; et al. A key genetic factor governing arabinan utilization in the gut microbiome alleviates constipation. Cell Host Microbe 2023, 31, 1989–2006.e8. [Google Scholar] [CrossRef] [PubMed]
- Graziano, T.; Amoruso, A.; Nicola, S.; Deidda, F.; Allesina, S.; Pane, M.; Piffanelli, P.; Strozzi, F.; Mogna, L.; Del Piano, M. The Possible Innovative Use of Bifidobacterium longum W11 in Association with Rifaximin: A New Horizon for Combined Approach? J. Clin. Gastroenterol. 2015, 50, S153–S156. [Google Scholar] [CrossRef] [PubMed]
- Di Pierro, F.; Bertuccioli, A.; Pane, M.; Ivaldi, L. Effects of rifaximin-resistant Bifidobacterium longum W11 in subjects with symptomatic uncomplicated diverticular disease treated with rifaximin. Minerva Gastroenterol. Dietol. 2019, 65, 259–264. [Google Scholar] [CrossRef]
- Di Pierro, F.; Pane, M. Bifidobacterium longum W11: Uniqueness and individual or combined clinical use in association with rifaximin. Clin. Nutr. ESPEN 2021, 42, 15–21. [Google Scholar] [CrossRef]
- Colecchia, A.; Vestito, A.; La Rocca, A.; Pasqui, F.; Nikiforaki, A.; Festi, D.; Symbiotic Study Group. Effect of a symbiotic preparation on the clinical manifestations of irritable bowel syndrome, constipation-variant. Results of an open, uncontrolled multicenter study. Minerva Gastroenterol. Dietol. 2006, 52, 349–358. [Google Scholar] [PubMed]
- Dughera, L.; Elia, C.; Navino, M.; Cisarò, F.; ARMONIA Study Group. Effects of symbiotic preparations on constipated irritable bowel syndrome symptoms. Acta Biomed. 2007, 78, 111–116. [Google Scholar] [PubMed]
- Amenta, M.; Cascio, M.T.; Di Fiore, P.; Venturini, I. Diet and chronic constipation. Benefits of oral supplementation with symbiotic zir fos (Bifidobacterium longum W11 + FOS Actilight). Acta Biomed. 2006, 77, 157–162. [Google Scholar] [PubMed]
- Savard, P.; Roy, D. Determination of Differentially Expressed Genes Involved in Arabinoxylan Degradation by Bifidobacterium longum NCC2705 Using Real-Time RT-PCR. Probiotics Antimicrob. Proteins 2009, 1, 121. [Google Scholar] [CrossRef]
- Komeno, M.; Hayamizu, H.; Fujita, K.; Ashida, H. Two Novel α-l-Arabinofuranosidases from Bifidobacterium longum subsp. longum Belonging to Glycoside Hydrolase Family 43 Cooperatively Degrade Arabinan. Appl. Environ. Microbiol. 2019, 85, e02582-18. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.S.; Shin, S.Y.; Choi, H.S.; Joo, W.; Cho, S.K.; Li, L.; Kang, J.H.; Kim, T.J.; Han, N.S. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 2015, 131, 50–56. [Google Scholar] [CrossRef]
- ISO 29981:2010|IDF; Milk Products-Enumeration of Presumptive Bifidobacteria-Colony Count Technique at 37 °C. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/45765.html (accessed on 20 July 2024).
- Tazoe, H.; Otomo, Y.; Kaji, I.; Tanaka, R.; Karaki, S.I.; Kuwahara, A. Roles of short-chain fatty acids receptors, GPR41 and GPR43 on colonic functions. J. Physiol. Pharmacol. 2008, 59, 251–262. [Google Scholar]
- Soret, R.; Chevalier, J.; De Coppet, P.; Poupeau, G.; Derkinderen, P.; Segain, J.P.; Neunlist, M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010, 138, 1772–1782. [Google Scholar] [CrossRef]
- Mars, R.A.T.; Yang, Y.; Ward, T.; Houtti, M.; Priya, S.; Lekatz, H.R.; Tang, X.; Sun, Z.; Kalari, K.R.; Korem, T.; et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 2020, 182, 1460–1473.e17. [Google Scholar] [CrossRef]
- Lancaster, S.M.; Lee-McMullen, B.; Abbott, C.W.; Quijada, J.V.; Hornburg, D.; Park, H.; Perelman, D.; Peterson, D.J.; Tang, M.; Robinson, A.; et al. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe 2022, 30, 848–862.e7. [Google Scholar] [CrossRef]
- Bazzoli, F.; Malavolti, M.; Petronelli, A.; Barbara, L.; Roda, E. Treatment of constipation with chenodeoxycholic acid. J. Int. Med. Res. 1983, 11, 120–123. [Google Scholar] [CrossRef]
- Rao, A.S.; Wong, B.S.; Camilleri, M.; Odunsi-Shiyanbade, S.T.; McKinzie, S.; Ryks, M.; Burton, D.; Carlson, P.; Lamsam, J.; Singh, R.; et al. Chenodeoxycholate in females with irritable bowel syndrome-constipation: A pharmacodynamic and pharmacogenetic analysis. Gastroenterology 2010, 139, 1549–1558. [Google Scholar] [CrossRef]
- Alemi, F.; Poole, D.P.; Chiu, J.; Schoonjans, K.; Cattaruzza, F.; Grider, J.R.; Bunnett, N.W.; Corvera, C.U. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013, 144, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Veiga, P.; Suez, J.; Derrien, M.; Elinav, E. Moving from probiotics to precision probiotics. Nat. Microbiol. 2020, 5, 878–880. [Google Scholar] [CrossRef]
- Pascale, N.; Gu, F.; Larsen, N.; Jespersen, L.; Respondek, F. The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review. Nutrients 2022, 14, 3629. [Google Scholar] [CrossRef] [PubMed]
- Zannini, E.; Bravo Núñez, Á.; Sahin, A.W.; Arendt, E.K. Arabinoxylans as Functional Food Ingredients: A Review. Foods 2022, 11, 1026. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Khatri, I.; Sharma, G.; Subramanian, S. Composite genome sequence of Bacillus clausii, a probiotic commercially available as Enterogermina®, and insights into its probiotic properties. BMC Microbiol. 2019, 19, 307. [Google Scholar] [CrossRef]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium animalis subsp. lactis BB-12(®). Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
- Boggio Marzet, C.; Burgos, F.; Del Compare, M.; Gerold, I.; Tabacco, O.; Vinderola, G. Approach to probiotics in pediatrics: The role of Lactobacillus rhamnosus GG. Arch. Argent. Pediatr. 2022, 120, e1–e7. [Google Scholar]
- Chmielewska, A.; Szajewska, H. Systematic review of randomised controlled trials: Probiotics for functional constipation. World J. Gastroenterol. 2010, 16, 69–75. [Google Scholar] [PubMed]
- Wegh, C.A.M.; Benninga, M.A.; Tabbers, M.M. Effectiveness of Probiotics in Children with Functional Abdominal Pain Disorders and Functional Constipation: A Systematic Review. J. Clin. Gastroenterol. 2017, 52 (Suppl. S1), S10–S26. [Google Scholar] [CrossRef] [PubMed]
- Lojanatorn, P.; Phrommas, J.; Tanpowpong, P.; Getsuwan, S.; Lertudomphonwanit, C.; Treepongkaruna, S. Efficacy of Bacillus clausii in Pediatric Functional Constipation: A Pilot of a Randomized, Double-Blind, Placebo-Controlled Trial. Indian Pediatr. 2023, 60, 453–458. [Google Scholar] [CrossRef] [PubMed]
- Giua, C.; Romano, F.; Keber, E.; Pellegrino, P.; Perez, M.; Uboldi, M.C.; SIFAC group of clinical pharmacists (SGCP). A Prospective Real-World Study of Bacillus clausii Evaluating Use, Treatment Habits and Patient Satisfaction in Italian Community Pharmacies: The PEGASO Study. Drugs–Real World Outcomes 2024, 11, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Pitkala, K.H.; Strandberg, T.E.; Finne Soveri, U.H.; Ouwehand, A.C.; Poussa, T.; Salminen, S. Fermented cereal with specific bifidobacteria normalizes bowel movements in elderly nursing home residents. A randomized, controlled trial. J. Nutr. Health Aging 2007, 11, 305–311. [Google Scholar] [PubMed]
- Uchida, K.; Akashi, K.; Kusunoki, I.; Ikeda, T.; Katano, N.; Motoshima, H.; Benno, Y. Effect of fermented milk containing Bifidobacterium lactis BB-12® on stool frequency, defecation, fecal microbiota and safety of excessive ingestion in healthy female students. J. Nutr. Food 2005, 8, 39–51. [Google Scholar]
- Nishida, S.; Gotou, M.; Akutsu, S.; Ono, M.; Hitomi, Y.; Nakamura, T.; Iino, H. Effect of yogurt containing Bifidobacterium lactis BB-12 on improvement of defecation and fecal microflora of healthy female adults. Milk Sci. 2004, 53, 71–80. [Google Scholar]
Sugar restricted, T0 | Sugar restricted, T24 | ||||||||
−5 | −6 | CFU/mL | Log (CFUs) | −5 | −6 | CFU/mL | Log (CFUs) | DL (CFUs) | |
BLW11 | 187 | 15 | 1.8 × 107 | 7.3 | 161 | 23 | 1.67 × 107 | 7.2 | 0.0 |
Sugar restricted + glucose, T0 | Sugar restricted + glucose, T24 | ||||||||
−5 | −6 | CFU/mL | Log (CFUs) | −7 | −8 | CFU/mL | Log (CFUs) | DL (CFUs) | |
BLW11 | 175 | 14 | 1.7 × 107 | 7.2 | 44 | 6 | 4.55 × 107 | 7.7 | 0.4 |
Sugar restricted + arabinan, T0 | Sugar restricted + arabinan, T24 | ||||||||
−5 | −6 | CFU/mL | Log (CFUs) | −7 | −8 | CFU/mL | Log (CFUs) | DL (CFUs) | |
BLW11 | 179 | 18 | 1.8 × 107 | 7.3 | 82 | 11 | 8.45 × 107 | 8.9 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Pierro, F.; Zerbinati, N.; Cazzaniga, M.; Bertuccioli, A.; Palazzi, C.M.; Cavecchia, I.; Matera, M.; Labrini, E.; Sagheddu, V.; Soldi, S. The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization. Microorganisms 2024, 12, 1626. https://doi.org/10.3390/microorganisms12081626
Di Pierro F, Zerbinati N, Cazzaniga M, Bertuccioli A, Palazzi CM, Cavecchia I, Matera M, Labrini E, Sagheddu V, Soldi S. The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization. Microorganisms. 2024; 12(8):1626. https://doi.org/10.3390/microorganisms12081626
Chicago/Turabian StyleDi Pierro, Francesco, Nicola Zerbinati, Massimiliano Cazzaniga, Alexander Bertuccioli, Chiara Maria Palazzi, Ilaria Cavecchia, Mariarosaria Matera, Edoardo Labrini, Valeria Sagheddu, and Sara Soldi. 2024. "The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization" Microorganisms 12, no. 8: 1626. https://doi.org/10.3390/microorganisms12081626
APA StyleDi Pierro, F., Zerbinati, N., Cazzaniga, M., Bertuccioli, A., Palazzi, C. M., Cavecchia, I., Matera, M., Labrini, E., Sagheddu, V., & Soldi, S. (2024). The Anti-Constipation Effect of Bifidobacterium Longum W11 Is Likely Due to a Key Genetic Factor Governing Arabinan Utilization. Microorganisms, 12(8), 1626. https://doi.org/10.3390/microorganisms12081626