Isolation and Characterization of Escherichia coli from Brazilian Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Escherichia coli Isolation
2.3. APEC Molecular Confirmation
2.4. Antimicrobial Sensitivity Testing
2.5. Whole Genome Sequencing
2.6. In Silico Analysis
2.6.1. Species Confirmation
2.6.2. Serogroup Identification
2.6.3. Virulence, Antimicrobial, and Disinfectant Resistance Gene Detection
3. Results
3.1. Batch History
3.2. Escherichia coli Isolation and APEC Confirmation
3.3. Phenotypic Antimicrobial Resistance
3.4. Serogroups
3.5. Detection and Distribution of Genes Associated with Virulence
3.6. Detection and Distribution of Antimicrobial and Disinfectant Resistance Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ABPA (Brazilian Animal Protein Association). Annual Report 2024; APBA: Guarulhos, Brazil, 2024. [Google Scholar]
- Blount, Z.D. The Unexhausted Potential of E. coli. Elife 2015, 4, e05826. [Google Scholar] [CrossRef]
- Ferreira, A.J.P.; Knöbl, T.K. Colibacilose. In Doenças das Aves; Berchieri Júnior, A., Nepomuceno Silva, E., Di Fábio, J., Sesti, L., Zuanaze, M.A.F., Eds.; Fundação APINCO de Ciência e Tecnologia Avícolas: Campinas, Brazil, 2009; pp. 667–692. [Google Scholar]
- Yu, D.; Banting, G.; Neumann, N.F. A Review of the Taxonomy, Genetics, and Biology of the Genus Escherichia and the Type Species Escherichia coli. Can. J. Microbiol. 2021, 67, 553–571. [Google Scholar] [CrossRef]
- Nolan, L.K.; Vaillancourt, J.; Barbieri, N.L.; Logue, C.M. Colibacillosis. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 770–830. [Google Scholar]
- Orskov, I.; Orskov, F.; Jann, B.; Jann, K. Serology, Chemistry, and Genetics of O and K Antigens of Escherichia coli. Bacteriol. Rev. 1977, 41, 667–710. [Google Scholar] [CrossRef]
- Fratamico, P.M.; DebRoy, C.; Liu, Y.; Needleman, D.S.; Baranzoni, G.M.; Feng, P. Advances in Molecular Serotyping and Subtyping of Escherichia coli. Front. Microbiol. 2016, 7, 644. [Google Scholar] [CrossRef]
- Johnson, T.J.; Miller, E.A.; Flores-Figueroa, C.; Munoz-Aguayo, J.; Cardona, C.; Fransen, K.; Lighty, M.; Gonder, E.; Nezworski, J.; Haag, A.; et al. Refining the Definition of the Avian Pathogenic Escherichia coli (APEC) Pathotype through Inclusion of High-Risk Clonal Groups. Poult. Sci. 2022, 101, 102009. [Google Scholar] [CrossRef] [PubMed]
- Dho-Moulin, M.; Fairbrother, J.M. Avian Pathogenic Escherichia coli (APEC). Vet. Res. 1999, 30, 299–316. [Google Scholar] [PubMed]
- La Ragione, R.M.; Woodward, M.J. Virulence Factors of Escherichia coli Serotypes Associated with Avian Colisepticaemia. Res. Vet. Sci. 2002, 73, 27–35. [Google Scholar] [CrossRef]
- Kathayat, D.; Lokesh, D.; Ranjit, S.; Rajashekara, G. Avian Pathogenic Escherichia coli (APEC): An Overview of Virulence and Pathogenesis Factors, Zoonotic Potential, and Control Strategies. Pathogens 2021, 10, 467. [Google Scholar] [CrossRef] [PubMed]
- Johnson, T.J.; Wannemuehler, Y.; Doetkott, C.; Johnson, S.J.; Rosenberger, S.C.; Nolan, L.K. Identification of Minimal Predictors of Avian Pathogenic Escherichia coli Virulence for Use as a Rapid Diagnostic Tool. J. Clin. Microbiol. 2008, 46, 3987–3996. [Google Scholar] [CrossRef]
- Landoni, M.F.; Albarellos, G. The Use of Antimicrobial Agents in Broiler Chickens. Vet. J. 2015, 205, 21–27. [Google Scholar] [CrossRef]
- Ibrahim, R.A.; Cryer, T.L.; Lafi, S.Q.; Basha, E.A.; Good, L.; Tarazi, Y.H. Identification of Escherichia coli from Broiler Chickens in Jordan, Their Antimicrobial Resistance, Gene Characterization and the Associated Risk Factors. BMC Vet. Res. 2019, 15, 159. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Levy, S.B. Food Animals and Antimicrobials: Impacts on Human Health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- World Organization for Animal Health (OIE). OIE Annual Report on Antimicrobial Agents Intended for Use in Animals, 5th ed.; WOAH: Paris, France, 2021. [Google Scholar]
- Callaway, T.R.; Edrington, T.S.; Rychlik, J.L.; Genovese, K.J.; Poole, T.L.; Jung, Y.S.; Bischoff, K.M.; Anderson, R.C.; Nisbet, D.J.; Rd, B. Ionophores: Their Use as Ruminant Growth Promotants and Impact on Food Safety. Ionophores Impact on Food Safety 43. Curr. Issues Intestig. Microbiol. 2003, 4, 43–51. [Google Scholar]
- Gambi, L.; Crippa, C.; Lucchi, A.; De Cesare, A.; Parisi, A.; Manfreda, G.; Pasquali, F. The Resistome of Commensal Escherichia coli Isolated from Broiler Carcasses “Produced without the Use of Antibiotics”. Poult. Sci. 2022, 101, 101770. [Google Scholar] [CrossRef] [PubMed]
- Roth, N.; Käsbohrer, A.; Mayrhofer, S.; Zitz, U.; Hofacre, C.; Domig, K.J. The Application of Antibiotics in Broiler Production and the Resulting Antibiotic Resistance in Escherichia coli: A Global Overview. Poult. Sci. 2019, 98, 1791–1804. [Google Scholar] [CrossRef] [PubMed]
- McVey, S.; Kennedy, M.; Chengappa, M.M. Veterinary Microbiology, 3rd ed.; Guanabara Koogan: Bela Vista, Brazil, 2016; ISBN 9788527726641. [Google Scholar]
- Reygaert, W.C. An Overview of the Antimicrobial Resistance Mechanisms of Bacteria. AIMS Microbiol. 2018, 4, 482–501. [Google Scholar] [CrossRef] [PubMed]
- Collett, S.R.; Smith, J.A.; Boulianne, M.; Owen, R.L.; Gingerich, E.; Singer, R.S.; Johnson, T.J.; Hofacre, C.L.; Berghaus, R.D.; Stewart-Brown, B. Principles of disease prevention, diagnosis, and control. In Diseases of Poultry; Swayne, D.E., Boulianne, M., Logue, C.M., McDougald, L.R., Nair, V., Suarez, D.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 1–78. [Google Scholar]
- MacGowan, A.; Macnaughton, E. Antibiotic Resistance. Medicine 2017, 45, 622–628. [Google Scholar] [CrossRef]
- Torres-Barceló, C. The Disparate Effects of Bacteriophages on Antibiotic-Resistant Bacteria. Emerg. Microbes Infect. 2018, 7, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mc Carlie, S.; Boucher, C.E.; Bragg, R.R. Molecular Basis of Bacterial Disinfectant Resistance. Drug Resist. Updates 2020, 48, 100672. [Google Scholar] [CrossRef]
- Tong, C.; Hu, H.; Chen, G.; Li, Z.; Li, A.; Zhang, J. Disinfectant Resistance in Bacteria: Mechanisms, Spread, and Resolution Strategies. Environ. Res. 2021, 195, 110897. [Google Scholar] [CrossRef]
- Bermudez, A.J.; Stewart-Brown, B. Disease Prevention and Diagnostic. In Diseases of Poultry; Saif, Y.M., Fadly, A.M., Glisson, J.R., McDougald, L.R., Nolan, L.K., Swayne, D.E., Eds.; Iowa State University Press: Ames, IA, USA, 2003; pp. 17–55. [Google Scholar]
- Jaenisch, F.R.F.; Kuchiishi, S.S.; Coldebella, A. Atividade Antibacteriana de Desinfetantes Para Uso Na Produção Orgânica de Aves. Ciência Rural. 2010, 40, 354–358. [Google Scholar] [CrossRef]
- Wilson, K. Preparation of Genomic DNA from Bacteria. Curr. Protoc. Mol. Biol. 2001, 56. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Siek, K.E.; Giddings, C.W.; Doetkott, C.; Johnson, T.J.; Nolan, L.K. Characterizing the APEC Pathotype. Vet. Res. 2005, 36, 241–256. [Google Scholar] [CrossRef] [PubMed]
- Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic Susceptibility Testing by a Standardized Single Disk Method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [CrossRef] [PubMed]
- CLSI VET01S; Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals. CLSI (Clinical and Laboratory Standards Institute): Malvern, PA, USA, 2023.
- CLSI Supplement M100; Performance Standards for Antimicrobial Susceptibility Testing. CLSI (Clinical and Laboratory Standards Institute): Malvern, PA, USA, 2023.
- Coil, D.; Jospin, G.; Darling, A.E. A5-Miseq: An Updated Pipeline to Assemble Microbial Genomes from Illumina MiSeq Data. Bioinformatics 2015, 31, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid Prokaryotic Genome Annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Subedi, M.; Luitel, H.; Devkota, B.; Bhattarai, R.K.; Phuyal, S.; Panthi, P.; Shrestha, A.; Chaudhary, D.K. Antibiotic Resistance Pattern and Virulence Genes Content in Avian Pathogenic Escherichia coli (APEC) from Broiler Chickens in Chitwan, Nepal. BMC Vet. Res. 2018, 14, 113. [Google Scholar] [CrossRef]
- Awad, A.M.; El-Shall, N.A.; Khalil, D.S.; El-Hack, M.E.A.; Swelum, A.A.; Mahmoud, A.H.; Ebaid, H.; Komany, A.; Sammour, R.H.; Sedeik, M.E. Incidence, Pathotyping, and Antibiotic Susceptibility of Avian Pathogenic Escherichia coli among Diseased Broiler Chicks. Pathogens 2020, 9, 114. [Google Scholar] [CrossRef] [PubMed]
- Wilczyński, J.; Stępień-Pyśniak, D.; Wystalska, D.; Wernicki, A. Molecular and Serological Characteristics of Avian Pathogenic Escherichia coli Isolated from Various Clinical Cases of Poultry Colibacillosis in Poland. Animals 2022, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
- Hoepers, P. Caracterização de Escherichia coli Isoladas de Perus. Dissertation Thesis, Universidade Federal de Uberlândia, Santa Monica, Brazil, 2016. [Google Scholar]
- De Carli, S.; Ikuta, N.; Lehmann, F.K.M.; Da Silveira, V.P.; De Melo Predebon, G.; Fonseca, A.S.K.; Lunge, V.R. Virulence Gene Content in Escherichia coli Isolates from Poultry Flocks with Clinical Signs of Colibacillosis in Brazil. Poult. Sci. 2015, 94, 2635–2640. [Google Scholar] [CrossRef] [PubMed]
- Ovi, F.; Zhang, L.; Nabors, H.; Jia, L.; Adhikari, P. A Compilation of Virulence-Associated Genes That Are Frequently Reported in Avian Pathogenic Escherichia coli (APEC) Compared to Other E. coli. J. Appl. Microbiol. 2023, 134, lxad014. [Google Scholar] [CrossRef] [PubMed]
- Mehat, J.W.; van Vliet, A.H.M.; La Ragione, R.M. The Avian Pathogenic Escherichia coli (APEC) Pathotype Is Comprised of Multiple Distinct, Independent Genotypes. Avian Pathol. 2021, 50, 402–416. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.M.; Barbieri, N.L.; de Oliveira, A.L.; Willis, D.; Nolan, L.K.; Logue, C.M. Characterizing Avian Pathogenic Escherichia coli (APEC) from Colibacillosis Cases, 2018. PeerJ 2021, 9, e11025. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.H.; Kikuchi, T.; Tokunaga, T.; Iyoda, S.; Iguchi, A. Diversity of the Tellurite Resistance Gene Operon in Escherichia coli. Front. Microbiol. 2021, 12, 681175. [Google Scholar] [CrossRef] [PubMed]
- Tofani, S.; Albini, E.; Blasi, F.; Cucco, L.; Lovito, C.; Maresca, C.; Pesciaroli, M.; Orsini, S.; Scoccia, E.; Pezzotti, G.; et al. Assessing the Load, Virulence and Antibiotic-Resistant Traits of ESBL/Ampc E. coli from Broilers Raised on Conventional, Antibiotic-Free, and Organic Farms. Antibiotics 2022, 11, 1484. [Google Scholar] [CrossRef] [PubMed]
- Jonare, L.; Östlund, E.; Söderlund, R.; Hansson, I.; Aspán, A.; Jansson, D.S. Core Genome Multilocus Sequence Typing (CgMLST) Confirms Systemic Spread of Avian Pathogenic Escherichia coli (APEC) in Broilers with Cellulitis. Vet. Microbiol. 2023, 282, 109755. [Google Scholar] [CrossRef]
- De Biase, D.; Tramonti, A.; Bossa, F.; Visca, P. The Response to Stationary-Phase Stress Conditions in Escherichia coli: Role and Regulation of the Glutamic Acid Decarboxylase System. Mol. Microbiol. 1999, 32, 1198–1211. [Google Scholar] [CrossRef]
- Hou, C.Y.; Ahn, C.; Cho, B.-K.; Kang, T.J. Selection of Escherichia coli Glutamate Decarboxylase Active at Neutral PH from a Focused Library. Biotechnol. Bioprocess. Eng. 2018, 23, 473–479. [Google Scholar] [CrossRef]
- de Oliveira, A.L.; Newman, D.M.; Sato, Y.; Noel, A.; Rauk, B.; Nolan, L.K.; Barbieri, N.L.; Logue, C.M. Characterization of Avian Pathogenic Escherichia coli (APEC) Associated with Turkey Cellulitis in Iowa. Front. Vet. Sci. 2020, 7, 380. [Google Scholar] [CrossRef]
- Khafagy, A.; Eid, S.; Mohammed, R. Phenotypic Characterization of Escherichia coli Isolated from Broiler Chicken. Suez Canal Vet. Med. J. SCVMJ 2019, 24, 1–12. [Google Scholar] [CrossRef]
- Casalino, G.; Dinardo, F.R.; D’Amico, F.; Bozzo, G.; Bove, A.; Camarda, A.; Lombardi, R.; Dimuccio, M.M.; Circella, E. Antimicrobial Efficacy of Cinnamon Essential Oil against Avian Pathogenic Escherichia coli from Poultry. Animals 2023, 13, 2639. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.B.; Yoon, M.Y.; Ha, J.S.; Seo, K.W.; Noh, E.B.; Son, S.H.; Lee, Y.J. Molecular Characterization of Avian Pathogenic Escherichia coli from Broiler Chickens with Colibacillosis. Poult. Sci. 2020, 99, 1088–1095. [Google Scholar] [CrossRef]
- Barros, M.R.; da Silveira, W.D.; de Araújo, J.M.; Costa, E.P.; Oliveira, A.A.D.F.; Santos, A.P.D.S.; Silva, V.A.S.; Mota, R.A. Resistência Antimicrobiana e Perfil Plasmidial de Escherichia coli Isolada de Frangos de Corte e Poedeiras Comerciais No Estado de Pernambuco. Pesqui. Veterinária Bras. 2012, 32, 405–410. [Google Scholar] [CrossRef]
- Barbieri, N.L.; Ald, O.; Tejkowski, T.M.; Pavanelo, D.B.; Rocha, D.A. Genotypes and Pathogenicity of Cellulitis Isolates Reveal Traits That Modulate APEC Virulence. PLoS ONE 2013, 8, 72322. [Google Scholar] [CrossRef]
- Cardoso, A.; Tessari, E.; Luciano, R. Resistência Antimicrobiana de Escherichia coli Isolada de Aves Comerciais. Biológico 2019, 81, 1–8. [Google Scholar] [CrossRef]
- Cyoia, P.S.; Koga, V.L.; Nishio, E.K.; Houle, S.; Dozois, C.M.; De Brito, K.C.T.; De Brito, B.G.; Nakazato, G.; Kobayashi, R.K.T. Distribution of ExPEC Virulence Factors, BlaCTX-M, FosA3, and Mcr-1 in Escherichia coli Isolated from Commercialized Chicken Carcasses. Front. Microbiol. 2019, 10, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Afayibo, D.J.A.; Zhu, H.; Zhang, B.; Yao, L.; Abdelgawad, H.A.; Tian, M.; Qi, J.; Liu, Y.; Wang, S. Isolation, Molecular Characterization, and Antibiotic Resistance of Avian Pathogenic Escherichia coli in Eastern China. Vet. Sci. 2022, 9, 319. [Google Scholar] [CrossRef]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and Characterisation of Antimicrobial Resistance Genes and Class 1 and 2 Integrons in Multiresistant Escherichia coli Isolated from Poultry Production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef] [PubMed]
- Thomrongsuwannakij, T.; Narinthorn, R.; Mahawan, T.; Blackall, P.J. Molecular and Phenotypic Characterization of Avian Pathogenic Escherichia coli Isolated from Commercial Broilers and Native Chickens. Poult. Sci. 2022, 101, 101527. [Google Scholar] [CrossRef] [PubMed]
- van Duijkeren, E.; Schwarz, C.; Bouchard, D.; Catry, B.; Pomba, C.; Baptiste, K.E.; Moreno, M.A.; Rantala, M.; Ružauskas, M.; Sanders, P.; et al. The Use of Aminoglycosides in Animals within the EU: Development of Resistance in Animals and Possible Impact on Human and Animal Health: A Review. J. Antimicrob. Chemother. 2019, 74, 2480–2496. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.; Mohsin, M.; Johnson, T.J.; Smith, E.A.; Johnson, A.; Umair, M.; Saleemi, M.K.; Sajjad-ur-Rahman. Genomic Landscape of Multi-Drug Resistant Avian Pathogenic Escherichia coli Recovered from Broilers. Vet. Microbiol. 2020, 247, 108766. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D. Multiresistant Enterobacteriaceae: New Threat of an Old Problem. Expert. Rev. Anti Infect. Ther. 2008, 6, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Krizman, M.; Avgustin, J.A.; Zdovc, I.; Golob, M.; Trkov, M.; Ciglenecki, U.J.; Biasizzo, M.; Kirbis, A. Antimicrobial Resistance and Molecular Characterization of Extended-Spectrum β-Lactamases and Other Escherichia coli Isolated from Food of Animal Origin and Human Intestinal Isolates. J. Food Prot. 2017, 80, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Han, J.; Dai, H.; Jia, P. Biocide-Tolerance and Antibiotic-Resistance in Community Environments and Risk of Direct Transfers to Humans: Unintended Consequences of Community-Wide Surface Disinfecting during COVID-19. Environ. Pollut. 2021, 283, 117074. [Google Scholar] [CrossRef] [PubMed]
- Rozman, U.; Pušnik, M.; Kmetec, S.; Duh, D.; Šostar Turk, S. Reduced Susceptibility and Increased Resistance of Bacteria against Disinfectants: A Systematic Review. Microorganisms 2021, 9, 2550. [Google Scholar] [CrossRef]
- Itzek, A.; Zheng, L.; Chen, Z.; Merritt, J.; Kreth, J. Hydrogen Peroxide-Dependent DNA Release and Transfer of Antibiotic Resistance Genes in Streptococcus gordonii. J. Bacteriol. 2011, 193, 6912–6922. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, Y.; Li, Y.; Zhang, K.; Liu, L.; Wang, H.; Tian, J.; Ying, H.; Shi, L.; Yu, T. Characterization and Horizontal Transfer of QacH -Associated Class 1 Integrons in Escherichia coli Isolated from Retail Meats. Int. J. Food Microbiol. 2017, 258, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics 2018, 7, 110. [Google Scholar] [CrossRef] [PubMed]
- Kümmerle, N.; Feucht, H.H.; Kaulfers, P.M. Plasmid-Mediated Formaldehyde Resistance in Escherichia coli: Characterization of Resistance Gene. Antimicrob. Agents Chemother. 1996, 40, 2276–2279. [Google Scholar] [CrossRef] [PubMed]
- Roedel, A.; Vincze, S.; Projahn, M.; Roesler, U.; Robé, C.; Hammerl, J.A.; Noll, M.; Al Dahouk, S.; Dieckmann, R. Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms 2021, 9, 651. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, W.A.; Marouf, S.A.; Erfan, A.M.; Nasef, S.A.; El Jakee, J.K. The Occurrence of Disinfectant and Antibiotic-Resistant Genes in Escherichia coli Isolated from Chickens in Egypt. Vet. World 2019, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Castañeda, C.D.; Miotto, J.; McDaniel, C.; Kiess, A.S.; Zhang, L. Effects of in Ovo Probiotic Administration on the Incidence of Avian Pathogenic Escherichia coli in Broilers and an Evaluation on Its Virulence and Antimicrobial Resistance Properties. Poult. Sci. 2021, 100, 100903. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Meng, J.; McDermott, P.F.; Wang, F.; Yang, Q.; Cao, G.; Hoffmann, M.; Zhao, S. Presence of Disinfectant Resistance Genes in Escherichia coli Isolated from Retail Meats in the USA. J. Antimicrob. Chemother. 2014, 69, 2644–2649. [Google Scholar] [CrossRef] [PubMed]
- Sabri, M.; Léveillé, S.; Dozois, C.M. A SitABCD Homologue from an Avian Pathogenic Escherichia coli Strain Mediates Transport of Iron and Manganese and Resistance to Hydrogen Peroxide. Microbiology 2006, 152, 745–758. [Google Scholar] [CrossRef]
- Lozica, L.; Villumsen, K.R.; Li, G.; Hu, X.; Maljković, M.M.; Gottstein, Ž. Genomic Analysis of Escherichia Coli Longitudinally Isolated from Broiler Breeder Flocks after the Application of an Autogenous Vaccine. Microorganisms 2022, 10, 377. [Google Scholar] [CrossRef]
Target Gene | Primer Sequence | Amplicon Size | Reference |
---|---|---|---|
iroN | 5′-AAGTCAAAGCAGGGGTTGCCCG-3′ 5′-GATCGCCGACATTAAGACGCAG-3′ | 667 bp | [30] |
ompT | 5′-TCATCCCGGAAGCCTCCCTCACTACTAT-3′ 5′-TAGCGTTTGCTGCACTGGCTTCTGATAC-3′ | 496 bp | [12] |
hlyF | 5′-GGCCACAGTCGTTTAGGGTGCTTACC-3′ 5′-GGCGGTTTAGGCATTCCGATACTCAG-3′ | 450 bp | [12] |
iss | 5′-CAGCAACCCGAACCACTTGATG-3′ 5′-AGCATTGCCAGAGCGGCAGAA-3′ | 323 bp | [30] |
iutA | 5′-GGCTGGACATCATGGGAACTGG-3′ 5′-CGTCGGGAACGGGTAGAATCG-3′ | 302 bp | [12] |
Brazilian State | Batch Number | Genes Detected |
---|---|---|
Santa Catarina | 1 | ompT , iutA, iss, iroN, hlyF |
4 | ompT , iutA, iss, iroN, hlyF | |
5 | ompT , iss, iroN, hlyF | |
6 | ompT , iutA, iss, iroN, hlyF | |
7 | iutA , iss, hlyF | |
Rio Grande do Sul | 18 | ompT , iutA, iss, iroN, hlyF |
19 | ompT , iutA, iss, iroN, hlyF | |
20 | ompT , iutA, iss, iroN, hlyF | |
23 | ompT , iutA, iss, hlyF | |
24 | ompT , iutA, iss, hlyF | |
26 | ompT , iutA, iss, iroN, hlyF | |
28 | ompT , iutA, iss, iroN, hlyF | |
29 | ompT , iroN, hlyF | |
30 | ompT , iutA, iss, iroN, hlyF | |
Paraná | 31 | ompT , iutA, iss, iroN, hlyF |
33 | ompT , iutA, iss, iroN, hlyF | |
35 | ompT , iutA, iss, iroN, hlyF | |
38 | ompT , iutA, iss, iroN, hlyF | |
39 | ompT , iutA, iss, iroN, hlyF | |
40 | iutA , iss, iroN, hly | |
41 | ompT , iutA, iss, iroN, hlyF | |
43 | ompT , iutA, iss, hlyF | |
45 | ompT , iutA, iss, iroN, hlyF | |
46 | ompT , iutA, iroN, hlyF | |
48 | ompT , iutA, iss, hlyF | |
49 | ompT , iutA, iss, iroN, hlyF | |
51 | ompT , iutA, iss, iroN, hlyF | |
52 | ompT , iutA, iss, iroN, hlyF | |
54 | ompT , iutA, iss, iroN, hlyF | |
55 | ompT , iutA, iss, iroN, hlyF | |
56 | ompT , iutA, iss, iroN, hlyF | |
57 | ompT , iutA, iss, iroN, hlyF | |
58 | ompT , iutA, iss, iroN, hlyF | |
59 | ompT , iutA, iss, iroN, hlyF | |
Minas Gerais | 61 | ompT , iutA, iss, iroN, hlyF |
65 | ompT , iutA, iss, iroN, hlyF | |
66 | ompT , iutA, iss, iroN, hlyF | |
67 | ompT , iutA, iss, iroN, hlyF | |
69 | ompT , iutA, iss, iroN | |
75 | ompT , iutA, iss, iroN, hlyF | |
76 | ompT , iutA, iss, iroN, hlyF | |
77 | hlyF | |
78 | hlyF | |
80 | ompT , iutA, iss, iroN, hlyF | |
São Paulo | 62 | ompT , iutA, iss, iroN, hlyF |
63 | ompT , iutA, iss, iroN, hlyF | |
64 | ompT , iutA, iss, iroN, hlyF | |
68 | ompT , iutA, iss, iroN | |
70 | ompT , iutA, iss, iroN, hlyF | |
71 | ompT , iutA, iss, iroN, hlyF | |
72 | ompT , iutA, iss, iroN, hlyF | |
74 | ompT , iutA, iss, iroN | |
79 | ompT | |
Ceará | 82 | ompT , hlyF |
83 | ompT , iutA, iss, iroN, hlyF | |
87 | ompT , iutA, iss | |
88 | ompT , iutA, iss, iroN, hlyF | |
89 | ompT , iutA, iss, hlyF | |
90 | ompT , iutA, iss, hlyF | |
93 | ompT , iutA, iss, hlyF | |
95 | - | |
98 | ompT , iss, iroN, hlyF | |
99 | ompT , iutA, iss, iroN, hlyF |
Gene, Operon, or Region | Description | Prevalence (%) |
---|---|---|
Adhesins | ||
eae | Intimin | 1.58 |
papA_F11 | Major pilin subunit F11 | 3.17 |
papA_F19 | Major pilin subunit F19 | 1.58 |
papA_F20 | Major pilin subunit F20 | 11.11 |
papC | Pilus associated with pyelonephritis | 23.80 |
hra | Heat-resistant agglutinin | 69.84 |
iha | Adherence protein | 12.69 |
lpfA | Long polar fimbriae | 60.31 |
tsh | Temperature-sensitive hemagglutinin | 34.92 |
Invasins | ||
ibeA | Invasion of brain endothelium | 1.58 |
Serum resistance factors | ||
cvaC | Structural genes of colicin V operon (Microcin ColV) | 30.15 |
kpsE | Capsule polysaccharide export inner-membrane protein | 11.11 |
kpsMII | ABC-type polysaccharide/polyol phosphate export system permease; Group 3 capsule | 4.76 |
kpsMIII_K98 | Polysialic acid transport protein; Group 2 capsule | 1.58 |
kpsMII_K1 | Polysialic acid transport protein; Group 2 capsule | 1.58 |
kpsMII_K5 | Polysialic acid transport protein; Group 2 capsule | 3.17 |
neuC | Polysialic acid capsule biosynthesis protein | 3.17 |
traT | Outer membrane protein complement resistance | 82.53 |
Iron acquisition systems | ||
chuA | Heme receptor gene (E. coli haem utilization) | 41.26 |
fyuA | Siderophore receptor | 31.74 |
ireA | Siderophore receptor | 20.63 |
irp2 | Iron repressible protein (yersiniabactin synthesis) | 31.74 |
iucC | Aerobactin synthetase | 53.96 |
sitA | Iron transport protein | 61.90 |
Toxins | ||
astA | EAST-1 heat-stable toxin | 39.68 |
cma | Structural gene for CoIM activity | 23.80 |
hlyE | Avian E. coli haemolysin | 77.77 |
usp | Uropathogenic-specific protein (bacteriocin) | 3.17 |
vat | Vacuolating autotransporter toxin | 15.87 |
Other virulence factors | ||
air | Enteroaggregative immunoglobulin repeat protein | 12.69 |
pic | Serin protease autotransporter | 17.46 |
eilA | Salmonella HilA homolog | 12.69 |
espA | Type III secretion system | 1.58 |
espB | Secreted protein B | 1.58 |
espF | Type III secretion system | 1.58 |
espJ | Prophage-encoded type III secretion system effector | 1.58 |
etpD | Type II secretion protein | 1.58 |
etsC | Putative type I secretion outer membrane protein | 73.01 |
capU | Hexosyltransferase homolog | 1.58 |
cba | Colicin B | 3.17 |
cea | Colicin E1 | 17.46 |
celb | Endonuclease colicin E2 | 4.76 |
cia | Colicin ia | 30.15 |
cib | Colicin ib | 17.46 |
cif | Type III secreted effector | 1.58 |
gad | Glutamate decarboxylase | 100 |
mchB | Microcin H47 part of colicin H | 1.58 |
mchC | MchC protein | 1.58 |
mchF | ABC transporter protein MchF | 23.80 |
mcmA | Microcin M part of colicin H | 1.58 |
nleA | Non-LEE encoded effector A | 1.58 |
nleB | Non-LEE encoded effector B | 1.58 |
tccP | Tir-cytoskeleton coupling protein | 1.58 |
terC | Tellurium ion resistance protein | 100 |
tir | Translocated intimin receptor protein | 1.58 |
yfcV | Fimbrial protein | 6.34 |
Antimicrobial Class | Antimicrobial Resistance Gene | Prevalence (%) |
---|---|---|
Aminoglycosides | aac(3)-IId | 4.76 |
aac(3)-IVa | 3.17 | |
aac(3)-VIa | 36.5 | |
aadA12 | 1.58 | |
aadA2 | 20.63 | |
ant(2″)-Ia | 7.93 | |
ant(3″)-Ia | 50.79 | |
aph(3 ′ )-Ia | 20.63 | |
aph(3″)-Ib | 31.74 | |
aph(4)-Ia | 3.17 | |
aph(6)-Id | 31.74 | |
Beta-lactams | blaCMY-2 | 9.52 |
blaCTX-M-1 | 3.17 | |
blaCTX-M-15 | 1.58 | |
blaCTX-M-164 | 1.58 | |
blaCTX-M-2 | 17.46 | |
blaCTX-M-55 | 9.52 | |
blaCTX-M-8 | 12.69 | |
blaSHV-12 | 1.58 | |
blaTEM-106 | 1.58 | |
blaTEM-141 | 6.34 | |
blaTEM-1A | 7.93 | |
blaTEM-1B | 14.28 | |
Trimethoprim | dfrA1 | 7.93 |
dfrA12 | 4.76 | |
dfrA14 | 4.76 | |
dfrA15 | 4.76 | |
dfrA7 | 3.17 | |
dfrA8 | 3.17 | |
Phenicoles | catA1 | 3.17 |
cmlA1 | 9.52 | |
floR | 19.04 | |
Lincosamides | lnu(A) | 4.76 |
lnu(F) | 7.93 | |
Colistin | mcr-1.5 | 1.58 |
mcr-9 | 1.58 | |
Macrolides | mph(A) | 1.58 |
mph(B) | 1.58 | |
Quinolones | qnrA1 | 1.58 |
qnrB19 | 11.11 | |
qnrS1 | 6.34 | |
Sulfonamides | sul1 | 52.38 |
sul2 | 60.31 | |
sul3 | 7.93 | |
Tetracyclines | tet(A) | 31.74 |
tet(B) | 20.63 | |
tet(D) | 1.58 | |
Others | fosA | 6.25 |
fosA3 | 1.5625 | |
qacE | 50.79 | |
sitABCD | 57.14 | |
formA (Genbank Acc, No, X73835) | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilati, G.V.T.; Salles, G.B.C.; Savi, B.P.; Dahmer, M.; Muniz, E.C.; Filho, V.B.; Elois, M.A.; Souza, D.S.M.; Fongaro, G. Isolation and Characterization of Escherichia coli from Brazilian Broilers. Microorganisms 2024, 12, 1463. https://doi.org/10.3390/microorganisms12071463
Pilati GVT, Salles GBC, Savi BP, Dahmer M, Muniz EC, Filho VB, Elois MA, Souza DSM, Fongaro G. Isolation and Characterization of Escherichia coli from Brazilian Broilers. Microorganisms. 2024; 12(7):1463. https://doi.org/10.3390/microorganisms12071463
Chicago/Turabian StylePilati, Giulia Von Tönnemann, Gleidson Biasi Carvalho Salles, Beatriz Pereira Savi, Mariane Dahmer, Eduardo Correa Muniz, Vilmar Benetti Filho, Mariana Alves Elois, Doris Sobral Marques Souza, and Gislaine Fongaro. 2024. "Isolation and Characterization of Escherichia coli from Brazilian Broilers" Microorganisms 12, no. 7: 1463. https://doi.org/10.3390/microorganisms12071463
APA StylePilati, G. V. T., Salles, G. B. C., Savi, B. P., Dahmer, M., Muniz, E. C., Filho, V. B., Elois, M. A., Souza, D. S. M., & Fongaro, G. (2024). Isolation and Characterization of Escherichia coli from Brazilian Broilers. Microorganisms, 12(7), 1463. https://doi.org/10.3390/microorganisms12071463