Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Oral Sampling
2.2. Candida Identification
2.3. Antifungal Susceptibility Test
2.4. Determination of Polyphenols by HPLC
2.5. Statistical Analysis
3. Results
3.1. Candida Isolates
3.2. Analysis of Biophenols
3.3. Susceptibility of Candida Isolates
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akpan, A.; Morgan, R. Oral candidiasis. Postgrad. Med. J. 2002, 78, 455–459. [Google Scholar] [PubMed]
- Singh, A.; Verma, R.; Murari, A.; Agrawal, A. Oral candidiasis: An overview. J. Oral. Maxillofac. Pathol. 2014, 18, 81. [Google Scholar]
- Daniluk, T.; Tokajuk, G.; Stokowska, W.; Fiedoruk, K.; Sciepuk, M.; Zaremba, M.L.; Rozkiewicz, D.; Cylwik-Rokicka, D.; Kedra, B.A.; Anielska, I.; et al. Occurrence rate of oral Candida albicans in denture wearer patients. Adv. Med. Sci. 2006, 51, 77–80. [Google Scholar]
- Marcos-Arias, C.; Eraso, E.; Madariaga, L.; Quindós, G. In vitro activities of natural products against oral Candida isolates from denture wearers. BMC Complement. Altern. Med. 2011, 11, 119. [Google Scholar]
- Ai, R.; Wei, J.; Ma, D. A meta-analysis of randomized trials assessing the effects of probiotic preparations on oral candidiasis in the elderly. Arch. Oral. Biol. 2017, 83, 187–192. [Google Scholar]
- Wiederhold, N.P. The antifungal arsenal: Alternative drugs and future targets. Int. J. Antimicrob. Agents 2018, 51, 333–339. [Google Scholar]
- Wall, G.; Lopez-Ribot, J.L. Current antimycotics, new prospects, and future approaches to antifungal therapy. Antibiotics 2020, 9, 445. [Google Scholar] [CrossRef] [PubMed]
- Sanglard, D.; Odds, F.C. Resistance of Candida species to antifungal agents: Molecular mechanisms and clinical consequences. Lancet Infect. Dis. 2002, 2, 73–85. [Google Scholar]
- De Oliveira Santos, G.C.; Vasconcelos, C.C.; Lopes, A.J. Candida infections and therapeutic strategies: Mechanisms of action for traditional and alternative agents. Front. Microbiol. 2018, 9, 1351. [Google Scholar]
- Sabry, O.M. Beneficial health effects of olive leaves extracts. J. Nat. Sci. Res. 2014, 4, 1–9. [Google Scholar]
- Bianco, A.; Uccella, N. Biophenolic components of olives. Food Res. Int. 2000, 33, 475–485. [Google Scholar]
- Tasioula-Margari, M.; Okogeri, O. Isolation and characterization of virgin olive oil phenolic compounds by HPLC/UV and GC-MS. J. Food Sci. 2001, 66, 530–534. [Google Scholar]
- Alagna, F.; Mariotti, R.; Panara, F. Olive phenolic compounds: Metabolic and transcriptional profiling during fruit development. BMC Plant. Biol. 2012, 12, 1–19. [Google Scholar]
- Sudjana, A.N.; D’Orazio, C.; Ryan, V.; Rasool, N.; Ng, J.; Islam, N.; Riley, T.V.; Hammer, K.A. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int. J. Antimicrob. Agents 2009, 33, 461–463. [Google Scholar] [PubMed]
- Pereira, A.P.; Ferreira, I.C.; Marcelino, F.; Valentão, P.; Andrade, P.B.; Seabra, R.; Estevinho, L.; Bento, A.; Pereira, J.A. Phenolic compounds and antimicrobial activity of olive (Olea europaea L. Cv. Cobrançosa) leaves. Molecules 2007, 12, 1153–1162. [Google Scholar]
- Zorić, N.; Kopjar, N.; Kraljić, K.; Oršolić, N.; Tomić, S.; Kosalec, I. Olive leaf extract activity against Candida albicans and C. dubliniensis–the in vitro viability study. Acta Pharm. 2016, 66, 411–431. [Google Scholar]
- CLSI. Method for Antifungal Disc Diffusion Susceptibility Testing of Yeats, 3rd ed.; Supplement M44; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Pasković, I.; Lukić, I.; Žurga, P.; Germek, V.M.; Brkljača, M.; Koprivnjak, O.; Major, N.; Grozić, K.; Franić, M.; Ban, D.; et al. Temporal variation of phenolic and mineral composition in olive leaves is cultivar dependent. Plants 2020, 9, 1099. [Google Scholar] [CrossRef]
- Polić Pasković, M.; Vidović, N.; Lukić, I.; Žurga, P.; Majetić Germek, V.; Goreta Ban, S.; Kos, T.; Čoga, L.; Tomljanović, T.; Simonić-Kocijan, S.; et al. Phenolic Potential of Olive Leaves from Different Istrian Cultivars in Croatia. Horticulturae 2023, 9, 594. [Google Scholar] [CrossRef]
- Murray, P.R.; Rosenthal, K.S.; Pfaller, M.A. Medical Microbiology E-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020; pp. 571–675. [Google Scholar]
- Patel, M. Oral Cavity and Candida albicans: Colonisation to the Development of Infection. Pathogens 2022, 11, 335. [Google Scholar] [CrossRef]
- Kuhn, D.M.; Ghannoum, M.A. Candida biofilms: Antifungal resistance and emerging therapeutic options. Curr. Opin. Investig. Drugs 2004, 5, 186–197. [Google Scholar]
- Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, I.R.; Svidzinski, T.I.; Kioshima, E.S. Early state research on antifungal natural products. Molecules 2014, 19, 2925–2956. [Google Scholar] [CrossRef] [PubMed]
- Omar, S.H. Oleuropein in olive and its pharmacological effects. Sci. Pharm. 2010, 78, 133–154. [Google Scholar] [CrossRef]
- Bisignano, G.; Tomaino, A.; Cascio, R.L.; Crisafi, G.; Uccella, N.; Saija, A. On the in-vitro antimicrobial activity of oleuropein and hydroxytyrosol. J. Pharm. Pharmacol. 1999, 51, 971–974. [Google Scholar]
- Borjan, D.; Leitgeb, M.; Knez, Ž.; Hrnčič, M.K. Microbiological and Antioxidant Activity of Phenolic Compounds in Olive Leaf Extract. Molecules 2020, 25, 5946. [Google Scholar] [CrossRef]
- Zorić, N.; Kopjar, N.; Bobnjarić, I.; Horvat, I.; Tomić, S.; Kosalec, I. Antifungal activity of oleuropein against Candida albicans—The in vitro study. Molecules 2016, 21, 1631. [Google Scholar] [CrossRef]
- Markin, D.; Duek, L.; Berdicevsky, I. In vitro antimicrobial activity of olive leaves. Mycoses 2003, 46, 132–136. [Google Scholar]
- Ahmed, K.M. The effect of olive leaf extract in decreasing the expression of two pro-inflammatory cytokines in patients receiving chemotherapy for cancer. A randomized clinical trial. Saudi Dent. J. 2013, 25, 141–147. [Google Scholar] [PubMed]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [PubMed]
- Abd-Elmonsef, M.M. Anti-Candida Activity of Pomegranate Peel Extract in Comparison with Curcumin Extract and their Synergism with Fluconazole and Nystatin. Egypt. J. Med. Microbiol. 2021, 30, 81–87. [Google Scholar]
- Avijgan, M.; Mahboubi, M.; Nasab, M.M.; Nia, E.A.; Yousefi, H. Synergistic activity between Echinophora platyloba DC ethanolic extract and azole drugs against clinical isolates of Candida albicans from women suffering chronic recurrent vaginitis. J. Mycol. Med. 2014, 24, 112–116. [Google Scholar]
- Pfaller, M.A.; Boyken, L.; Messer, S.A.; Tendolkar, S.; Hollis, R.J.; Diekema, D.J. Comparison of results of voriconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program. J. Clin. Microbiol. 2005, 43, 5208–5213. [Google Scholar]
- Espinel-Ingroff, A.; Arthington-Skaggs, B.; Iqbal, N.; Ellis, D.; Pfaller, M.A.; Messer, S.; Rinaldi, M.; Fothergill, A.; Gibbs, D.L.; Wang, A. Multicenter evaluation of a new disk agar diffusion method for susceptibility testing of filamentous fungi with voriconazole, posaconazole, itraconazole, amphotericin B, and caspofungin. J. Clin. Microbiol. 2007, 45, 1811–1820. [Google Scholar]
- Matar, M.J.; Ostrosky-Zeichner, L.; Paetznick, V.L.; Rodriguez, J.R.; Chen, E.; Rex, J.H. Correlation between E-test, disk diffusion, and microdilution methods for antifungal susceptibility testing of fluconazole and voriconazole. Antimicrob. Agents Chemother. 2003, 47, 1647–1651. [Google Scholar]
- Barry, A.L.; Pfaller, M.A.; Rennie, R.P.; Fuchs, P.C.; Brown, S.D. Precision and accuracy of fluconazole susceptibility testing by broth microdilution, Etest, and disk diffusion methods. Antimicrob. Agents Chemother. 2002, 46, 1781–1784. [Google Scholar]
- López-Oviedo, E.; Aller, A.I.; Martín, C.; Castro, C.; Ramirez, M.; Pemán, J.M.; Cantón, E.; Almeida, C.; Martín-Mazuelos, E. Evaluation of disk diffusion method for determining posaconazole susceptibility of filamentous fungi: Comparison with CLSI broth microdilution method. Antimicrob. Agents Chemother. 2006, 50, 1108–1111. [Google Scholar]
- Moreno, S.; Scheyer, T.; Romano, C.S.; Vojnov, A.A. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radic. Res. 2006, 40, 223–231. [Google Scholar]
- Mann, C.M.; Markham, J.L. A new method for determining the minimum inhibitory concentration of essential oils. J. Appl. Microbiol. 1998, 84, 538–544. [Google Scholar] [PubMed]
- Carvalhinho, S.; Costa, A.M.; Coelho, A.C.; Martins, E.; Sampaio, A. Susceptibilities of Candida albicans mouth isolates to antifungal agents, essentials oils and mouth rinses. Mycopathologia 2012, 174, 69–76. [Google Scholar] [PubMed]
- Kuriyama, T.; Williams, D.W.; Bagg, J.; Coulter, W.A.; Ready, D.; Lewis, M.A.O. In vitro susceptibility of oral Candida to seven antifungal agents. Oral Microbiol. Immunol. 2005, 20, 349–353. [Google Scholar] [PubMed]
- Manfredi, M.; McCullough, M.J.; Polonelli, L.; Conti, S.; Al-Karaawi, Z.M.; Vescovi, P.; Porter, S.R. In vitro antifungal susceptibility to six antifungal agents of 229 Candida isolates from patients with diabetes mellitus. Oral Microbiol. Immunol. 2006, 21, 177–182. [Google Scholar]
- Nenoff, P.; Krüger, C.; Neumeister, C.; Schwantes, U.; Koch, D. In vitro susceptibility testing of yeasts to nystatin–low minimum inhibitory concentrations suggest no indication of in vitro resistance of Candida albicans, Candida species or non-Candida yeast species to nystatin. Clin. Med. Invest. 2016, 1, 71–76. [Google Scholar]
Phenolic Compounds (mg/100 g of Dry Extract) | |
---|---|
Oleuropein | 17,415.15 |
Oleacein | 1060.1 |
Verbascoside | 668.25 |
Rutin | 227.7 |
Luteolin-7-O-glucoside | 2304.9 |
Apigenin-7-O-glucoside | 489.1 |
Luteolin-4-O-glucoside | 116.55 |
Median (Interquartile Range) Inhibition Zone (mm) | Diff. (95% CI) | p * | ||
---|---|---|---|---|
DMSO | 60 µg/µL | |||
C. albicans (n = 36) | 6 (6–6) | 9.5 (6.13–10.88) | 3.5 (1.5–3.5) | <0.001 |
C. krusei (n = 16) | 6 (6–6) | 7.5 (6–10.38) | 1.5 (0–4) | 0.001 |
C. glabrata (n = 5) | 6 (6–6.25) | 7.5 (6–11) | 1.5 (0–5.5) | 0.13 |
C.tropicalis (n = 3) | 6 (6–6) | 10.5 (6.5–11) | 4.5 | 0.04 |
DMSO | 120 µg/µL | |||
C. albicans (n = 36) | 6 (6–6) | 10 (8–11) | 4 (2.5–4.5) | <0.001 |
C. krusei (n = 16) | 6 (6–6) | 8.25 (7.5–11.25) | 2 (1.5–4.5) | <0.001 |
C. glabrata (n = 5) | 6 (6–6.25) | 9 (7.25–10.25) | 3 (1–4.5) | 0.007 |
C. tropicalis (n = 3) | 6 (6–6) | 8.5 (8–11) | 2.5 | 0.04 |
DMSO | 240 µg/µL | |||
C. albicans (n = 36) | 6 (6–6) | 10 (8.5–12) | 4 (3–5.5) | <0.001 |
C. krusei (n = 16) | 6 (6–6) | 9.5 (8.5–11.38) | 3.5 (2.5–5) | <0.001 |
C. glabrata (n = 5) | 6 (6–6.25) | 9.5 (8–11) | 3.5 (2–5) | 0.01 |
C. tropicalis (n = 3) | 6 (6–6) | 9.5 (9–10) | 3.5 | 0.04 |
DMSO | 333 µg/µL | |||
C. albicans (n = 36) | 6 (6–6) | 10.25 (9.5–11.5) | 4 (4–4.5) | <0.001 |
C. krusei (n = 16) | 6 (6–6) | 10.25 (9.5–11.5) | 4 (3.5–5.5) | <0.001 |
C. glabrata (n = 5) | 6 (6–6.25) | 11 (10–12.25) | 5 (4–7) | 0.007 |
C. tropicalis (n = 3) | 6 (6–6) | 10 (8.5–10.5) | 4.0 | 0.04 |
Median (Interquartile Range) Inhibition Zone (mm) | p * | ||||||||
---|---|---|---|---|---|---|---|---|---|
60 µg/µL | p * | 120 µg/µL | p * | 240 µg/µL | p * | 333 µg/µL | p * | ||
C. albicans (n = 36) | 9.5 (6.13–10.88) | 0.79 | 10 (8–11) | 0.68 | 10 (8.5–12) | 0.82 | 10.25 (9.5–11.5) | 0.79 | 0.006 † |
C. krusei (n = 16) | 7.5 (6–10.38) | 8.25 (7.5–11.25) | 9.5 (8.5–11.38) | 10.25 (9.5–11.5) | 0.02 † | ||||
C. glabrata (n = 5) | 7.5 (6–11) | 9 (7.25–10.25) | 9.5 (8–11) | 11 (10–12.25) | 0.16 | ||||
C. tropicalis (n = 3) | 10.5 (6.5–11) | 8.5 (8–11) | 9.5 (9–10) | 10 (8.5–10.5) | 0.94 |
Median (Interquartile Range) Inhibition Zone (mm) | Difference (95% CI) | p § | ||||
---|---|---|---|---|---|---|
Miconazole | p * | Miconazole + OLE 333 µg/µL | p * | |||
C. albicans (n = 36) | 28.5 (26.5–29.5) | 0.17 | 28.5 (23.63–30.75) | 0.51 | 0 (−2 do 1.5) | 0.94 |
C. krusei (n = 16) | 28.5 (27.5–29) | 27.75 (26.13 –32.13) | 0 (−2 do 3.5) | 0.97 | ||
C. glabrata (n = 5) | 30 (29–33) | 29.5 (25.25–30.75) | −1.5 (−7 do −1.5) | 0.29 | ||
C. tropicalis (n = 3) | 28.5 (20–29) | 24 (20–27.5) | −1.5 | 0.38 |
Median (Interquartile Range) Inhibition Zone (mm) | Difference (95% CI) | p § | ||||
---|---|---|---|---|---|---|
Nystatin | p * | Nystatin + 333 µg/µL | p * | |||
C. albicans (n = 36) | 27.5 (26.5–28) | 0.01 † | 26.25 (25.5–28.25) | 0.51 | −1 (−1.5 do 0.5) | 0.14 |
C. krusei (n = 16) | 27.5 (27–28) | 27.5 (25.5–31.63) | 0 (−1.5 do 3) | 0.86 | ||
C. glabrata (n = 5) | 28 (27–31) | 31 (28–35.5) | 2.5 (−2.5 do 8) | 0.21 | ||
C. tropicalis (n = 3) | 25.5 (25.5–26.5) | 24.5 (19–29.5) | −1 | 0.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinkela Devčić, M.; Pasković, I.; Kovač, Z.; Knežević, P.T.; Morelato, L.; Glažar, I.; Simonić-Kocijan, S. Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates. Microorganisms 2024, 12, 1726. https://doi.org/10.3390/microorganisms12081726
Kinkela Devčić M, Pasković I, Kovač Z, Knežević PT, Morelato L, Glažar I, Simonić-Kocijan S. Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates. Microorganisms. 2024; 12(8):1726. https://doi.org/10.3390/microorganisms12081726
Chicago/Turabian StyleKinkela Devčić, Maja, Igor Pasković, Zoran Kovač, Petra Tariba Knežević, Luka Morelato, Irena Glažar, and Sunčana Simonić-Kocijan. 2024. "Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates" Microorganisms 12, no. 8: 1726. https://doi.org/10.3390/microorganisms12081726
APA StyleKinkela Devčić, M., Pasković, I., Kovač, Z., Knežević, P. T., Morelato, L., Glažar, I., & Simonić-Kocijan, S. (2024). Antimicrobial Activity of Olive Leaf Extract to Oral Candida Isolates. Microorganisms, 12(8), 1726. https://doi.org/10.3390/microorganisms12081726