Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country—Promicrobioma Project
Abstract
:1. Introduction
2. Methods
2.1. Human Fecal Microbiota for Transplant
2.1.1. Donor Selection and Testing
2.1.2. Feces Processing
2.1.3. Non-Bacterial Fecal Residue Analysis
2.1.4. Bacterial Viability and Shelf-Life
Next-Generation Sequencing
2.2. Pilot Clinical Study
2.2.1. Study Design
2.2.2. Setting
2.2.3. Participants
2.2.4. Intervention
2.2.5. Variables
2.2.6. Data Sources and Study Size
2.3. Cost-Effectiveness Evaluation
2.3.1. Study Design
2.3.2. Setting
2.3.3. Data Source
2.3.4. Variables
2.4. Statistical Analysis
3. Results
3.1. Fecal Microbiota Validation for Transplant
3.2. Pilot Clinical Study
3.3. Cost–Benefit Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Katz, K.C.; Golding, G.R.; Choi, K.B.; Pelude, L.; Amaratunga, K.R.; Taljaard, M.; Alexandre, S.; Collet, J.C.; Davis, I.; Du, T.; et al. The evolving epidemiology of Clostridium difficile infection in Canadian hospitals during a postepidemic period (2009–2015). Can. Med. Assoc. J. 2018, 190, E758–E765. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Knight, D.R.; Riley, T.V. Clostridium difficile and One Health. Clin. Microbiol. Infect. 2020, 26, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Siraw, B.B.; Reingold, A.L.; Meyahnwi, D. Association between epidemiologic case definition categories and adverse clinical outcome in patients with Clostridiodes difficile infection in San Francisco County, California: A five-year retrospective cohort study. BMC Infect. Dis. 2023, 23, 68. [Google Scholar] [CrossRef]
- Roldan, G.A.; Cui, A.X.; Pollock, N.R. Assessing the Burden of Clostridium difficile Infection in Low- and Middle-Income Countries. J. Clin. Microbiol. 2018, 56, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Leblanc, S.; Blein, C.; Andremont, A.; Bandinelli, P.A.; Galvain, T. Burden of Clostridium difficile Infections in French Hospitals in 2014 from the National Health Insurance Perspective. Infect. Control Hosp. Epidemiol. 2017, 38, 906–911. [Google Scholar] [CrossRef]
- Fukuda, H.; Yano, T.; Shimono, N. Inpatient Expenditures Attributable to Hospital-Onset Clostridium difficile Infection: A Nationwide Case-Control Study in Japan. Pharmacoeconomics 2018, 36, 1367–1376. [Google Scholar] [CrossRef]
- Leffler, D.A.; Lamont, J.T. Clostridium difficile infection. N. Engl. J. Med. 2015, 372, 1539–1548. [Google Scholar] [CrossRef]
- Berry, P.; Khanna, S. Recurrent Clostridioides difficile Infection: Current Clinical Management and Microbiome-Based Therapies. BioDrugs 2023, 37, 757–773. [Google Scholar] [CrossRef]
- Cammarota, G.; Ianiro, G.; Tilg, H.; Rajilic-Stojanovic, M.; Kump, P.; Satokari, R.; Sokol, H.; Arkkila, P.; Pintus, C.; Hart, A.; et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut 2017, 66, 569–580. [Google Scholar] [CrossRef]
- Kelly, C.R.; Khoruts, A.; Staley, C.; Sadowsky, M.J.; Abd, M.; Alani, M.; Bakow, B.; Curran, P.; McKenney, J.; Tisch, A.; et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Ann. Intern. Med. 2016, 165, 609–616. [Google Scholar] [CrossRef]
- Terveer, E.M.; van Beurden, Y.H.; Goorhuis, A.; Seegers, J.; Bauer, M.P.; van Nood, E.; Dijkgraaf, M.G.W.; Mulder, C.J.J.; Vandenbroucke-Grauls, C.; Verspaget, H.W.; et al. How to: Establish and run a stool bank. Clin. Microbiol. Infect. 2017, 23, 924–930. [Google Scholar] [CrossRef]
- Cammarota, G.; Ianiro, G.; Kelly, C.R.; Mullish, B.H.; Allegretti, J.R.; Kassam, Z.; Putignani, L.; Fischer, M.; Keller, J.J.; Costello, S.P.; et al. International consensus conference on stool banking for faecal microbiota transplantation in clinical practice. Gut 2019, 68, 2111–2121. [Google Scholar] [CrossRef] [PubMed]
- Kraft, L.; Ribeiro, V.S.T.; Petroski, L.P.; Herai, R.H.; Peronni, K.C.; Figueiredo, D.L.A.; Motta, F.A.; Tuon, F.F. Saprochaete clavata invasive infection: Characterization, antifungal susceptibility, and biofilm evaluation of a rare yeast isolated in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2023, 65, e12. [Google Scholar] [CrossRef] [PubMed]
- Cieslinski, J.; Ribeiro, V.S.T.; Kraft, L.; Suss, P.H.; Rosa, E.; Morello, L.G.; Pillonetto, M.; Tuon, F.F. Direct detection of microorganisms in sonicated orthopedic devices after in vitro biofilm production and different processing conditions. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1113–1120. [Google Scholar] [CrossRef]
- Pedroni, M.A.; Ribeiro, V.S.T.; Cieslinski, J.; Lopes, A.P.A.; Kraft, L.; Suss, P.H.; Tuon, F.F. Different concentrations of vancomycin with gentamicin loaded PMMA to inhibit biofilm formation of Staphylococcus aureus and their implications. J. Orthop. Sci. 2024, 29, 334–340. [Google Scholar] [CrossRef]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 2019, 37, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Bozan, G.; Perez-Brocal, V.; Aslan, K.; Kiral, E.; Sevketoglu, E.; Uysal Yazici, M.; Azapagasi, E.; Kendirli, T.; Emeksiz, S.; Dursun, O.; et al. Analysis of Intestinal and Nasopharyngeal Microbiota of Children with Meningococcemia in Pediatric Intensive Care Unit: INMACS-PICU Study. Diagnostics 2023, 13, 1984. [Google Scholar] [CrossRef]
- Louie, T.J.; Miller, M.A.; Mullane, K.M.; Weiss, K.; Lentnek, A.; Golan, Y.; Gorbach, S.; Sears, P.; Shue, Y.K.; The OPT-80-003 Clinical Study Group. Fidaxomicin versus vancomycin for Clostridium difficile infection. N. Engl. J. Med. 2011, 364, 422–431. [Google Scholar] [CrossRef]
- Bagdasarian, N.; Rao, K.; Malani, P.N. Diagnosis and treatment of Clostridium difficile in adults: A systematic review. JAMA 2015, 313, 398–408. [Google Scholar] [CrossRef]
- Hirsch, B.E.; Saraiya, N.; Poeth, K.; Schwartz, R.M.; Epstein, M.E.; Honig, G. Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection. BMC Infect. Dis. 2015, 15, 191. [Google Scholar] [CrossRef]
- Reigadas, E.; Bouza, E.; Olmedo, M.; Vazquez-Cuesta, S.; Villar-Gomara, L.; Alcala, L.; Marin, M.; Rodriguez-Fernandez, S.; Valerio, M.; Munoz, P. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: Experience with lyophilized oral capsules. J. Hosp. Infect. 2020, 105, 319–324. [Google Scholar] [CrossRef]
- Pomares Bascunana, R.A.; Veses, V.; Sheth, C.C. Effectiveness of fecal microbiota transplant for the treatment of Clostridioides difficile diarrhea: A systematic review and meta-analysis. Lett. Appl. Microbiol. 2021, 73, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Furuya-Kanamori, L.; Doi, S.A.; Paterson, D.L.; Helms, S.K.; Yakob, L.; McKenzie, S.J.; Garborg, K.; Emanuelsson, F.; Stollman, N.; Kronman, M.P.; et al. Upper Versus Lower Gastrointestinal Delivery for Transplantation of Fecal Microbiota in Recurrent or Refractory Clostridium difficile Infection: A Collaborative Analysis of Individual Patient Data from 14 Studies. J. Clin. Gastroenterol. 2017, 51, 145–150. [Google Scholar] [CrossRef]
- Khan, M.Y.; Dirweesh, A.; Khurshid, T.; Siddiqui, W.J. Comparing fecal microbiota transplantation to standard-of-care treatment for recurrent Clostridium difficile infection: A systematic review and meta-analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Moayyedi, P.; Yuan, Y.; Baharith, H.; Ford, A.C. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: A systematic review of randomised controlled trials. Med. J. Aust. 2017, 207, 166–172. [Google Scholar] [CrossRef]
- Rossen, N.G.; MacDonald, J.K.; de Vries, E.M.; D’Haens, G.R.; de Vos, W.M.; Zoetendal, E.G.; Ponsioen, C.Y. Fecal microbiota transplantation as novel therapy in gastroenterology: A systematic review. World J. Gastroenterol. 2015, 21, 5359–5371. [Google Scholar] [CrossRef]
- Quraishi, M.N.; Widlak, M.; Bhala, N.; Moore, D.; Price, M.; Sharma, N.; Iqbal, T.H. Systematic review with meta-analysis: The efficacy of faecal microbiota transplantation for the treatment of recurrent and refractory Clostridium difficile infection. Aliment. Pharmacol. Ther. 2017, 46, 479–493. [Google Scholar] [CrossRef]
- Rokkas, T.; Gisbert, J.P.; Gasbarrini, A.; Hold, G.L.; Tilg, H.; Malfertheiner, P.; Megraud, F.; O’Morain, C. A network meta-analysis of randomized controlled trials exploring the role of fecal microbiota transplantation in recurrent Clostridium difficile infection. United Eur. Gastroenterol. J. 2019, 7, 1051–1063. [Google Scholar] [CrossRef] [PubMed]
- Tariq, R.; Hayat, M.; Pardi, D.; Khanna, S. Predictors of failure after fecal microbiota transplantation for recurrent Clostridioides difficile infection: A systematic review and meta-analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1383–1392. [Google Scholar] [CrossRef]
- Tariq, R.; Pardi, D.S.; Bartlett, M.G.; Khanna, S. Low Cure Rates in Controlled Trials of Fecal Microbiota Transplantation for Recurrent Clostridium difficile Infection: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2019, 68, 1351–1358. [Google Scholar] [CrossRef]
- Hui, W.; Li, T.; Liu, W.; Zhou, C.; Gao, F. Fecal microbiota transplantation for treatment of recurrent C. difficile infection: An updated randomized controlled trial meta-analysis. PLoS ONE 2019, 14, e0210016. [Google Scholar] [CrossRef] [PubMed]
- Kassam, Z.; Lee, C.H.; Yuan, Y.; Hunt, R.H. Fecal microbiota transplantation for Clostridium difficile infection: Systematic review and meta-analysis. Am. J. Gastroenterol. 2013, 108, 500–508. [Google Scholar] [CrossRef] [PubMed]
- Madar, P.C.; Petre, O.; Baban, A.; Dumitrascu, D.L. Medical students’ perception on fecal microbiota transplantation. BMC Med. Educ. 2019, 19, 368. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, M.; Martin-Loeches, I.; Dimopoulos, G.; Gasbarrini, A.; Vallecoccia, M.S. Clostridioides difficile (formerly Clostridium difficile) infection in the critically ill: An expert statement. Intensive Care Med. 2020, 46, 215–224. [Google Scholar] [CrossRef]
- McDonald, L.C.; Gerding, D.N.; Johnson, S.; Bakken, J.S.; Carroll, K.C.; Coffin, S.E.; Dubberke, E.R.; Garey, K.W.; Gould, C.V.; Kelly, C.; et al. Clinical Practice Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin. Infect. Dis. 2018, 66, e1–e48. [Google Scholar] [CrossRef]
- Kelly, C.R.; Fischer, M.; Allegretti, J.R.; LaPlante, K.; Stewart, D.B.; Limketkai, B.N.; Stollman, N.H. ACG Clinical Guidelines: Prevention, Diagnosis, and Treatment of Clostridioides difficile Infections. Am. J. Gastroenterol. 2021, 116, 1124–1147. [Google Scholar] [CrossRef]
- Ghosh, S.; Antunes, A.; Rinta-Kokko, H.; Chaparova, E.; Lay-Flurrie, S.; Tricotel, A.; Andersson, F.L. Clostridioides difficile infections, recurrences, and clinical outcomes in real-world settings from 2015 to 2019: The RECUR England study. Int. J. Infect. Dis. 2024, 140, 31–38. [Google Scholar] [CrossRef]
- Liao, J.X.; Appaneal, H.J.; Vicent, M.L.; Vyas, A.; LaPlante, K.L. Path of least recurrence: A systematic review and meta-analysis of fidaxomicin versus vancomycin for Clostridioides difficile infection. Pharmacotherapy 2022, 42, 810–827. [Google Scholar] [CrossRef]
- Shields, G.E.; Elvidge, J. Challenges in synthesising cost-effectiveness estimates. Syst. Rev. 2020, 9, 289. [Google Scholar] [CrossRef]
- Maestri, A.C.; Raboni, S.M.; Morales, H.M.P.; Ferrari, L.F.; Tuon, F.F.B.; Losso, A.; Marconi, C.; Nogueira, K.D.S. Multicenter study of the epidemiology of Clostridioides difficile infection and recurrence in southern Brazil. Anaerobe 2020, 64, 102238. [Google Scholar] [CrossRef]
- Braga, D.S.; Oliveira, D.F.; Lourenco, N.V.; Carvalho, G.M.; Rezende, V.; Lourenco, T.V.; Silva, R.O.S.; Kuijper, E.J.; Vilela, E.G. Incidence of healthcare-associated Clostridioides difficile infection in a quaternary referral university hospital in Brazil. Anaerobe 2023, 79, 102672. [Google Scholar] [CrossRef]
- Girao, E.S.; de Melo Tavares, B.; Dos Santos, S.A.; Gamarra, G.L.; Rizek, C.; Martins, R.C.; Neto, L.V.P.; Diogo, C.; D’Annibale Orsi, T.; Morales, H.M.P.; et al. Predictive factors, outcomes, and molecular epidemiology of Clostridioides difficile diarrhea in Brazilian hospitals. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1821–1832. [Google Scholar] [CrossRef] [PubMed]
- Maestri, A.C.; Mesa, D.; Vasconcelos, T.M.; Krul, D.; Ricieri, M.C.; Motta, F.A.; Dalla-Costa, L.M.; Raboni, S.M.; Nogueira, K.S. Analysis of Clostridioides difficile Infection in Children with Diarrhea in Two Hospitals in Southern Brazil. Curr. Microbiol. 2023, 80, 390. [Google Scholar] [CrossRef]
- Trindade, C.N.R.; Domingues, R.; Ferreira, E.O. The epidemiology of Clostridioides difficile infection in Brazil: A systematic review covering thirty years. Anaerobe 2019, 58, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Olsen, M.A.; Stwalley, D.; Tipping, A.D.; Keller, M.R.; Yu, H.; Dubberke, E.R. Trends in the incidence of Clostridioides difficile infection in adults and the elderly insured by Medicaid compared to commercial insurance or Medicare only. Infect. Control Hosp. Epidemiol. 2023, 44, 1076–1084. [Google Scholar] [CrossRef] [PubMed]
- Ramai, D.; Dang-Ho, K.P.; Lewis, C.; Fields, P.J.; Ofosu, A.; Barakat, M.; Aamar, A.; Ofori, E.; Lai, J.; Lanke, G.; et al. Clostridioides difficile infection in US hospitals: A national inpatient sample study. Int. J. Colorectal Dis. 2020, 35, 1929–1935. [Google Scholar] [CrossRef]
- Davies, K.A.; Longshaw, C.M.; Davis, G.L.; Bouza, E.; Barbut, F.; Barna, Z.; Delmee, M.; Fitzpatrick, F.; Ivanova, K.; Kuijper, E.; et al. Underdiagnosis of Clostridium difficile across Europe: The European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). Lancet Infect. Dis. 2014, 14, 1208–1219. [Google Scholar] [CrossRef]
- Baunwall, S.M.D.; Andreasen, S.E.; Hansen, M.M.; Kelsen, J.; Hoyer, K.L.; Ragard, N.; Eriksen, L.L.; Stoy, S.; Rubak, T.; Damsgaard, E.M.S.; et al. Faecal microbiota transplantation for first or second Clostridioides difficile infection (EarlyFMT): A randomised, double-blind, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 2022, 7, 1083–1091. [Google Scholar] [CrossRef]
- Khanna, S.; Assi, M.; Lee, C.; Yoho, D.; Louie, T.; Knapple, W.; Aguilar, H.; Garcia-Diaz, J.; Wang, G.P.; Berry, S.M.; et al. Efficacy and Safety of RBX2660 in PUNCH CD3, a Phase III, Randomized, Double-Blind, Placebo-Controlled Trial with a Bayesian Primary Analysis for the Prevention of Recurrent Clostridioides difficile Infection. Drugs 2022, 82, 1527–1538. [Google Scholar] [CrossRef]
- Singh, T.; Bedi, P.; Bumrah, K.; Gandhi, D.; Arora, T.; Verma, N.; Schleicher, M.; Rai, M.P.; Garg, R.; Verma, B.; et al. Fecal Microbiota Transplantation and Medical Therapy for Clostridium difficile Infection: Meta-analysis of Randomized Controlled Trials. J. Clin. Gastroenterol. 2022, 56, 881–888. [Google Scholar] [CrossRef]
- Ramai, D.; Zakhia, K.; Fields, P.J.; Ofosu, A.; Patel, G.; Shahnazarian, V.; Lai, J.K.; Dhaliwal, A.; Reddy, M.; Chang, S. Fecal Microbiota Transplantation (FMT) with Colonoscopy Is Superior to Enema and Nasogastric Tube While Comparable to Capsule for the Treatment of Recurrent Clostridioides difficile Infection: A Systematic Review and Meta-Analysis. Dig. Dis. Sci. 2021, 66, 369–380. [Google Scholar] [CrossRef]
- Du, C.; Luo, Y.; Walsh, S.; Grinspan, A. Oral Fecal Microbiota Transplant Capsules Are Safe and Effective for Recurrent Clostridioides difficile Infection: A Systematic Review and Meta-Analysis. J. Clin. Gastroenterol. 2021, 55, 300–308. [Google Scholar] [CrossRef]
Patient | Age | ICU * | Previous Therapy for CDI | Days of Therapy before FMT | Indication of FMT | Mean Daily Evacuations before FMT | Outcome | Clinical Response (Days) | Comorbidities |
---|---|---|---|---|---|---|---|---|---|
1 | 76 | No | Vancomycin | 42 | Recurrence | 6 | Cure | 2 | DM, HF, SAH |
2 | 79 | No | Vancomycin + metronidazole | 28 | Recurrence | 12 | Cure | 5 | DM, SAH |
3 | 74 | No | Vancomycin | 36 | Recurrence | 2 | Cure | 1 | Gastrointestinal neuroendocrinal tumor |
4 | 85 | No | Vancomycin | 28 | Refractory | 8 | Cure | 3 | Renal cancer |
5 | 65 | No | Vancomycin | 14 | Recurrence | 10 | Cure | 4 | Lung cancer |
6 | 65 | No | Vancomycin | 5 | Refractory | 10 | Cure | 2 | Lung cancer |
7 | 38 | No | Vancomycin | 14 | Recurrence | 4 | Cure | 7 | Colorectal cancer |
8 | 54 | No | Vancomycin | 9 | Refractory | 15 | Failure | - | Renal transplant |
9 | 54 | No | Vancomycin | 10 | Refractory | 20 | Cure | 3 | Renal transplant |
10 | 67 | No | Vancomycin | 9 | Refractory | 8 | Cure | 5 | Chron disease |
11 | 65 | No | Vancomycin | 15 | Refractory | 7 | Cure | 7 | - |
12 | 65 | No | Vancomycin | 14 | Recurrence | 12 | Cure | 2 | - |
13 | 72 | No | Metronidazole | 14 | Refractory | 5 | Cure | 1 | CRF, DM |
14 | 80 | Yes | Vancomycin | 8 | Refractory | 6 | Cure | 1 | DM, SAH |
15 | 84 | No | Vancomycin | 10 | Refractory | 4 | Cure | 2 | Dementia |
16 | 56 | No | Metronidazole | 13 | Refractory | 7 | Cure | 1 | CRF |
17 | 70 | Yes | Metronidazole | 14 | Recurrence | 8 | Cure | 2 | DM |
18 | 73 | Yes | Vancomycin + metronidazole | 28 | Refractory | 5 | Cure | 2 | DM, stroke |
19 | 53 | Yes | Vancomycin + metronidazole | 14 | Refractory | 3 | Cure | 3 | DM, SAH, multiple sclerosis |
20 | 65 | Yes | Vancomycin + metronidazole | 7 | Refractory | 12 | Cure | 1 | HIV |
21 | 69 | No | Vancomycin + metronidazole | 28 | Recurrence | 6 | Cure | 3 | Stroke, DM, SAH |
22 | 54 | Yes | Vancomycin + metronidazole | 21 | Refractory | 8 | Cure | 5 | - |
23 | 56 | Yes | Vancomycin + metronidazole | 14 | Refractory | 7 | Failure | - | - |
24 | 54 | No | Vancomycin | 28 | Recurrence | 5 | Cure | 7 | - |
Year | Monitored Population | Community Associated CDI | Community Cases % | Community Cases 1 | Health-Care-Associated CDI | Health-Care Cases % | Health-Care Cases 1 |
---|---|---|---|---|---|---|---|
2013 | 11,552,955 | 6441 | 39.32% | 55.75 | 9938 | 60.68% | 86.02 |
2014 | 11,533,856 | 6670 | 40.84% | 57.83 | 9663 | 59.16% | 83.79 |
2015 | 11,682,427 | 7688 | 44.30% | 65.81 | 9666 | 55.70% | 82.74 |
2016 | 11,777,482 | 7915 | 47.12% | 67.20 | 8881 | 52.88% | 75.41 |
2017 | 11,906,512 | 7539 | 48.60% | 63.32 | 7973 | 51.40% | 66.96 |
2018 | 11,982,926 | 7901 | 50.68% | 65.93 | 7690 | 49.32% | 64.18 |
2019 | 12,058,331 | 7628 | 52.20% | 63.30 | 6984 | 47.80% | 57.90 |
2020 | 12,104,962 | 6198 | 50.55% | 51.20 | 6062 | 49.45% | 50.10 |
2021 | 12,109,721 | 6769 | 50.71% | 55.90 | 6579 | 49.29% | 54.30 |
Demographic Characteristic | Population ≥ 1 Year of Age | Community-Associated CDI | Health Care-Associated CDI | ||||||
---|---|---|---|---|---|---|---|---|---|
Cases | ±σ | Cases 100,000 Persons | ±σ | Cases | ±σ | Cases 100,000 Persons | ±σ | ||
Sex | |||||||||
Female | 99,270,508 | 69,266 | 1930 | 69.77 | 1.94 | 94,457 | 2707 | 95.15 | 2.73 |
Male | 103,792,004 | 41,777 | 1981 | 40.25 | 1.91 | 69,316 | 1981 | 66.78 | 1.91 |
Age Group | |||||||||
1–17 years | 45,732,492 | 8411 | 238 | 18.39 | 0.52 | 3285 | 90 | 7.18 | 0.20 |
18–44 years | 87,378,489 | 27,246 | 774 | 31.18 | 0.89 | 17,271 | 492 | 19.77 | 0.56 |
45–64 years | 46,201,082 | 34,092 | 1010 | 73.79 | 2.19 | 41,668 | 1192 | 90.19 | 2.58 |
65+ years | 20,915,569 | 36,743 | 1101 | 175.67 | 5.27 | 105,241 | 3034 | 503.17 | 14.5 |
Treatment | Hypothesis (Days) | Fixed Cost Ward USD | Variable Cost Ward USD | Mild USD | Moderate USD | Severe USD |
---|---|---|---|---|---|---|
Metronidazole Pill 2 × 250 mg q8h | 10 | 157.81 | 79.39 | 1657.43 | - | - |
11 | 157.81 | 79.62 | 1815.47 | - | - | |
12 | 157.81 | 79.85 | 1973.50 | - | - | |
13 | 157.81 | 80.09 | 2131.54 | - | - | |
14 | 157.81 | 80.32 | 2289.58 | - | - | |
Vancomycin Ampoule 125 mg q6h | 10 | 157.81 | 121.54 | 1699.58 | 1699.58 | - |
11 | 157.81 | 125.68 | 1861.52 | 1861.52 | - | |
12 | 157.81 | 129.84 | 2023.49 | 2023.49 | - | |
13 | 157.81 | 134.02 | 2185.48 | 2185.48 | - | |
14 | 157.81 | 138.22 | 2347.48 | 2347.48 | - | |
Fecal microbiota transplant | 2 | 157.81 | 839.54 | - | - | 1155.15 |
3 | 157.81 | 839.54 | - | - | 1312.96 |
Treatment | Hypothesis (Days) | Fixed Cost ICU USD | Variable Cost ICU USD | Mild USD | Moderate USD | Serious USD |
---|---|---|---|---|---|---|
Metronidazole Pill 2 × 250 mg q8h | 10 | 382.33 | 79.39 | 3902.65 | - | - |
11 | 382.33 | 79.62 | 4285.21 | - | - | |
12 | 382.33 | 79.85 | 4667.77 | - | - | |
13 | 382.33 | 80.09 | 5050.33 | - | - | |
14 | 382.33 | 80.32 | 5432.89 | - | - | |
Vancomycin Ampoule 125 mg q6h | 10 | 382.33 | 121.54 | 3944.80 | 3944.80 | - |
11 | 382.33 | 125.68 | 4331.27 | 4331.27 | - | |
12 | 382.33 | 129.84 | 4717.76 | 4717.76 | - | |
13 | 382.33 | 134.02 | 5104.26 | 5104.26 | - | |
14 | 382.33 | 138.22 | 5490.79 | 5490.79 | - | |
Fecal Microbiota Transplant | 2 | 382.33 | 839.54 | - | - | 1604.20 |
3 | 382.33 | 839.54 | - | - | 1986.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, C.H.; Ortis, G.B.; Buso, G.M.; Martins, T.C.; Zequinao, T.; Telles, J.P.; Wollmann, L.C.; Montenegro, C.d.O.; Dantas, L.R.; Cruz, J.W.; et al. Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country—Promicrobioma Project. Microorganisms 2024, 12, 1741. https://doi.org/10.3390/microorganisms12081741
Yamada CH, Ortis GB, Buso GM, Martins TC, Zequinao T, Telles JP, Wollmann LC, Montenegro CdO, Dantas LR, Cruz JW, et al. Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country—Promicrobioma Project. Microorganisms. 2024; 12(8):1741. https://doi.org/10.3390/microorganisms12081741
Chicago/Turabian StyleYamada, Carolina Hikari, Gabriel Burato Ortis, Gustavo Martini Buso, Thalissa Colodiano Martins, Tiago Zequinao, Joao Paulo Telles, Luciana Cristina Wollmann, Carolina de Oliveira Montenegro, Leticia Ramos Dantas, June Westarb Cruz, and et al. 2024. "Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country—Promicrobioma Project" Microorganisms 12, no. 8: 1741. https://doi.org/10.3390/microorganisms12081741
APA StyleYamada, C. H., Ortis, G. B., Buso, G. M., Martins, T. C., Zequinao, T., Telles, J. P., Wollmann, L. C., Montenegro, C. d. O., Dantas, L. R., Cruz, J. W., & Tuon, F. F. (2024). Validation of Lyophilized Human Fecal Microbiota for the Treatment of Clostridioides difficile Infection: A Pilot Study with Pharmacoeconomic Analysis of a Middle-Income Country—Promicrobioma Project. Microorganisms, 12(8), 1741. https://doi.org/10.3390/microorganisms12081741