Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description
2.2. Extraction and Quantification of QACs
2.3. Isolation of QAC-Resistant Bacteria
2.4. Antibiotic Susceptibility Test
2.5. Strains Identification and Minimum Inhibitory Concentration of QACs Determination
2.6. Statistical Analysis
3. Results and Discussion
3.1. QACs and Heavy Metal Distribution in Soils
3.2. Proportion of QAC-Resistant Bacteria from Soil
3.3. Antibiotic Resistance Profiles of Isolates
3.4. Strains Identification and MIC Determination
3.5. QAC-Resistant Bacteria in Soil
3.6. QAC-Resistant Bacteria in Produced Water
3.7. Phylogenetic Analysis on All the Resistant Bacteria
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, C.; Cui, F.; Zeng, G.M.; Jiang, M.; Yang, Z.Z.; Yu, Z.G.; Zhu, M.Y.; Shen, L.Q. Quaternary ammonium compounds (QACs): A review on occurrence, fate and toxicity in the environment. Sci. Total Environ. 2015, 518–519, 352–362. [Google Scholar] [CrossRef] [PubMed]
- Bures, F. Quaternary ammonium compounds: Simple in structure, complex in application. Top. Curr. Chem. 2019, 377, 14. [Google Scholar] [CrossRef]
- Fait, M.E.; Bakas, L.; Garrote, G.L.; Morcelle, S.R.; Saparrat, M.C.N. Cationic surfactants as antifungal agents. Appl. Microbiol. Biot. 2019, 103, 97–112. [Google Scholar] [CrossRef]
- Labena, A.; Hegazy, M.A.; Sami, R.M.; Hozzein, W.N. Multiple applications of a novel cationic gemini surfactant: Anti-microbial, anti-biofilm, biocide, salinity corrosion inhibitor, and biofilm dispersion (part II). Molecules 2020, 25, 1348. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.Z.; Wang, N.; Cao, D.; Hu, Z.Y.; Mao, P.; Zhang, H.B.; Zhou, X.H. The antimicrobial activities of a series of bis-quaternary ammonium compounds. Chin. Chem. Lett. 2011, 22, 887–890. [Google Scholar] [CrossRef]
- Zakharova, L.Y.; Pashirova, T.N.; Doktorovova, S.; Fernandes, A.R.; Sanchez-Lopez, E.; Silva, A.M.; Souto, S.B.; Souto, E.B. Cationic surfactants: Self-assembly, structure-activity correlation and their biological applications. Int. J. Mol. Sci. 2019, 20, 5534. [Google Scholar] [CrossRef]
- McCurdy, R. High Rate Hydraulic Fracturing Additives in Non-Marcellus Unconventional Shales; U.S. Environmental Protection Agency: Washington, DC, USA, 2011. Available online: https://19january2017snapshot.epa.gov/sites/production/files/documents/highratehfinnon-marcellusunconventionalshale.pdf (accessed on 7 June 2024).
- Lewis, D. COVID-19 rarely spreads through surfaces. So why are we still deep cleaning? Nature 2021, 590, 25–28. [Google Scholar] [CrossRef] [PubMed]
- USEPA. 2020 List N:Disinfectants for Use Against SARS-CoV-2; U.S. Environmental Protection Agency: Washington, DC, USA, 2020. Available online: https://www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2 (accessed on 7 June 2024).
- Kahrilas, G.A.; Blotevogel, J.; Stewart, P.S.; Borch, T. Biocides in hydraulic fracturing fluids: A critical review of their usage, mobility, degradation, and toxicity. Environ. Sci. Technol. 2015, 49, 16–32. [Google Scholar] [CrossRef]
- Weber, D.J.; Rutala, W.A.; Sickbert-Bennett, E.E. Outbreaks associated with contaminated antiseptics and disinfectants. Antimicrob. Agents Chemother. 2007, 51, 4217–4224. [Google Scholar] [CrossRef] [PubMed]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef]
- Clara, M.; Scharf, S.; Scheffknecht, C.; Gans, O. Occurrence of selected surfactants in untreated and treated sewage. Water Res. 2007, 41, 4339–4348. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.; Song, S.; Wang, T.; Liu, R.; Lin, Y.; Jiang, G. Identification and composition of emerging quaternary ammonium compounds in municipal sewage sludge in China. Environ. Sci. Technol. 2014, 48, 4289–4297. [Google Scholar] [CrossRef] [PubMed]
- Heyde, B.J.; Barthel, A.; Siemens, J.; Mulder, I. A fast and robust method for the extraction and analysis of quaternary alkyl ammonium compounds from soil and sewage sludge. PLoS ONE 2020, 15, e0237020. [Google Scholar] [CrossRef]
- Dai, X.; Wang, C.C.; Lam, J.C.W.; Yamashita, N.; Yamazaki, E.; Horii, Y.; Chen, W.F.; Li, X.L. Accumulation of quaternary ammonium compounds as emerging contaminants in sediments collected from the Pearl River Estuary, China and Tokyo Bay, Japan. Mar. Pollut. Bull. 2018, 136, 276–281. [Google Scholar] [CrossRef]
- Kreuzinger, N.; Fuerhacker, M.; Scharf, S.; Uhl, M.; Gans, O.; Grillitsch, B. Methodological approach towards the environmental significance of uncharacterized substances-quaternary ammonium compounds as an example. Desalination 2007, 215, 209–222. [Google Scholar] [CrossRef]
- Marshall, B.M.; Robleto, E.; Dumont, T.; Levy, S.B. The frequency of antibiotic-resistant bacteria in homes differing in their use of surface antibacterial agents. Curr. Microbiol. 2012, 65, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Shan, K.; Xu, B.; Li, J.G. Determining the resistance of carbapenem-resistant Klebsiella pneumoniae to common disinfectants and elucidating the underlying resistance mechanisms. Pathog. Glob. Health 2015, 109, 184–192. [Google Scholar] [CrossRef]
- He, X.F.; Zhang, H.J.; Cao, J.G.; Liu, F.; Wang, J.K.; Ma, W.J.; Yin, W. A novel method to detect bacterial resistance to disinfectants. Genes Dis. 2017, 4, 163–169. [Google Scholar] [CrossRef]
- Mirzaei, B.; Bazgir, Z.N.; Goli, H.R.; Iranpour, F.; Mohammadi, F.; Babaei, R. Prevalence of multi-drug resistant (MDR) and extensively drug-resistant (XDR) phenotypes of Pseudomonas aeruginosa and Acinetobacter baumannii isolated in clinical samples from Northeast of Iran. BMC Res. Notes 2020, 13, 380. [Google Scholar] [CrossRef]
- Obe, T.; Nannapaneni, R.; Schilling, W.; Zhang, L.; Kiess, A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. J. Appl. Poult. Res. 2021, 30, 100195. [Google Scholar] [CrossRef]
- Xu, D.Y.; Li, Y.L.; Zahid, M.S.H.; Yamasaki, S.; Shi, L.; Li, J.R.; Yan, H. Benzalkonium chloride and heavy-metal tolerance in Listeria monocytogenes from retail foods. Int. J. Food Microbiol. 2014, 190, 24–30. [Google Scholar] [CrossRef]
- Houari, A.; Di Martino, P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Lett. Appl. Microbiol. 2007, 45, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Katharios-Lanwermeyer, S.; Rakic-Martinez, M.; Elhanafi, D.; Ratani, S.; Tiedje, J.M.; Kathariou, S. Coselection of cadmium and benzalkonium chloride resistance in conjugative transfers from nonpathogenic Listeria spp. to Other Listeriae. Appl. Environ. Microbiol. 2012, 78, 7549–7556. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Hatt, J.K.; Weigand, M.R.; Krishnan, R.; Pavlostathis, S.G.; Konstantinidis, K.T. Genomic and transcriptomic insights into how bacteria withstand high concentrations of benzalkonium chloride biocides. Appl. Environ. Microbiol. 2018, 84, e00197-18. [Google Scholar] [CrossRef]
- Mulder, I.; Siemens, J.; Sentek, V.; Amelung, W.; Smalla, K.; Jechalke, S. Quaternary ammonium compounds in soil: Implications for antibiotic resistance development. Rev. Environ. Sci. Biotechnol. 2017, 17, 159–185. [Google Scholar] [CrossRef]
- Qin, K.N.; Wei, L.L.; Li, J.J.; Lai, B.; Zhu, F.Y.; Yu, H.; Zhao, Q.L.; Wang, K. A review of ARGs in WWTPs: Sources, stressors and elimination. Chin. Chem. Lett. 2020, 31, 2603–2613. [Google Scholar] [CrossRef]
- Forsberg, K.J.; Reyes, A.; Wang, B.; Selleck, E.M.; Sommer, M.O.A.; Dantas, G. The shared antibiotic resistome of soil bacteria and human pathogens. Science 2012, 337, 1107–1111. [Google Scholar] [CrossRef]
- Gerba, C.P. Quaternary ammonium biocides: Efficacy in application. Appl. Environ. Microbiol. 2015, 81, 464–469. [Google Scholar] [CrossRef]
- Bjorland, J.; Steinum, T.; Kvitle, B.; Waage, S.; Sunde, M.; Heir, E. Widespread distribution of disinfectant resistance genes among Staphylococci of bovine and caprine origin in Norway. J. Clin. Microbiol. 2005, 43, 4363–4368. [Google Scholar] [CrossRef]
- Huang, F.Y.; Chen, L.P.; Zhang, C.; Liu, F.; Li, H. Prioritization of antibiotic contaminants in China based on decennial national screening data and their persistence, bioaccumulation and toxicity. Sci. Total Environ. 2022, 806, 150636. [Google Scholar] [CrossRef]
- CLSI M100; Performance Standards for Antimicrobial Susceptibility Testing, 32nd Edition. Clinical and Laboratory Standards Insitute: Malvern, PA, USA, 2024. Available online: https://clsi.org/standards/products/microbiology/documents/m100/ (accessed on 7 June 2022).
- Wang, Q.; Bian, J.M.; Ruan, D.M.; Zhang, C.P. Adsorption of benzene on soils under different influential factors: An experimental investigation, importance order and prediction using artificial neural network. J. Environ. Manage. 2022, 306, 114467. [Google Scholar] [CrossRef] [PubMed]
- DeLeo, P.C.; Huynh, C.; Pattanayek, M.; Schmid, K.C.; Pechacek, N. Assessment of ecological hazards and environmental fate of disinfectant quaternary ammonium compounds. Ecotoxicol. Environ. Saf. 2020, 206, 352–362. [Google Scholar] [CrossRef]
- Yang, R.; Zhou, S.; Zhang, L.; Qin, C. Pronounced temporal changes in soil microbial community and nitrogen transformation caused by benzalkonium chloride. J. Environ. Sci. 2023, 126, 827–835. [Google Scholar] [CrossRef]
- Wales, A.D.; Davies, R.H. Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef]
- Xu, D.Y.; Deng, Y.; Fan, R.D.; Shi, L.; Bai, J.S.; Yan, H. Coresistance to benzalkonium chloride disinfectant and heavy metal ions in Listeria monocytogenes and Listeria innocua swine isolates from China. Foodborne Pathog. Dis. 2019, 16, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.B.; Peng, S.C.; Li, Z.Q.; Zhang, D.J.; Zhu, Y.T.; Li, X.Q.; Hong, M.Y.; Li, W.C.; Lu, P.L. Risk assessment of pollutants in flowback and produced waters and sludge in impoundments. Sci. Total. Environ. 2022, 811, 152250. [Google Scholar] [CrossRef] [PubMed]
- Shao, S.C.; Hu, Y.Y.; Cheng, J.H.; Chen, Y.C. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit. Rev. Biotechnol. 2018, 38, 1195–1208. [Google Scholar] [CrossRef]
- Lu, S.; Lin, C.Y.; Lei, K.; Xin, M.; Gu, X.; Lian, M.S.; Wang, B.D.; Liu, X.T.; Ouyang, W.; He, M.C. Profiling of the spatiotemporal distribution, risks, and prioritization of antibiotics in the waters of Laizhou Bay, northern China. J. Hazard. Mater. 2022, 424, 127487. [Google Scholar] [CrossRef]
- Vikram, A.; Lipus, D.; Bibby, K. Produced water exposure from hydraulic fracturing alters bacterial response to biocides. Environ. Sci. Technol. 2015, 48, 13001–13009. [Google Scholar] [CrossRef]
- Chapman, J.S. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int. Biodeterior. Biodegrad. 2003, 4, 271–276. [Google Scholar] [CrossRef]
- Wang, Q.; Xie, Q.D.; He, L.Y.; Sheng, X.F. The abundance and mineral-weathering effectiveness of Bacillus strains in the altered rocks and the soil. J. Basic Microb. 2018, 58, 770–781. [Google Scholar] [CrossRef]
- Passera, A.; Rossato, M.; Oliver, J.S.; Battelli, G.; Shahzad, G.I.R.; Cosentino, E.; Sage, J.M.; Toffolatti, S.L.; Lopatriello, G.; Davis, J.R.; et al. Characterization of Lysinibacillus fusiformis strain S4C11: In vitro, in planta, and in silico analyses reveal a plant-beneficial microbe. Microbiol. Res. 2021, 244, 126665. [Google Scholar] [CrossRef]
- Pena-Montenegro, T.D.; Lozano, L.; Dussan, J. Genome sequence and description of the mosquitocidal and heavy metal tolerant strain Lysinibacillus sphaericus CBAM5. Stand. Genom. Sci. 2015, 10, 2. [Google Scholar] [CrossRef]
- Wenzler, E.; Kamboj, K.; Balada-Llasat, J.M. Severe sepsis secondary to persistent Lysinibacillus sphaericus, Lysinibacillus fusiformis and Paenibacillus amylolyticus bacteremia. Int. J. Infect. Dis. 2015, 35, 93–95. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, S.H.; Oh, D.C.; Kim, Y.J. Lysinibacillus jejuensis sp. nov., isolated from swinery waste. J. Microbiol. 2013, 51, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Yang, I.C.; Shih, D.Y.C.; Huang, T.P.; Huang, Y.P.; Wang, J.Y.; Pan, T.M. Establishment of a novel multiplex PCR assay and detection of toxigenic strains of the species in the Bacillus cereus group. J. Food Prot. 2005, 68, 2123–2130. [Google Scholar] [CrossRef] [PubMed]
- Ceragioli, M.; Mols, M.; Moezelaar, R.; Ghelardi, E.; Senesi, S.; Abee, T. Comparative transcriptomic and phenotypic analysis of the responses of Bacillus cereus to various disinfectant treatments. Appl. Environ. Microbiol. 2010, 76, 3352–3360. [Google Scholar] [CrossRef] [PubMed]
- Drewnowska, J.M.; Stefanska, N.; Czerniecka, M.; Zambrowski, G.; Swiecicka, I. Potential enterotoxicity of phylogenetically diverse Bacillus cereus Sensu Lato soil isolates from different geographical locations. Appl. Environ. Microbiol. 2020, 86, e03032-19. [Google Scholar] [CrossRef] [PubMed]
- Herridge, W.P.; Shibu, P.; O’Shea, J.; Brook, T.C.; Hoyles, L. Bacteriophages of Klebsiella spp., their diversity and potential therapeutic uses. J. Med. Microbiol. 2020, 69, 176–194. [Google Scholar] [CrossRef]
- Lee, W.H.; Choi, H.I.; Hong, S.W.; Kim, K.S.; Gho, Y.S.; Jeon, S.G. Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp. Mol. Med. 2015, 47, e183. [Google Scholar] [CrossRef]
- Oblak, E.; Futoma-Koloch, B.; Wieczynska, A. Biological activity of quaternary ammonium salts and resistance of microorganisms to these compounds. World J. Microb. Biot. 2021, 37, 22. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, R.; Sandle, T.; Al-Aboody, M.S.; AlFonaisan, M.K.; Alturaiki, W.; Mickymaray, S.; Premanathan, M.; Alsagaby, S.A. Distribution of biocide resistant genes and biocides susceptibility in multidrug-resistant Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter baumannii—A first report from the Kingdom of Saudi Arabia. J. Infect. Public Health 2018, 11, 812–816. [Google Scholar] [CrossRef]
- Fang, H.; Han, L.X.; Zhang, H.P.; Long, Z.N.; Cai, L.; Yu, Y.L. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. J. Hazard. Mater. 2018, 357, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Ferraresso, J.; Lawton, B.; Bayliss, S.; Sheppard, S.; Cardazzo, B.; Gaze, W.; Buckling, A.; Vos, M. Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environ. Microbiol. 2020, 22, 5327–5340. [Google Scholar] [CrossRef]
- Mc Carlie, S.J.; Hellmuth, J.E.; Newman, J.; Boucher, C.E.; Bragg, R.R. Genome sequence of resistant Serratia sp. strain HRI, isolated from a bottle of didecyldimethylammonium chloride-based disinfectant. Microbiol. Resour. Announc. 2020, 9, e00095-20. [Google Scholar] [CrossRef]
- Gabrielaite, M.; Bartell, J.A.; Norskov-Lauritsen, N.; Pressler, T.; Nielsen, F.C.; Johansen, H.K.; Marvig, R.L. Transmission and antibiotic resistance of Achromobacter in cystic fibrosis. J. Clin. Microbiol. 2021, 59, e02911-20. [Google Scholar] [CrossRef]
- Carvalheira, A.; Silva, J.; Teixeira, P. Acinetobacter spp. in food and drinking water—A review. Food Microbiol. 2021, 95, 103675. [Google Scholar] [CrossRef] [PubMed]
- Dijkshoorn, L.; Nemec, A.; Seifert, H. An increasing threat in hospitals: Multidrug-resistant Acinetobacter baumannii. Nat. Rev. Microbiol. 2007, 5, 939–951. [Google Scholar] [CrossRef]
- Ruan, Y.J.; Cai, L.; Lu, H.F.; Zhang, M.; Xu, X.Y.; Li, W.B. Performance of aerobic denitrification by the strain Pseudomonas balearica RAD-17 in the presence of antibiotics. Microorganisms 2021, 9, 1584. [Google Scholar] [CrossRef]
- Zia, R.; Nawaz, M.S.; Yousaf, S.; Amin, I.; Hakim, S.; Mirza, M.S.; Imran, A. Seed inoculation of desert-plant growth-promoting rhizobacteria induce biochemical alterations and develop resistance against water stress in wheat. Physiol. Plant. 2021, 172, 990–1006. [Google Scholar] [CrossRef]
- Kücken, D.; Feucht, H.-H.; Kaulfers, P.-M. Association of qacE and qacE Δ1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.A.; Chen, L.; Shen, L.X.; Surette, M.; Duan, K.M. Inactivation of MuxABC-OpmB transporter system in Pseudomonas aeruginosa leads to increased ampicillin and carbenicillin resistance and decreased virulence. J. Microbiol. 2011, 49, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Gensberg, K.; Smith, A.W.; Brinkman, F.S.L.; Hancock, R.E.W. Identification of oprG, a gene encoding a major outer membrane protein of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 1999, 43, 607–608. [Google Scholar] [CrossRef] [PubMed]
Isolates | Accession Number | Species of Closest GenBank Match | MIC (mg/L) | Similarity (%) |
---|---|---|---|---|
NB-1 | ON680914 | Bacillus sp. (in: Bacteria) strain LQ26 (MG025786) | 2 | 99.86 |
NB-2 | ON680916 | Bacillus indicus strain WJB131 (KU877665) | 2 | 99.51 |
NB-3 | ON680903 | Bacillus sp. (in: Bacteria) strain QHP519 (MZ956306) | 2 | 99.45 |
NB-4 | ON680888 | Bacillus aryabhattai strain SX3 (MF431749) (MF431749) | 2 | 99.66 |
S1-1 | ON692704 | Lysinibacillus sp. strain P62-2 (MN199553) | 4 | 99.59 |
S1-2 | ON680889 | Bacillus cereus strain ZLynn1000-12 (KY316446) | 4 | 99.24 |
S1-3 | ON680884 | Bacillus cereus strain yasmun27 (OK632089) | 4 | 99.04 |
S2-1 | ON680907 | Bacillus cereus strain P14 16S (JN700160) | 8 | 99.11 |
S2-2 | ON680894 | Bacillus sp. JN29 (KC121050) | 8 | 99.38 |
S3-3 | ON692756 | Bacillus cereus strain Y3 (GQ462534) | 8 | 99.66 |
S4-1 | ON680869 | Bacillus licheniformis strain SR5-11 (MN421512) | 4 | 99.17 |
S5-1 | ON692755 | Bacillus cereus strain CZ (JX544747) | 8 | 99.1 |
S6-1 | ON680913 | Lysinibacillus xylanilyticus strain C5 (KX832684) | 4 | 99.17 |
S6-3 | ON692705 | Exiguobacterium acetylicum strain Lmb014 (KT986087) | 4 | 99.31 |
S7-1 | ON680915 | Lelliottia amnigena strain Lmb013 (KT986086) | 64 | 98.61 |
S9-1 | ON680883 | Bacillus cereus strain LLCG23 (GU568201) | 32 | 99.38 |
S10-1 | ON692757 | Klebsiella pneumoniae strain SB5531 (MK040621) | 8 | 98.89 |
S10-2 | ON680886 | Bacillus cereus strain 265XY1 (KF818648) | 4 | 99.31 |
S11-3 | ON692762 | Lysinibacillus fusiformis strain CLf_LPR2 (MH788986) | 4 | 99.86 |
S13-1 | ON692764 | Bacillus thuringiensis strain EGI107 (MN704423) | 8 | 99.72 |
S14-2 | ON680898 | Klebsiella variicola strain R3J3HD7 (MK855126) | 16 | 99.31 |
S15-2 | ON692763 | Bacillus thuringiensis strain C18 (KX832697) | 8 | 99.34 |
S16-1 | ON692739 | Lysinibacillus sp. strain WUST-Cr1 (KX096881) | 4 | 99.45 |
S17-1 | ON692767 | Bacillus cereus strain ZF11 (KX784916) | 8 | 99.24 |
S20-2 | ON692738 | Lysinibacillus fusiformis strain BH45 (KY910256) | 4 | 99.11 |
S21-1 | ON692766 | Bacillus sp. PSM 10 (JF738149) | 8 | 99.72 |
S23-1 | ON680946 | Bacillus cereus strain BXC13 (MN227491) | 8 | 99.11 |
S23-3 | ON692768 | Bacillus marisflavi strain LJ57 (MG049773) | 4 | 98.77 |
S24-1 | ON692770 | Lysinibacillus fusiformis strain DZQ17-H (HQ143586) | 4 | 98.56 |
S24-2 | ON692769 | Lysinibacillus sp. strain JSM ZJ1091 (MW627424) | 4 | 98.23 |
S24-3 | ON680905 | Bacillus cereus strain G5-1-1 (MN595060) | 8 | 99.48 |
S25-1 | ON692774 | Klebsiella pneumoniae strain BHX (MZ389307) | 8 | 98.41 |
S25-2 | ON692772 | Bacillus sp. (in: Bacteria) strain NBS2 (MK757929) | 4 | 99.52 |
PW1-1 | ON692694 | Exiguobacterium aestuarii strain UD1 (MW192903) | 8 | 99.38 |
PW3-2 | ON692744 | Serratia sp. strain D15 (MZ342895) | 64 | 98.69 |
PW4-1 | ON680868 | Brucella melitensis strain AUH2 (EF187230) | 16 | 97.89 |
PW5-2 | ON680909 | Pseudomonas balearica strain RMR34 (KT731542) | 8 | 98.82 |
PW5-3 | ON692743 | Klebsiella pneumoniae strain SB5531 (MK040621) | 4 | 98.54 |
PW7-2 | ON680887 | Achromobacter sp. strain RABA7 (MN022536) | 32 | 99.3 |
PW9-2 | ON692753 | Enterobacter ludwigii strain KPS 4-2 (JQ308602) | 64 | 99.51 |
PW10-1 | ON692692 | Exiguobacterium sp. strain C10-9 (MG757525) | 4 | 98.9 |
PW10-3 | ON692751 | Klebsiella sp. H-207 (JX455816) | 4 | 98.96 |
PW10-4 | ON680930 | Klebsiella pneumoniae strain SB5531 (MK040621) | 16 | 97.47 |
PW11-1 | ON680870 | Acinetobacter sp. strain B461.15 (OM282819) | 16 | 98.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Qin, C.; Zhang, L. Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China. Microorganisms 2024, 12, 1742. https://doi.org/10.3390/microorganisms12081742
Guo Z, Qin C, Zhang L. Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China. Microorganisms. 2024; 12(8):1742. https://doi.org/10.3390/microorganisms12081742
Chicago/Turabian StyleGuo, Ziyi, Cunli Qin, and Lilan Zhang. 2024. "Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China" Microorganisms 12, no. 8: 1742. https://doi.org/10.3390/microorganisms12081742
APA StyleGuo, Z., Qin, C., & Zhang, L. (2024). Distribution and Characterization of Quaternary Ammonium Biocides Resistant Bacteria in Different Soils, in South-Western China. Microorganisms, 12(8), 1742. https://doi.org/10.3390/microorganisms12081742