A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance
Abstract
:1. Introduction
2. Challenges in Pediatric TB Sampling
3. Existing Diagnostic Methods and Gaps
3.1. Traditional Diagnostic Methods for Pediatric TB
3.2. Molecular Diagnostic Techniques for Pediatric TB
3.3. Emerging Approaches in Pediatric TB Diagnosis
3.4. Balancing Speed, Accuracy, and Cost of Diagnosis
4. Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Basile, F.W.; Nabeta, P.; Ruhwald, M.; Song, R. Pediatric Tuberculosis Diagnostics: Present and Future. J. Pediatr. Infect. Dis. Soc. 2022, 11, S85–S93. [Google Scholar] [CrossRef]
- World Health Organization. Geneva 2024. Available online: https://www.who.int/teams/global-tuberculosis-programme/data (accessed on 20 December 2024).
- World Health Organization. Diagnosis of Tuberculosis and Detection of Drug-Resistance: Rapid Communication; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- World Health Organization. WHO TB Knowledge Sharing Platform; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- World Health Organization. Global Tuberculosis Report 2022; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Olbrich, L.; Nliwasa, M.; Sabi, I.; Ntinginya, N.E.; Khosa, C.; Banze, D.; Corbett, E.L.; Semphere, R.; Verghese, V.P.; Michael, J.S.; et al. Rapid and Accurate Diagnosis of Pediatric Tuberculosis Disease: A Diagnostic Accuracy Study for Pediatric Tuberculosis. Pediatr. Infect. Dis. J. 2023, 42, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Gebre, M.; Cameron, L.H.; Tadesse, G.; Woldeamanuel, Y.; Wassie, L. Variable Diagnostic Performance of Stool Xpert in Pediatric Tuberculosis: A Systematic Review and Meta-Analysis. Open Forum Infect. Dis. 2021, 8, ofaa627. [Google Scholar] [CrossRef] [PubMed]
- Togun, T.O.; Kampmann, B. Diagnostics for Childhood Tuberculosis: A Marathon Rather than a Sprint. Lancet Infect. Dis. 2024, 24, 110–112. [Google Scholar] [CrossRef]
- Wobudeya, E.; Bonnet, M.; Walters, E.G.; Nabeta, P.; Song, R.; Murithi, W.; Mchembere, W.; Dim, B.; Taguebue, J.-V.; Orne-Gliemann, J.; et al. Diagnostic Advances in Childhood Tuberculosis—Improving Specimen Collection and Yield of Microbiological Diagnosis for Intrathoracic Tuberculosis. Pathogens 2022, 11, 389. [Google Scholar] [CrossRef]
- Mesman, A.W.; Soto, M.; Coit, J.; Calderon, R.; Aliaga, J.; Pollock, N.R.; Mendoza, M.; Mestanza, F.M.; Mendoza, C.J.; Murray, M.B.; et al. Detection of Mycobacterium Tuberculosis in Pediatric Stool Samples Using TruTip Technology. BMC Infect. Dis. 2019, 19, 563. [Google Scholar] [CrossRef]
- Walters, E.; Demers, A.-M.; van der Zalm, M.M.; Whitelaw, A.; Palmer, M.; Bosch, C.; Draper, H.R.; Gie, R.P.; Hesseling, A.C. Stool Culture for Diagnosis of Pulmonary Tuberculosis in Children. J. Clin. Microbiol. 2017, 55, 3355–3365. [Google Scholar] [CrossRef]
- Mafirakureva, N.; Klinkenberg, E.; Spruijt, I.; Levy, J.; Shaweno, D.; de Haas, P.; Kaswandani, N.; Bedru, A.; Triasih, R.; Gebremichael, M.; et al. Xpert Ultra Stool Testing to Diagnose Tuberculosis in Children in Ethiopia and Indonesia: A Model-Based Cost-Effectiveness Analysis. BMJ Open 2022, 12, e058388. [Google Scholar] [CrossRef]
- Gunasekera, K.S.; Vonasek, B.; Oliwa, J.; Triasih, R.; Lancioni, C.; Graham, S.M.; Seddon, J.A.; Marais, B.J. Diagnostic Challenges in Childhood Pulmonary Tuberculosis—Optimizing the Clinical Approach. Pathogens 2022, 11, 382. [Google Scholar] [CrossRef]
- Walters, E.; van der Zalm, M.M.; Palmer, M.; Bosch, C.; Demers, A.-M.; Draper, H.; Goussard, P.; Schaaf, H.S.; Friedrich, S.O.; Whitelaw, A.; et al. Xpert MTB/RIF on Stool Is Useful for the Rapid Diagnosis of Tuberculosis in Young Children With Severe Pulmonary Disease. Pediatr. Infect. Dis. J. 2017, 36, 837–843. [Google Scholar] [CrossRef]
- Segala, F.V.; Papagni, R.; Cotugno, S.; De Vita, E.; Susini, M.C.; Filippi, V.; Tulone, O.; Facci, E.; Lattanzio, R.; Marotta, C.; et al. Stool Xpert MTB/RIF as a Possible Diagnostic Alternative to Sputum in Africa: A Systematic Review and Meta-Analysis. Front. Public. Health 2023, 11, 1117709. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Gonzales-Huerta, L.E.; Evans, C.A. The Potential for Testing Stool to Reduce Tuberculosis Missed Diagnoses and Misdiagnoses. Am. J. Trop. Med. Hyg. 2018, 99, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Jayagandan, S.; Singh, J.; Mudliar, S.R.; Shankar, P.; Maurya, A.K.; Malhotra, A.G.; Malik, S.; Purwar, S.; Singh, S. Evaluation of Xpert MTB/RIF Assay on Stool Samples for the Diagnosis of Pulmonary Tuberculosis among the Pediatric Population. J. Lab. Physicians 2023, 15, 329–335. [Google Scholar] [CrossRef]
- Baghaei, P.; Tabarsi, P.; Farnia, P.; Radaei, A.; Kazempour, M.; Faghani, Y.; Mirsaeidi, M.; Novin, A.; Chitsaz, E.; Mansouri, D.; et al. Utility of Gastric Lavage for Diagnosis of Tuberculosis in Patients Who Are Unable to Expectorate Sputum. J. Glob. Infect. Dis. 2011, 3, 339. [Google Scholar] [CrossRef] [PubMed]
- Khambati, N.; Song, R.; MacLean, E.L.-H.; Kohli, M.; Olbrich, L.; Bijker, E.M. The Diagnostic Yield of Nasopharyngeal Aspirate for Pediatric Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis. BMC Glob. Public. Health 2023, 1, 18. [Google Scholar] [CrossRef]
- MacLean, E.; Broger, T.; Yerlikaya, S.; Fernandez-Carballo, B.L.; Pai, M.; Denkinger, C.M. A Systematic Review of Biomarkers to Detect Active Tuberculosis. Nat. Microbiol. 2019, 4, 748–758. [Google Scholar] [CrossRef]
- Huang, Y.; Ai, L.; Wang, X.; Sun, Z.; Wang, F. Review and Updates on the Diagnosis of Tuberculosis. J. Clin. Med. 2022, 11, 5826. [Google Scholar] [CrossRef]
- Brent, A.J.; Mugo, D.; Musyimi, R.; Mutiso, A.; Morpeth, S.C.; Levin, M.; Scott, J.A.G. Bacteriological Diagnosis of Childhood TB: A Prospective Observational Study. Sci. Rep. 2017, 7, 11808. [Google Scholar] [CrossRef]
- Song, R.; Click, E.S.; McCarthy, K.D.; Heilig, C.M.; Mchembere, W.; Smith, J.P.; Fajans, M.; Musau, S.K.; Okeyo, E.; Okumu, A.; et al. Sensitive and Feasible Specimen Collection and Testing Strategies for Diagnosing Tuberculosis in Young Children. JAMA Pediatr. 2021, 175, e206069. [Google Scholar] [CrossRef]
- Abdullahi, O.; Moses, N.; Sanga, D.; Annie, W. The Effect of Empirical and Laboratory-Confirmed Tuberculosis on Treatment Outcomes. Sci. Rep. 2021, 11, 14854. [Google Scholar] [CrossRef]
- Detjen, A.K.; DiNardo, A.R.; Leyden, J.; Steingart, K.R.; Menzies, D.; Schiller, I.; Dendukuri, N.; Mandalakas, A.M. Xpert MTB/RIF Assay for the Diagnosis of Pulmonary Tuberculosis in Children: A Systematic Review and Meta-Analysis. Lancet Respir. Med. 2015, 3, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, A.; Katoch, C.D.S.; Kumar, M.; Dhole, T.N.; Sharma, Y.K. Evaluation of Microscopic Observation Drug Susceptibility (MODS) Assay as a Rapid, Sensitive and Inexpensive Test for Detection of Tuberculosis and Multidrug Resistant Tuberculosis. Med. J. Armed Forces India 2019, 75, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Hamada, Y.; Kontsevaya, I.; Surkova, E.; Wang, T.T.; Liu, V.; Ziganshina, L.E.; Rangaka, M.X.; Denkinger, C.; Abubakar, I. WHO Consolidated Guidelines on Tuberculosis Module 3: Diagnosis. Tests for TB Infection Web Annex B Safety of Mycobacterium Tuberculosis Antigen-Based Skin Tests: A Systematic Review and Meta-Analysis; WHO: Geneva, Switzerland, 2021; ISBN 9789240056602. [Google Scholar]
- Mastrolia, M.V.; Sollai, S.; Totaro, C.; Putignano, P.; de Martino, M.; Galli, L.; Chiappini, E. Utility of Tuberculin Skin Test and IGRA for Tuberculosis Screening in Internationally Adopted Children: Retrospective Analysis from a Single Center in Florence, Italy. Travel. Med. Infect. Dis. 2019, 28, 64–67. [Google Scholar] [CrossRef]
- Machingaidze, S.; Wiysonge, C.S.; Gonzalez-Angulo, Y.; Hatherill, M.; Moyo, S.; Hanekom, W.; Mahomed, H. The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: A systematic review and meta-analysis. Pediatr. Infect. Dis. J. 2011, 30, 694–700. [Google Scholar] [CrossRef]
- Pai, M.; Dewan, P.K.; Swaminathan, S. Transforming Tuberculosis Diagnosis. Nat. Microbiol. 2023, 8, 756–759. [Google Scholar] [CrossRef]
- Nurwidya, F.; Handayani, D.; Burhan, E.; Yunus, F. Molecular Diagnosis of Tuberculosis. Chonnam Med. J. 2018, 54, 1–9. [Google Scholar] [CrossRef]
- Kohli, M.; Schiller, I.; Dendukuri, N.; Yao, M.; Dheda, K.; Denkinger, C.M.; Schumacher, S.G.; Steingart, K.R. Xpert MTB/RIF Ultra and Xpert MTB/RIF Assays for Extrapulmonary Tuberculosis and Rifampicin Resistance in Adults. Cochrane Database Syst. Rev. 2021, 2021, CD012768. [Google Scholar] [CrossRef]
- Ngangue, Y.R.; Mbuli, C.; Neh, A.; Nshom, E.; Koudjou, A.; Palmer, D.; Ndi, N.N.; Qin, Z.Z.; Creswell, J.; Mbassa, V.; et al. Diagnostic Accuracy of the Truenat MTB Plus Assay and Comparison with the Xpert MTB/RIF Assay to Detect Tuberculosis among Hospital Outpatients in Cameroon. J. Clin. Microbiol. 2022, 60, e0015522. [Google Scholar] [CrossRef]
- Gopalaswamy, R.; Kumar, N.; Vashistha, H.; Rajendran, P.; Kayesth, J.; Peravali, C.J.; Kashyap, S.; Ghosh, S.; Yumo, H.; Moore, M.; et al. Comprehensive Assessment of Invalid and Indeterminate Results in Truenat MTB-RIF Testing across Sites under the National TB Elimination Program of India. Front. Public. Health 2023, 11, 1255756. [Google Scholar] [CrossRef] [PubMed]
- Opota, O.; Mazza-Stalder, J.; Greub, G.; Jaton, K. The Rapid Molecular Test Xpert MTB/RIF Ultra: Towards Improved Tuberculosis Diagnosis and Rifampicin Resistance Detection. Clin. Microbiol. Infect. 2019, 25, 1370–1376. [Google Scholar] [CrossRef]
- Kaso, A.W.; Hailu, A. Costs and Cost-Effectiveness of Gene Xpert Compared to Smear Microscopy for the Diagnosis of Pulmonary Tuberculosis Using Real-World Data from Arsi Zone, Ethiopia. PLoS ONE 2021, 16, e0259056. [Google Scholar] [CrossRef] [PubMed]
- Bouzouita, I.; Ghariani, A.; Ben Dhaou, K.; Jemaeil, S.; Essaalah, L.; Bejaoui, S.; Draoui, H.; El Marzouk, N.; Mehiri, E.; Slim-Saidi, L. Usefulness of Xpert MTB/RIF Ultra for Rapid Diagnosis of Extrapulmonary Tuberculosis in Tunisia. Sci. Rep. 2024, 14, 2217. [Google Scholar] [CrossRef]
- Waters, R.; Laubscher, M.; Dunn, R.N.; Adikary, N.; Coussens, A.K.; Held, M. Higher Sensitivity of Xpert MTB/RIF Ultra Over Tuberculosis Culture for the Diagnosis of Spinal Tuberculosis With Open or Computed Tomography–Guided Biopsies. Open Forum Infect. Dis. 2024, 11, ofad621. [Google Scholar] [CrossRef]
- Slail, M.J.; Booq, R.Y.; Al-Ahmad, I.H.; Alharbi, A.A.; Alharbi, S.F.; Alotaibi, M.Z.; Aljubran, A.M.; Aldossary, A.M.; Memish, Z.A.; Alyamani, E.J.; et al. Evaluation of Xpert MTB/RIF Ultra for the Diagnosis of Extrapulmonary Tuberculosis: A Retrospective Analysis in Saudi Arabia. J. Epidemiol. Glob. Health 2023, 13, 782–793. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Kumarasamy, N.; Resch, S.C.; Sivaramakrishnan, G.N.; Mayer, K.H.; Tripathy, S.; Paltiel, A.D.; Freedberg, K.A.; Reddy, K.P. Rapid, Point-of-Care Diagnosis of Tuberculosis with Novel Truenat Assay: Cost-Effectiveness Analysis for India’s Public Sector. PLoS ONE 2019, 14, e0218890. [Google Scholar] [CrossRef] [PubMed]
- Desikan, P.; Panwalkar, N.; Mirza, S.; Chaturvedi, A.; Ansari, K.; Varathe, R.; Chourey, M.; Kumar, P.; Pandey, M. Line Probe Assay for Detection of Mycobacterium Tuberculosis Complex: An Experience from Central India. Indian. J. Med. Res. 2017, 145, 70. [Google Scholar] [CrossRef] [PubMed]
- Ssengooba, W.; Katamba, A.; Sserubiri, J.; Semugenze, D.; Nyombi, A.; Byaruhanga, R.; Turyahabwe, S.; Joloba, M.L. Performance Evaluation of Truenat MTB and Truenat MTB-RIF DX Assays in Comparison to Gene XPERT MTB/RIF Ultra for the Diagnosis of Pulmonary Tuberculosis in Uganda. BMC Infect. Dis. 2024, 24, 190. [Google Scholar] [CrossRef] [PubMed]
- Nathavitharana, R.R.; Cudahy, P.G.T.; Schumacher, S.G.; Steingart, K.R.; Pai, M.; Denkinger, C.M. Accuracy of Line Probe Assays for the Diagnosis of Pulmonary and Multidrug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Eur. Respir. J. 2017, 49, 1601075. [Google Scholar] [CrossRef]
- Singh, P.; Kanade, S.; Nataraj, G. Performance of Loop-Mediated Isothermal Amplification Assay for Diagnosis of Extrapulmonary Tuberculosis and Antituberculosis Treatment Initiation. Int. J. Mycobacteriol. 2021, 10, 373–378. [Google Scholar] [CrossRef]
- Nagai, K.; Horita, N.; Yamamoto, M.; Tsukahara, T.; Nagakura, H.; Tashiro, K.; Shibata, Y.; Watanabe, H.; Nakashima, K.; Ushio, R.; et al. Diagnostic Test Accuracy of Loop-Mediated Isothermal Amplification Assay for Mycobacterium Tuberculosis: Systematic Review and Meta-Analysis. Sci. Rep. 2016, 6, 39090. [Google Scholar] [CrossRef]
- Bjerrum, S.; Schiller, I.; Dendukuri, N.; Kohli, M.; Nathavitharana, R.R.; Zwerling, A.A.; Denkinger, C.M.; Steingart, K.R.; Shah, M. Lateral Flow Urine Lipoarabinomannan Assay for Detecting Active Tuberculosis in People Living with HIV. Cochrane Database Syst. Rev. 2019, 2019, CD011420. [Google Scholar] [CrossRef]
- Broger, T.; Koeppel, L.; Huerga, H.; Miller, P.; Gupta-Wright, A.; Blanc, F.X.; Esmail, A.; Reeve, B.W.P.; Floridia, M.; Kerkhoff, A.D.; et al. Diagnostic Yield of Urine Lipoarabinomannan and Sputum Tuberculosis Tests in People Living with HIV: A Systematic Review and Meta-Analysis of Individual Participant Data. Lancet Glob. Health 2023, 11, e903–e916. [Google Scholar] [CrossRef]
- Shah, M.; Hanrahan, C.; Wang, Z.Y.; Dendukuri, N.; Lawn, S.D.; Denkinger, C.M.; Steingart, K.R. Lateral Flow Urine Lipoarabinomannan Assay for Detecting Active Tuberculosis in HIV-Positive Adults. Cochrane Database Syst. Rev. 2016, 5, CD011420-108. [Google Scholar] [CrossRef] [PubMed]
- Schwab, T.C.; Perrig, L.; Göller, P.C.; Guebely De la Hoz, F.F.; Lahousse, A.P.; Minder, B.; Günther, G.; Efthimiou, O.; Omar, S.V.; Egger, M.; et al. Targeted Next-Generation Sequencing to Diagnose Drug-Resistant Tuberculosis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2024, 24, 1162–1176. [Google Scholar] [CrossRef]
- Dookie, N.; Khan, A.; Padayatchi, N.; Naidoo, K. Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Front. Microbiol. 2022, 13, 775030. [Google Scholar] [CrossRef]
- Iyer, A.; Ndlovu, Z.; Sharma, J.; Mansoor, H.; Bharati, M.; Kolan, S.; Morales, M.; Das, M.; Issakidis, P.; Ferlazzo, G.; et al. Operationalising Targeted Next-Generation Sequencing for Routine Diagnosis of Drug-Resistant TB. Public. Health Action. 2023, 13, 43–49. [Google Scholar] [CrossRef]
- Ahmed, M.I.M.; Ziegler, C.; Held, K.; Dubinski, I.; Ley-Zaporozhan, J.; Geldmacher, C.; von Both, U. The TAM-TB Assay—A Promising TB Immune-Diagnostic Test With a Potential for Treatment Monitoring. Front. Pediatr. 2019, 7, 27. [Google Scholar] [CrossRef]
- Portevin, D.; Moukambi, F.; Clowes, P.; Bauer, A.; Chachage, M.; Ntinginya, N.E.; Mfinanga, E.; Said, K.; Haraka, F.; Rachow, A.; et al. Assessment of the Novel T-Cell Activation Marker–Tuberculosis Assay for Diagnosis of Active Tuberculosis in Children: A Prospective Proof-of-Concept Study. Lancet Infect. Dis. 2014, 14, 931–938. [Google Scholar] [CrossRef]
- Trenti, T. Synergy Between Point-of-Care Testing and Laboratory Consolidations. EJIFCC 2021, 32, 328–336. [Google Scholar]
- Hong, J.M.; Lee, H.; Menon, N.V.; Lim, C.T.; Lee, L.P.; Ong, C.W.M. Point-of-Care Diagnostic Tests for Tuberculosis Disease. Sci. Transl. Med. 2022, 14, eabj4124. [Google Scholar] [CrossRef] [PubMed]
- Lewinsohn, D.M.; Leonard, M.K.; Lobue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, e1–e33. [Google Scholar] [CrossRef]
- Graham, S.M.; Oliwa, J.N. Diagnosis and Management of Tuberculosis in Children and Adolescents a Desk Guide for Primary Health Care Workers, 4th ed.; International Union Against Tuberculosis and Lung Disease: Paris, France, 2023. [Google Scholar]
- World Health Organization. Guidance for National Tuberculosis Programmes on the Management of Tuberculosis in Children; World Health Organization: Geneva, Switzerland, 2015; ISBN 9789241548748. [Google Scholar]
- World Health Organization. WHO Consolidated Guidelines on Tuberculosis Module 5: Management of Tuberculosis in Children and Adolescents; WHO: Geneva, Switzerland, 2022. [Google Scholar]
- Yerlikaya, S.; Broger, T.; Isaacs, C.; Bell, D.; Holtgrewe, L.; Gupta-Wright, A.; Nahid, P.; Cattamanchi, A.; Denkinger, C.M. Blazing the Trail for Innovative Tuberculosis Diagnostics. Infection 2024, 52, 29–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Tan, G.; Ma, J.; Yang, J.; Guo, Y.; Lu, H.; Ke, H.; Li, M.; Tang, Y.-W.; Sha, W.; et al. Assessment of the Cepheid 3-Gene Host Response Fingerstick Blood Test (MTB-HR) on Rapid Diagnosis of Tuberculosis. Emerg. Microbes Infect. 2023, 12, 2261561. [Google Scholar] [CrossRef]
- Sutherland, J.S.; van der Spuy, G.; Gindeh, A.; Thuong, N.T.T.; Namuganga, A.; Owolabi, O.; Mayanja-Kizza, H.; Nsereko, M.; Thwaites, G.; Winter, J.; et al. Diagnostic Accuracy of the Cepheid 3-Gene Host Response Fingerstick Blood Test in a Prospective, Multi-Site Study: Interim Results. Clin. Infect. Dis. 2022, 74, 2136–2141. [Google Scholar] [CrossRef]
- Qi, Y.; Li, K.; Li, Y.; Guo, D.; Xu, J.; Li, Y.; Gong, W. CRISPR-Based Diagnostics: A Potential Tool to Address the Diagnostic Challenges of Tuberculosis. Pathogens 2022, 11, 1211. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; Zhang, Y.; Chen, L.; Pan, Z.; Huang, Y.; Li, H. A New Method for the Detection of Mycobacterium Tuberculosis Based on the CRISPR/Cas System. BMC Infect. Dis. 2023, 23, 680. [Google Scholar] [CrossRef]
- Ren, W.; Zhou, Y.; Li, H.; Shang, Y.; Zhang, X.; Yuan, J.; Li, S.; Li, C.; Pang, Y. Development and Clinical Evaluation of a CRISPR/Cas13a-Based Diagnostic Test to Detect Mycobacterium Tuberculosis in Clinical Specimens. Front. Microbiol. 2023, 14, 1117085. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; LaCourse, S.M.; Kay, A.W.; Stern, J.; Escudero, J.N.; Youngquist, B.M.; Zheng, W.; Vambe, D.; Dlamini, M.; Mtetwa, G.; et al. CRISPR Detection of Circulating Cell-Free Mycobacterium Tuberculosis DNA in Adults and Children, Including Children with HIV: A Molecular Diagnostics Study. Lancet Microbe 2022, 3, e482–e492. [Google Scholar] [CrossRef]
- Manyelo, C.M.; Solomons, R.S.; Snyders, C.I.; Mutavhatsindi, H.; Manngo, P.M.; Stanley, K.; Walzl, G.; Chegou, N.N. Potential of Host Serum Protein Biomarkers in the Diagnosis of Tuberculous Meningitis in Children. Front. Pediatr. 2019, 7, 376. [Google Scholar] [CrossRef] [PubMed]
- Nathavitharana, R.R.; Garcia-Basteiro, A.L.; Ruhwald, M.; Cobelens, F.; Theron, G. Reimagining the Status Quo: How Close Are We to Rapid Sputum-Free Tuberculosis Diagnostics for All? EBioMedicine 2022, 78, 103939. [Google Scholar] [CrossRef]
- Walzl, G.; McNerney, R.; du Plessis, N.; Bates, M.; McHugh, T.D.; Chegou, N.N.; Zumla, A. Tuberculosis: Advances and Challenges in Development of New Diagnostics and Biomarkers. Lancet Infect. Dis. 2018, 18, e199–e210. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO on Tuberculosis (Module 2: Screening); WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Kazemzadeh, S.; Kiraly, A.P.; Nabulsi, Z.; Sanjase, N.; Maimbolwa, M.; Shuma, B.; Jamshy, S.; Chen, C.; Agharwal, A.; Lau, C.T.; et al. Prospective Multi-Site Validation of AI to Detect Tuberculosis and Chest X-Ray Abnormalities. NEJM AI 2024, 1, AIoa2400018. [Google Scholar] [CrossRef]
- Nijiati, M.; Ma, J.; Hu, C.; Tuersun, A.; Abulizi, A.; Kelimu, A.; Zhang, D.; Li, G.; Zou, X. Artificial Intelligence Assisting the Early Detection of Active Pulmonary Tuberculosis From Chest X-Rays: A Population-Based Study. Front. Mol. Biosci. 2022, 9, 874475. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, N.; Chauhan, R.; Thapliyal, S.; Gupta, R. Tuberculosis Classification Using EfficientNet B3 Deep Learning Architecture. In Proceedings of the 2023 Global Conference on Information Technologies and Communications (GCITC), Bangalore, India, 1–3 December 2023; pp. 1–6. [Google Scholar]
- Kaviani, P.; Digumarthy, S.R.; Bizzo, B.C.; Reddy, B.; Tadepalli, M.; Putha, P.; Jagirdar, A.; Ebrahimian, S.; Kalra, M.K.; Dreyer, K.J. Performance of a Chest Radiography AI Algorithm for Detection of Missed or Mislabeled Findings: A Multicenter Study. Diagnostics 2022, 12, 2086. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Ahmed, S.; Sarker, M.S.; Paul, K.; Adel, A.S.S.; Naheyan, T.; Barrett, R.; Banu, S.; Creswell, J. Tuberculosis Detection from Chest X-Rays for Triaging in a High Tuberculosis-Burden Setting: An Evaluation of Five Artificial Intelligence Algorithms. Lancet Digit. Health 2021, 3, e543–e554. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Kwak, N.; Yoon, S.H.; Park, N.; Kim, Y.R.; Lee, J.H.; Lee, J.Y.; Park, Y.; Kang, Y.A.; Kim, S.; et al. Artificial Intelligence-Based Radiographic Extent Analysis to Predict Tuberculosis Treatment Outcomes: A Multicenter Cohort Study. Sci. Rep. 2024, 14, 13162. [Google Scholar] [CrossRef]
- David, P.M.; Onno, J.; Keshavjee, S.; Ahmad Khan, F. Conditions Required for the Artificial-Intelligence-Based Computer-Aided Detection of Tuberculosis to Attain Its Global Health Potential. Lancet Digit. Health 2022, 4, e702–e704. [Google Scholar] [CrossRef]
- Murphy, K.; Habib, S.S.; Zaidi, S.M.A.; Khowaja, S.; Khan, A.; Melendez, J.; Scholten, E.T.; Amad, F.; Schalekamp, S.; Verhagen, M.; et al. Computer Aided Detection of Tuberculosis on Chest Radiographs: An Evaluation of the CAD4TB v6 System. Sci. Rep. 2020, 10, 5492. [Google Scholar] [CrossRef] [PubMed]
- Biewer, A.; Tzelios, C.; Tintaya, K.; Roman, B.; Hurwitz, S.; Yuen, C.M.; Mitnick, C.D.; Nardell, E.; Lecca, L.; Tierney, D.B.; et al. Accuracy of Digital Chest X-Ray Analysis with Artificial Intelligence Software as a Triage and Screening Tool in Hospitalized Patients Being Evaluated for Tuberculosis in Lima, Peru. medRxiv 2023. [Google Scholar] [CrossRef]
- Kazemzadeh, S.; Yu, J.; Jamshy, S.; Pilgrim, R.; Nabulsi, Z.; Chen, C.; Beladia, N.; Lau, C.; McKinney, S.M.; Hughes, T.; et al. Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists. Radiology 2023, 306, 124–137. [Google Scholar] [CrossRef]
- Malhotra, A.; Thompson, R.; De Vos, M.; David, A.; Schumacher, S.; Sohn, H. Determining Cost and Placement Decisions for Moderate Complexity NAATs for Tuberculosis Drug Susceptibility Testing. PLoS ONE 2023, 18, e0290496. [Google Scholar] [CrossRef]
- Cates, L.; Crudu, V.; Codreanu, A.; Ciobanu, N.; Fosburgh, H.; Cohen, T.; Menzies, N.A. Laboratory Costs of Diagnosing TB in a High Multidrug-Resistant TB Setting. Int. J. Tuberc. Lung Dis. 2021, 25, 228–230. [Google Scholar] [CrossRef]
- Sohn, H.; Puri, L.; Nguyen, N.A.T.; Van’t Hoog, A.H.; Nguyen, V.A.T.; Nliwasa, M.; Nabeta, P. Cost and Affordability Analysis of TB-LAMP and Xpert MTB/RIF Assays as Routine Diagnostic Tests in Peripheral Laboratories in Malawi and Vietnam. J. Glob. Health Sci. 2019, 1, e22. [Google Scholar] [CrossRef]
- Theron, G.; Venter, R.; Smith, L.; Esmail, A.; Randall, P.; Sood, V.; Oelfese, S.; Calligaro, G.; Warren, R.; Dheda, K. False-Positive Xpert MTB/RIF Results in Retested Patients with Previous Tuberculosis: Frequency, Profile, and Prospective Clinical Outcomes. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.A. Challenges in Diagnosing Childhood Tuberculosis. Infect Dis J. 2016, 25, 26. [Google Scholar]
- Sohn, H.; Sweeney, S.; Mudzengi, D.; Creswell, J.; Menzies, N.A.; Fox, G.J.; MacPherson, P.; Dowdy, D.W. Determining the Value of TB Active Case-Finding: Current Evidence and Methodological Considerations. Int. J. Tuberc. Lung Dis. 2021, 25, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Weyer, K.; Mirzayev, F.; Migliori, G.B.; Van Gemert, W.; D’Ambrosio, L.; Zignol, M.; Floyd, K.; Centis, R.; Cirillo, D.M.; Tortoli, E.; et al. Rapid Molecular TB Diagnosis: Evidence, Policy Making and Global Implementation of Xpert MTB/RIF. Eur. Respir. J. 2013, 42, 252–271. [Google Scholar] [CrossRef]
- Medina-Marino, A.; Bezuidenhout, D.; Bezuidenhout, C.; Facente, S.N.; Fourie, B.; Shin, S.S.; Penn-Nicholson, A.; Theron, G. In-Home TB Testing Using GeneXpert Edge Is Acceptable, Feasible, and Improves the Proportion of Symptomatic Household Contacts Tested for TB: A Proof-of-Concept Study. Open Forum Infect. Dis. 2024, 11, ofae279. [Google Scholar] [CrossRef]
- Meyer, A.J.; Babirye, D.; Armstrong-Hough, M.; Mark, D.; Ayakaka, I.; Katamba, A.; Haberer, J.E.; Davis, J.L. Text Messages Sent to Household Tuberculosis Contacts in Kampala, Uganda: Process Evaluation. JMIR Mhealth Uhealth 2018, 6, e10239. [Google Scholar] [CrossRef]
- Maphalle, L.N.F.; Michniak-Kohn, B.B.; Ogunrombi, M.O.; Adeleke, O.A. Pediatric Tuberculosis Management: A Global Challenge or Breakthrough? Children 2022, 9, 1120. [Google Scholar] [CrossRef]
Test | Technical Simplicity | Technology | Time Taken | Age | Symptoms and Medical History | Target Population | Sample | Accuracy | Recommendations | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Pediatric | Adolescents | Adults | |||||||||
± Xpert MTB/RIF and/or Xpert Ultra | Moderately simple; requires moderate training | qPCR | <2 h | >15 years | Signs and symptoms of pulmonary TB | - | √ | √ | Sputum | High | Initial diagnosis strongly recommended |
<15 years | Signs and symptoms of pulmonary TB | √ | Sputum, gastric aspirate, nasopharyngeal aspirate, and stool | Moderate to Low | Strongly recommended | ||||||
>15 years | Signs and symptoms of pulmonary TB and without a prior history of TB (≤5 years) or with a remote history of TB treatment (>5 years since end of treatment) | - | √ | √ | Sputum | High | Initial diagnosis strongly recommended | ||||
>15 years | Signs and symptoms of pulmonary TB and with a prior history of TB and an end of treatment <5 years | - | √ | √ | Sputum | High | Initial diagnosis strongly recommended | ||||
All | Signs and symptoms of TB meningitis | √ | √ | √ | Cerebrospinal fluid (CSF) | Moderate to Low | Strongly recommended | ||||
All | Signs and symptoms of extrapulmonary TB | √ | √ | √ | Lymph node aspirate, lymph node biopsy, pleural fluid, peritoneal fluid, pericardial fluid, synovial fluid, or urine specimens | Moderate to Low (Strong for rifampicin resistance) | Conditionally recommended (strongly recommended for Xpert MTB/RIF) | ||||
All | Signs and symptoms of disseminated TB (HIV-positive) | √ | √ | √ | Blood | Moderate to Low | Conditionally recommended | ||||
>15 years | General population who had either signs or symptoms of TB or chest radiograph with lung abnormalities or both | √ | √ | Blood | Moderate to Low | Conditionally recommended | |||||
± TrueNAT MTB, MTB plus, (under development: MTB-Ultima, MTB-INH, MTB-BDQ, MTB TB-COVID-19) | Moderately simple; requires moderate training | Micro RT-PCR | <1 h | All | With signs and symptoms of pulmonary TB | √ | √ | √ | Sputum | Moderate | Conditionally recommended |
± TrueNAT MTB-RIF Dx | Moderately simple; requires moderate training | All | With signs and symptoms of pulmonary TB and a TrueNAT MTB or MTB Plus positive result | √ | √ | √ | Sputum | Low | Conditionally recommended | ||
± Moderate complexity automated nucleic acid amplification tests (NAATs) | Requires highly trained facility/manpower | High-throughput molecular PCR | 6–8 h | All | Signs and symptoms of pulmonary TB | √ | √ | √ | Respiratory samples | Moderate | Conditionally recommended (also for isoniazid and rifampicin resistance) |
± Loopamp MTBC assay | Simple with moderate training | Loop-mediated isothermal amplification | <2 h | >15 years | Signs and symptoms consistent with TB | √ | √ | √ | Sputum | Low | Conditionally recommended |
>15 years | Necessary further testing of sputum smear-negative specimens | √ | √ | √ | Sputum | Low | Conditionally recommended | ||||
± LAM Ag assay | Simple with minimal instructions | Lateral flow urine lipo-arabino-mannan assay | <1 h | All | In inpatient settings → HIV-positive adults and children with signs and symptoms of TB, CD4 cell count of less than 200 cells/mm3 | √ | √ | √ | Urine | Moderate to Low | Conditionally recommended |
All | In outpatient settings → HIV-positive adults and children with signs and symptoms of TB, CD4 cell count of less than 100 cells/mm3 | √ | √ | √ | Urine | Low | Conditionally recommended | ||||
± First-line line-probe assay (LPAs) | Requires highly trained facility/manpower | Multiplex PCR+ DNA strip reverse hybridization assay | <48 h | All | Sputum smear-positive specimen or a cultured isolate of Mtb complex (MTBC) | √ | √ | √ | Sputum | Moderate | Conditionally recommended (rifampicin/isoniazid resistance) |
Second-line line-probe assays (SL-LPAs) * | Requires highly trained facility/manpower | Multiplex PCR+ DNA strip reverse hybridization assay | <48 h | All | Confirmed MDR/RR-TB | √ | √ | √ | Sputum | Moderate to low | Conditionally recommended (Fluoroquinolone resistance detection) |
± High complexity reverse hybridization-based NAATs | Requires highly trained facility/manpower | Multiplex PCR+ DNA strip reverse hybridization assay (targeting the entire pncA gene) | Variable (<24 h) | All | Bacteriologically confirmed TB | √ | √ | √ | TB culture isolates | Low | Conditionally recommended (specialized for pyrazinamide resistance) |
Next-generation sequencing | Requires highly trained facility/manpower | Whole genome/targeted sequencing | <48 h | All | NA | √ | √ | √ | Sputum, TB culture isolates | High | NA |
TAM TB assay * | Requires highly trained facility/manpower | Flow cytometry/TB specific biomarkers CD38/CD27 | <24 h | All | NA | √ | √ | √ | Blood | Moderate to High | NA |
Tool | Accuracy | Input | Key Feature | References |
---|---|---|---|---|
CAD4TB (version 7) | 94% sensitivity and 84% specificity | Chest X-rays | Includes modules for registration, symptom screening, X-ray imaging, and integration with GeneXpert systems | [78] |
EfficientNetB3 (https://huggingface.co/google/efficientnet-b3) | High performance (highest Area Under Curve of 0.999) | Chest X-rays | A convolutional neural network structure that can accurately detect mislabeled and missed findings | [73] |
qSpot-TB (https://www.qure.ai/global-health) | 96% sensitivity | Chest X-ray analysis | Received FDA breakthrough device designation | [74] |
InferRead DR (version 2) | 90% sensitivity and 70.4% specificity | Chest X-ray analysis | Screening time is <1 min, no subsequent validation suggested | [75] |
Lunit INSIGHT (https://www.lunit.io/en/products/mmg) | ~89% sensitivity | Chest X-ray analysis | Clinical evaluations worldwide show promise in conspicuity among other tools | [75] |
JF CXR-1 (http://intl.jfhealthcare.com/en/product.html) | 94% sensitivity | Chest X-rays | Clinical evaluations worldwide show promise working under limited resources | [75] |
qXR (https://www.qure.ai/product/qxr) | ~91% sensitivity | Chest X-rays | Received FDA/CE clearances | [79] |
Google Health AI system (https://health.google/health-research/imaging-and-diagnostics/) | Yet to be determined | Chest X-rays | A deep learning-based system capable of personalized health management | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basu, S.; Chakraborty, S. A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance. Microorganisms 2025, 13, 178. https://doi.org/10.3390/microorganisms13010178
Basu S, Chakraborty S. A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance. Microorganisms. 2025; 13(1):178. https://doi.org/10.3390/microorganisms13010178
Chicago/Turabian StyleBasu, Soumya, and Subhra Chakraborty. 2025. "A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance" Microorganisms 13, no. 1: 178. https://doi.org/10.3390/microorganisms13010178
APA StyleBasu, S., & Chakraborty, S. (2025). A Comprehensive Review of the Diagnostics for Pediatric Tuberculosis Based on Assay Time, Ease of Operation, and Performance. Microorganisms, 13(1), 178. https://doi.org/10.3390/microorganisms13010178