Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources for Human Skin Microbiota
2.2. Data Sources for Radiation-Induced Skin Toxicity
2.3. Screening of Instrumental Variables
2.4. MR Analysis and Statistical Analysis
3. Results
3.1. Screening of Instrumental Variables
3.2. Two-Sample MR Analysis of Human Skin Microbiota on Radiation-Induced Skin Toxicity
3.2.1. Causal Impact of Human Skin Microbiota on Radiation-Related Disorders of the Skin and Subcutaneous Tissue
3.2.2. Causal Impact of Human Skin Microbiota on Skin Changes Due to Chronic Exposure to Nonionizing Radiation
3.2.3. Causal Impact of Human Skin Microbiota on Radiodermatitis
3.3. Reverse Two-Sample MR Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conteville, L.C.; Vicente, A.C.P. Skin Exposure to Sunlight: A Factor Modulating the Human Gut Microbiome Composition. Gut Microbes 2020, 11, 1135–1138. [Google Scholar] [CrossRef] [PubMed]
- Parashar, R.; Yadav, S.M.; Meena, P.; Kumar, R.; Jheeta, K.S.; Saini, P.; Patel, D.D. Response of Male Reproductive System against Ionizing Radiation and Available Radio-Protective Agents: Cellular and Molecular Insight. CRP 2024, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Tuieng, R.J.; Cartmell, S.H.; Kirwan, C.C.; Sherratt, M.J. The Effects of Ionising and Non-Ionising Electromagnetic Radiation on Extracellular Matrix Proteins. Cells 2021, 10, 3041. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, M.; Coleman, C.N.; Eriksen, J.G.; Lee, P.; Kraus, R.; Harsdorf, E.; Lee, B.; Dicker, A.; Hahn, E.; Agarwal, J.P.; et al. Addressing Challenges in Low-Income and Middle-Income Countries through Novel Radiotherapy Research Opportunities. Lancet Oncol. 2024, 25, e270–e280. [Google Scholar] [CrossRef] [PubMed]
- Villegas, F.; Dal Bello, R.; Alvarez-Andres, E.; Dhont, J.; Janssen, T.; Milan, L.; Robert, C.; Salagean, G.-A.-M.; Tejedor, N.; Trnková, P.; et al. Challenges and Opportunities in the Development and Clinical Implementation of Artificial Intelligence Based Synthetic Computed Tomography for Magnetic Resonance Only Radiotherapy. Radiother. Oncol. 2024, 198, 110387. [Google Scholar] [CrossRef]
- DiCarlo, A.L.; Bandremer, A.C.; Hollingsworth, B.A.; Kasim, S.; Laniyonu, A.; Todd, N.F.; Wang, S.-J.; Wertheimer, E.R.; Rios, C.I. Cutaneous Radiation Injuries: Models, Assessment and Treatments. Radiat. Res. 2020, 194, 315. [Google Scholar] [CrossRef]
- Tian, X.; Guo, J.; Gu, C.; Wang, H.; Wang, D.; Liao, Y.; Zhu, S.; Zhao, M.; Gu, Z. Ergothioneine–Sodium Hyaluronate Dressing: A Promising Approach for Protecting against Radiation-Induced Skin Injury. ACS Appl. Mater. Interfaces 2024, 16, 29917–29929. [Google Scholar] [CrossRef]
- Leventhal, J.; Young, M.R. Radiation Dermatitis: Recognition, Prevention, and Management. Oncology 2017, 31, 885–887+894–899. [Google Scholar]
- Zhang, L.; Liu, S. Grade IV Radiation Skin Injury on the Neck of a Patient with Tonsillar Carcinoma: A Case Report. Adv. Ski. Wound Care 2024, 37, 1–4. [Google Scholar] [CrossRef]
- Ryan, J.L. Ionizing Radiation: The Good, the Bad, and the Ugly. J. Investig. Dermatol. 2012, 132, 985–993. [Google Scholar] [CrossRef]
- Schommer, N.N.; Gallo, R.L. Structure and Function of the Human Skin Microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Yu, X.; Cheng, G. Human Skin Bacterial Microbiota Homeostasis: A Delicate Balance between Health and Disease. mLife 2023, 2, 107–120. [Google Scholar] [CrossRef]
- Belkaid, Y.; Tamoutounour, S. The Influence of Skin Microorganisms on Cutaneous Immunity. Nat. Rev. Immunol. 2016, 16, 353–366. [Google Scholar] [CrossRef] [PubMed]
- Gallo, R.L. Human Skin Is the Largest Epithelial Surface for Interaction with Microbes. J. Investig. Dermatol. 2017, 137, 1213–1214. [Google Scholar] [CrossRef]
- Chu, D.M.; Ma, J.; Prince, A.L.; Antony, K.M.; Seferovic, M.D.; Aagaard, K.M. Maturation of the Infant Microbiome Community Structure and Function across Multiple Body Sites and in Relation to Mode of Delivery. Nat. Med. 2017, 23, 314–326. [Google Scholar] [CrossRef]
- Oh, J.; Byrd, A.L.; Park, M.; Kong, H.H.; Segre, J.A. Temporal Stability of the Human Skin Microbiome. Cell 2016, 165, 854–866. [Google Scholar] [CrossRef]
- Kong, H.H.; Oh, J.; Deming, C.; Conlan, S.; Grice, E.A.; Beatson, M.A.; Nomicos, E.; Polley, E.C.; Komarow, H.D.; NISC Comparative Sequence Program; et al. Temporal Shifts in the Skin Microbiome Associated with Disease Flares and Treatment in Children with Atopic Dermatitis. Genome Res. 2012, 22, 850–859. [Google Scholar] [CrossRef]
- Fitz-Gibbon, S.; Tomida, S.; Chiu, B.-H.; Nguyen, L.; Du, C.; Liu, M.; Elashoff, D.; Erfe, M.C.; Loncaric, A.; Kim, J.; et al. Propionibacterium Acnes Strain Populations in the Human Skin Microbiome Associated with Acne. J. Investig. Dermatol. 2013, 133, 2152–2160. [Google Scholar] [CrossRef]
- Nodake, Y.; Matsumoto, S.; Miura, R.; Honda, H.; Ishibashi, G.; Matsumoto, S.; Dekio, I.; Sakakibara, R. Pilot Study on Novel Skin Care Method by Augmentation with Staphylococcus Epidermidis, an Autologous Skin Microbe—A Blinded Randomized Clinical Trial. J. Dermatol. Sci. 2015, 79, 119–126. [Google Scholar] [CrossRef]
- Callewaert, C.; Lambert, J.; Van De Wiele, T. Towards a Bacterial Treatment for Armpit Malodour. Exp. Dermatol. 2017, 26, 388–391. [Google Scholar] [CrossRef]
- Burns, E.M.; Ahmed, H.; Isedeh, P.N.; Kohli, I.; Van Der Pol, W.; Shaheen, A.; Muzaffar, A.F.; Al-Sadek, C.; Foy, T.M.; Abdelgawwad, M.S.; et al. Ultraviolet Radiation, Both UVA and UVB, Influences the Composition of the Skin Microbiome. Exp. Dermatol. 2019, 28, 136–141. [Google Scholar] [CrossRef] [PubMed]
- Dotterud, L.K.; Wilsgaard, T.; Vorland, L.H.; Falk, E.S. The Effect of UVB Radiation on Skin Microbiota in Patients with Atopic Dermatitis and Healthy Controls. Int. J. Circumpolar Health 2008, 67, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Pierce, B.L.; Burgess, S. Efficient Design for Mendelian Randomization Studies: Subsample and 2-Sample Instrumental Variable Estimators. Am. J. Epidemiol. 2013, 178, 1177–1184. [Google Scholar] [CrossRef]
- Emdin, C.A.; Khera, A.V.; Kathiresan, S. Mendelian Randomization. JAMA 2017, 318, 1925. [Google Scholar] [CrossRef]
- Moitinho-Silva, L.; Degenhardt, F.; Rodriguez, E.; Emmert, H.; Juzenas, S.; Möbus, L.; Uellendahl-Werth, F.; Sander, N.; Baurecht, H.; Tittmann, L.; et al. Host Genetic Factors Related to Innate Immunity, Environmental Sensing and Cellular Functions Are Associated with Human Skin Microbiota. Nat. Commun. 2022, 13, 6204. [Google Scholar] [CrossRef]
- Burgess, S.; Thompson, S.G.; CRP CHD Genetics Collaboration. Avoiding Bias from Weak Instruments in Mendelian Randomization Studies. Int. J. Epidemiol. 2011, 40, 755–764. [Google Scholar] [CrossRef]
- Burgess, S.; Davey Smith, G.; Davies, N.M.; Dudbridge, F.; Gill, D.; Glymour, M.M.; Hartwig, F.P.; Kutalik, Z.; Holmes, M.V.; Minelli, C.; et al. Guidelines for Performing Mendelian Randomization Investigations: Update for Summer 2023. Wellcome Open Res. 2023, 4, 186. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. Int. J. Epidemiol. 2015, 44, 512–525. [Google Scholar] [CrossRef]
- Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [Google Scholar] [CrossRef]
- Burgess, S.; Butterworth, A.; Thompson, S.G. Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genet. Epidemiol. 2013, 37, 658–665. [Google Scholar] [CrossRef]
- Burgess, S.; Dudbridge, F.; Thompson, S.G. Combining Information on Multiple Instrumental Variables in Mendelian Randomization: Comparison of Allele Score and Summarized Data Methods. Statist. Med. 2016, 35, 1880–1906. [Google Scholar] [CrossRef] [PubMed]
- Skrivankova, V.W.; Richmond, R.C.; Woolf, B.A.R.; Yarmolinsky, J.; Davies, N.M.; Swanson, S.A.; VanderWeele, T.J.; Higgins, J.P.T.; Timpson, N.J.; Dimou, N.; et al. Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Randomization: The STROBE-MR Statement. JAMA 2021, 326, 1614. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Chiang, H.-I.; Jiang, S.B.; Nagarajan, H.; Zengler, K.; Gallo, R.L. The Microbiome Extends to Subepidermal Compartments of Normal Skin. Nat. Commun. 2013, 4, 1431. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Kong, H.H.; Renaud, G.; Young, A.C.; Bouffard, G.G.; Blakesley, R.W.; Wolfsberg, T.G.; Turner, M.L.; Segre, J.A. A Diversity Profile of the Human Skin Microbiota. Genome Res. 2008, 18, 1043–1050. [Google Scholar] [CrossRef]
- Crepin, D.M.; Chavignon, M.; Verhoeven, P.O.; Laurent, F.; Josse, J.; Butin, M. Staphylococcus capitis: Insights into Epidemiology, Virulence, and Antimicrobial Resistance of a Clinically Relevant Bacterial Species. Clin. Microbiol. Rev. 2024, 37, e00118-23. [Google Scholar] [CrossRef]
- Otto, M. Staphylococcus epidermidis—The “accidental” Pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef]
- Al-Trad, E.I.; Che Hamzah, A.M.; Puah, S.M.; Chua, K.H.; Kwong, S.M.; Yeo, C.C.; Chew, C.H. Comparative Genomic Analysis of a Multidrug-Resistant Staphylococcus Hominis ShoR14 Clinical Isolate from Terengganu, Malaysia, Led to the Discovery of Novel Mobile Genetic Elements. Pathogens 2022, 11, 1406. [Google Scholar] [CrossRef]
- Ramadan, M.; Hetta, H.F.; Saleh, M.M.; Ali, M.E.; Ahmed, A.A.; Salah, M. Alterations in Skin Microbiome Mediated by Radiotherapy and Their Potential Roles in the Prognosis of Radiotherapy-Induced Dermatitis: A Pilot Study. Sci. Rep. 2021, 11, 5179. [Google Scholar] [CrossRef]
- Alsaadi, S.E.; Lu, H.; Zhang, M.; Dykes, G.F.; Allison, H.E.; Horsburgh, M.J. Bacteriophages from Human Skin Infecting Coagulase-Negative Staphylococcus: Diversity, Novelty and Host Resistance. Sci. Rep. 2024, 14, 8245. [Google Scholar] [CrossRef]
- Jianu, D.M.; Săndulescu, O.; Streinu-Cercel, A.; Berciu, I.; Blidaru, A.; Filipescu, M.; Vartic, M.; Cobani, O.; Jianu, Ș.A.; Tălăpan, D.; et al. Microbiologic Safety of the Transareolar Approach in Breast Augmentation. Aesthet. Surg. J. 2016, 36, 51–57. [Google Scholar] [CrossRef]
- Joglekar, P.; Conlan, S.; Lee-Lin, S.-Q.; Deming, C.; Kashaf, S.S.; NISC Comparative Sequencing Program; Kong, H.H.; Segre, J.A.; Barnabas, B.B.; Black, S.; et al. Integrated Genomic and Functional Analyses of Human Skin–Associated Staphylococcus Reveal Extensive Inter- and Intra-Species Diversity. Proc. Natl. Acad. Sci. USA 2023, 120, e2310585120. [Google Scholar] [CrossRef]
- Gostev, V.; Leyn, S.; Kruglov, A.; Likholetova, D.; Kalinogorskaya, O.; Baykina, M.; Dmitrieva, N.; Grigorievskaya, Z.; Priputnevich, T.; Lyubasovskaya, L.; et al. Global Expansion of Linezolid-Resistant Coagulase-Negative Staphylococci. Front. Microbiol. 2021, 12, 661798. [Google Scholar] [CrossRef] [PubMed]
- Nakatsuji, T.; Hata, T.R.; Tong, Y.; Cheng, J.Y.; Shafiq, F.; Butcher, A.M.; Salem, S.S.; Brinton, S.L.; Rudman Spergel, A.K.; Johnson, K.; et al. Development of a Human Skin Commensal Microbe for Bacteriotherapy of Atopic Dermatitis and Use in a Phase 1 Randomized Clinical Trial. Nat. Med. 2021, 27, 700–709. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, L.C.; Garcia, G.D.; Cavalcante, F.S.; Dias, G.M.; de Farias, F.M.; Saintive, S.; Abad, E.D.D.; Ferreira, D.D.C.; dos Santos, K.R.N. Methicillin-Resistant Staphylococcus aureus and Coagulase-Negative Staphylococcus Produce Antimicrobial Substances against Members of the Skin Microbiota in Children with Atopic Dermatitis. FEMS Microbiol. Ecol. 2024, 100, fiae070. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Gan, Y.; Qi, F.; Lu, X.; Zhang, X.; Zhang, J.; Wang, H.; Li, Y.; Zhou, Z.; Wang, X.; et al. Innate Lymphoid Cell-Based Immunomodulatory Hydrogel Microspheres Containing Cutibacterium acnes Extracellular Vesicles for the Treatment of Psoriasis. Acta Biomater. 2024, 184, 296–312. [Google Scholar] [CrossRef]
- Roslund, M.I.; Parajuli, A.; Hui, N.; Puhakka, R.; Grönroos, M.; Soininen, L.; Nurminen, N.; Oikarinen, S.; Cinek, O.; Kramná, L.; et al. A Placebo-Controlled Double-Blinded Test of the Biodiversity Hypothesis of Immune-Mediated Diseases: Environmental Microbial Diversity Elicits Changes in Cytokines and Increase in T Regulatory Cells in Young Children. Ecotoxicol. Environ. Saf. 2022, 242, 113900. [Google Scholar] [CrossRef]
- Naz, S.; Ali, Z.; Minhas, A.; Fatima, A.; Waseem, S. Generation of Dysbiotic Microbiota in Cutaneous Leishmaniasis and Enhancement of Skin Inflammation. Microb. Pathog. 2023, 181, 106202. [Google Scholar] [CrossRef]
- Jiao, J.; Zheng, Y.; Zhang, Q.; Xia, D.; Zhang, L.; Ma, N. Saliva Microbiome Changes in Thyroid Cancer and Thyroid Nodules Patients. Front. Cell. Infect. Microbiol. 2022, 12, 989188. [Google Scholar] [CrossRef]
- Meng, S.; Chen, B.; Yang, J.; Wang, J.; Zhu, D.; Meng, Q.; Zhang, L. Study of Microbiomes in Aseptically Collected Samples of Human Breast Tissue Using Needle Biopsy and the Potential Role of in Situ Tissue Microbiomes for Promoting Malignancy. Front. Oncol. 2018, 8, 318. [Google Scholar] [CrossRef]
- Jiang, H.H.; Li, X.F.; Wang, J.L. Relationship between chronic radiation enteritis of cervical cancer and gut microbiota. Beijing Da Xue Xue Bao Yi Xue Ban 2023, 55, 619–624. [Google Scholar] [CrossRef]
- Reiter, O.; Leshem, A.; Alexander-Shani, R.; Brandwein, M.; Cohen, Y.; Yeshurun, A.; Ziv, M.; Elinav, E.; Hodak, E.; Dodiuk-Gad, R.P. Bacterial Skin Dysbiosis in Darier Disease. Dermatology 2024, 240, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-H.; Son, S.-M.; Park, H.; Kim, B.K.; Choi, I.S.; Kim, H.; Huh, C.S. Taxonomic Profiling of Skin Microbiome and Correlation with Clinical Skin Parameters in Healthy Koreans. Sci. Rep. 2021, 11, 16269. [Google Scholar] [CrossRef] [PubMed]
- Trindade Torres, M.; Sousa Nunes, B.; Varandas, L.; Maltez, F. Actinomycetoma by Cellulosimicrobium Cellulans in a Young Man from Guinea-Bissau: Short Literature Review Regarding a Case Report. Acta Med. Port. 2023, 37, 46–50. [Google Scholar] [CrossRef]
- Li, M.L.; Shah, A.D. Micrococcus Peritonitis Complicating Peritoneal Dialysis. Rhode Isl. Med. J. 2024, 107, 16–19. [Google Scholar] [CrossRef]
- Gupta, A.; Dutt, V.; Sharma, N.; Kajale, S.; Bhatt, A.; Shafi, S.; Azhar, E.; Zumla, A.; Sharma, A. Examining the Microbial Composition of Natural Springs in Bhaderwah, Jammu and Kashmir, India. Environ. Monit. Assess. 2023, 195, 949. [Google Scholar] [CrossRef]
- Ridaura, V.K.; Bouladoux, N.; Claesen, J.; Chen, Y.E.; Byrd, A.L.; Constantinides, M.G.; Merrill, E.D.; Tamoutounour, S.; Fischbach, M.A.; Belkaid, Y. Contextual Control of Skin Immunity and Inflammation by Corynebacterium. J. Exp. Med. 2018, 215, 785–799. [Google Scholar] [CrossRef]
- Liao, W.; Hei, T.K.; Cheng, S.K. Radiation-Induced Dermatitis Is Mediated by IL17-Expressing Γδ T Cells. Radiat. Res. 2017, 187, 464. [Google Scholar] [CrossRef]
- Chastanet, A.; Msadek, T. clpP of Streptococcus salivarius Is a Novel Member of the Dually Regulated Class of Stress Response Genes in Gram-Positive Bacteria. J. Bacteriol. 2003, 185, 683–687. [Google Scholar] [CrossRef]
- Glatz, M.; Jo, J.-H.; Kennedy, E.A.; Polley, E.C.; Segre, J.A.; Simpson, E.L.; Kong, H.H. Emollient Use Alters Skin Barrier and Microbes in Infants at Risk for Developing Atopic Dermatitis. PLoS ONE 2018, 13, e0192443. [Google Scholar] [CrossRef]
- Zangrilli, A.; Diluvio, L.; Di Stadio, A.; Di Girolamo, S. Improvement of Psoriasis Using Oral Probiotic Streptococcus salivarius K-12: A Case–Control 24-Month Longitudinal Study. Probiotics Antimicrob. Proteins 2022, 14, 573–578. [Google Scholar] [CrossRef]
- Kaci, G.; Goudercourt, D.; Dennin, V.; Pot, B.; Doré, J.; Ehrlich, S.D.; Renault, P.; Blottière, H.M.; Daniel, C.; Delorme, C. Anti-Inflammatory Properties of Streptococcus salivarius, a Commensal Bacterium of the Oral Cavity and Digestive Tract. Appl. Environ. Microbiol. 2014, 80, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.P.; Chilcott, C.N.; Moore, C.J.; Speiser, G.; Tagg, J.R. A Preliminary Study of the Effect of Probiotic Streptococcus salivarius K12 on Oral Malodour Parameters. J. Appl. Microbiol. 2006, 100, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.Y.; Kim, T.H.; Shin, J.H.; Cho, K.; Ha, H.-K.; Lee, A.; Kim, Y.J. Navigating the Microbial Community in the Trachea-Oropharynx of Breast Cancer Patients with or without Neoadjuvant Chemotherapy (NAC) via Endotracheal Tube: Has NAC Caused Any Change? PeerJ 2023, 11, e16366. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wu, Q.; Fan, Y.; Guo, F.; Li, S.; Zhang, S.; Zuo, Y. Identification of Gut Microbiota Dysbiosis in Bullous Pemphigoid under Different Disease Activity. Exp. Dermatol. 2023, 32, 2149–2159. [Google Scholar] [CrossRef]
- Rinaldi, F.; Pinto, D.; Borsani, E.; Castrezzati, S.; Amedei, A.; Rezzani, R. The First Evidence of Bacterial Foci in the Hair Part and Dermal Papilla of Scalp Hair Follicles: A Pilot Comparative Study in Alopecia Areata. Int. J. Mol. Sci. 2022, 23, 11956. [Google Scholar] [CrossRef]
- Fan, X.; Zang, T.; Dai, J.; Wu, N.; Hope, C.; Bai, J.; Liu, Y. The Associations of Maternal and Children’s Gut Microbiota with the Development of Atopic Dermatitis for Children Aged 2 Years. Front. Immunol. 2022, 13, 1038876. [Google Scholar] [CrossRef]
- Laursen, M.F.; Pekmez, C.T.; Larsson, M.W.; Lind, M.V.; Yonemitsu, C.; Larnkjær, A.; Mølgaard, C.; Bode, L.; Dragsted, L.O.; Michaelsen, K.F.; et al. Maternal Milk Microbiota and Oligosaccharides Contribute to the Infant Gut Microbiota Assembly. ISME Commun. 2021, 1, 21. [Google Scholar] [CrossRef]
- LaButti, K.; Pukall, R.; Steenblock, K.; Glavina Del Rio, T.; Tice, H.; Copeland, A.; Cheng, J.-F.; Lucas, S.; Chen, F.; Nolan, M.; et al. Complete Genome Sequence of Anaerococcus Prevotii Type Strain (PC1T). Stand. Genom. Sci. 2009, 1, 159–165. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, Q.; Ma, L.; Chen, Y.; Gao, Y.; Zhang, G.; Cui, S.; Liang, H.; Song, L.; He, C. Shifts in the Skin Microbiome Associated with Diaper Dermatitis and Emollient Treatment amongst Infants and Toddlers in China. Exp. Dermatol. 2019, 28, 1289–1297. [Google Scholar] [CrossRef]
- Gomes, P.W.P.; Mannochio-Russo, H.; Mao, J.; Zhao, H.N.; Ancira, J.; Tipton, C.D.; Dorrestein, P.C.; Li, M. Co-Occurrence Network Analysis Reveals the Alterations of the Skin Microbiome and Metabolome in Adults with Mild to Moderate Atopic Dermatitis. mSystems 2024, 9, e01119-23. [Google Scholar] [CrossRef]
- Kayıran, M.A.; Sahin, E.; Koçoğlu, E.; Sezerman, O.U.; Gürel, M.S.; Karadağ, A.S. Is Cutaneous Microbiota a Player in Disease Pathogenesis? Comparison of Cutaneous Microbiota in Psoriasis and Seborrheic Dermatitis with Scalp Involvement. IJDVL 2022, 88, 738–748. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, R.; Song, Y.; Wan, Z.; Chen, W.; Li, H.; Li, R. Dysbiosis of Nail Microbiome in Patients with Psoriasis. Exp. Dermatol. 2022, 31, 800–806. [Google Scholar] [CrossRef] [PubMed]
- Moosbrugger-Martinz, V.; Hackl, H.; Gruber, R.; Pilecky, M.; Knabl, L.; Orth-Höller, D.; Dubrac, S. Initial Evidence of Distinguishable Bacterial and Fungal Dysbiosis in the Skin of Patients with Atopic Dermatitis or Netherton Syndrome. J. Investig. Dermatol. 2021, 141, 114–123. [Google Scholar] [CrossRef]
- Yang, X.; Che, T.; Tian, S.; Zhang, Y.; Zheng, Y.; Zhang, Y.; Zhang, X.; Wu, Z. A Living Microecological Hydrogel with Microbiota Remodeling and Immune Reinstatement for Diabetic Wound Healing. Adv. Healthc. Mater. 2024, 13, 2400856. [Google Scholar] [CrossRef]
- Eguren, C.; Navarro-Blasco, A.; Corral-Forteza, M.; Reolid-Pérez, A.; Setó-Torrent, N.; García-Navarro, A.; Prieto-Merino, D.; Núñez-Delegido, E.; Sánchez-Pellicer, P.; Navarro-López, V. A Randomized Clinical Trial to Evaluate the Efficacy of an Oral Probiotic in Acne Vulgaris. Acta Derm. Venereol. 2024, 104, adv33206. [Google Scholar] [CrossRef]
- Zakiudin, D.P.; Thyssen, J.P.; Zachariae, C.; Videm, V.; Øien, T.; Simpson, M.R. Filaggrin Mutation Status and Prevention of Atopic Dermatitis with Maternal Probiotic Supplementation. Acta Derm. Venereol. 2024, 104, adv24360. [Google Scholar] [CrossRef]
- Wei, K.; Liao, X.; Yang, T.; He, X.; Yang, D.; Lai, L.; Lang, J.; Xiao, M.; Wang, J. Efficacy of Probiotic Supplementation in the Treatment of Psoriasis—A Systematic Review and Meta-analysis. J. Cosmet. Dermatol. 2024, 23, 2361–2367. [Google Scholar] [CrossRef]
- Gilaberte, Y.; Piquero-Casals, J.; Schalka, S.; Leone, G.; Brown, A.; Trullàs, C.; Jourdan, E.; Lim, H.W.; Krutmann, J.; Passeron, T. Exploring the Impact of Solar Radiation on Skin Microbiome to Develop Improved Photoprotection Strategies. Photochem. Photobiol. 2024, php.13962. [Google Scholar] [CrossRef]
- Bouilly-Gauthier, D.; Jeannes, C.; Maubert, Y.; Duteil, L.; Queille-Roussel, C.; Piccardi, N.; Montastier, C.; Manissier, P.; Piérard, G.; Ortonne, J.-P. Clinical Evidence of Benefits of a Dietary Supplement Containing Probiotic and Carotenoids on Ultraviolet-Induced Skin Damage: Benefits of a Dietary Supplement on UV-Induced Skin Damage. Br. J. Dermatol. 2010, 163, 536–543. [Google Scholar] [CrossRef]
- Rai, S.; Rai, G.; Kumar, A. Eco-Evolutionary Impact of Ultraviolet Radiation (UVR) Exposure on Microorganisms, with a Special Focus on Our Skin Microbiome. Microbiol. Res. 2022, 260, 127044. [Google Scholar] [CrossRef]
- Whiting, C.; Abdel Azim, S.; Friedman, A. The Skin Microbiome and Its Significance for Dermatologists. Am. J. Clin. Dermatol. 2024, 25, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Janssens-Böcker, C.; Doberenz, C.; Monteiro, M.; De Oliveira Ferreira, M. Influence of Cosmetic Skincare Products with pH < 5 on the Skin Microbiome: A Randomized Clinical Evaluation. Dermatol. Ther. 2024. [Google Scholar] [CrossRef]
- Levin, M.G.; Burgess, S. Mendelian Randomization as a Tool for Cardiovascular Research: A Review. JAMA Cardiol. 2024, 9, 79. [Google Scholar] [CrossRef]
ID.Exposure | Microbial Feature | Skin Microenvironment | ID.Outcome | p-Value | OR (95% CI) |
---|---|---|---|---|---|
GCST90133172 | Staphylococcus (unc.) | Moist | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.004828 | 1.0454 (1.0136–1.0782) |
GCST90133192 | Order: actinomycetales | Sebaceous | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.025554 | 1.0354 (1.0043–1.0675) |
GCST90133209 | Anaerococcus (unc.) | Sebaceous | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.021701 | 0.9716 (0.9480–0.9958) |
GCST90133180 | S. hominis | Moist | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.033997 | 0.9796 (0.9611–0.9984) |
GCST90133227 | Family: micrococcaceae | Dry | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.047691 | 0.9739 (0.9487–0.9997) |
GCST90133268 | Enhydrobacter (unc.) | Dry | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.008097 | 0.9724 (0.9525–0.9928) |
GCST90133273 | Finegoldia (unc.) | Dry | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.046118 | 0.9723 (0.9458–0.9995) |
GCST90133275 | Staphylococcus (unc.) | Dry | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.018712 | 1.0342 (1.0056–1.0636) |
GCST90133280 | Corynebacterium (unc.) | Dry | Finngen_R7_L12_RADIATIONRELATEDSKIN | 0.030431 | 1.0235 (1.0022–1.0453) |
GCST90133172 | Staphylococcus (unc.) | Moist | Finngen_R7_L12_NONIONRADISKIN | 0.023715 | 1.0381 (1.0050–1.0723) |
GCST90133173 | Staphylococcus (unc.) | Moist | Finngen_R7_L12_NONIONRADISKIN | 0.043552 | 1.0314 (1.0009–1.0628) |
GCST90133192 | Order: actinomycetales | Sebaceous | Finngen_R7_L12_NONIONRADISKIN | 0.047147 | 1.0330 (1.0004–1.0666) |
GCST90133257 | Corynebacterium (unc.) | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.032591 | 0.9587 (0.9223–0.9965) |
GCST90133276 | A. johnsonii | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.029879 | 0.9784 (0.9594–0.9979) |
GCST90133289 | Family: flavobacteriaceae | Moist | Finngen_R7_L12_NONIONRADISKIN | 0.048124 | 1.0264 (1.0002–1.0533) |
GCST90133180 | S. hominis | Moist | Finngen_R7_L12_NONIONRADISKIN | 0.033275 | 0.9784 (0.9589–0.9983) |
GCST90133232 | Genus: micrococcus | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.041005 | 1.0315 (1.0013–1.0626) |
GCST90133264 | Acinetobacter (unc.) | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.049003 | 0.9818 (0.9640–0.9999) |
GCST90133268 | Enhydrobacter (unc.) | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.037176 | 0.9772 (0.9562–0.9986) |
GCST90133275 | Staphylococcus (unc.) | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.006405 | 1.0397 (1.0110–1.0692) |
GCST90133280 | Corynebacterium (unc.) | Dry | Finngen_R7_L12_NONIONRADISKIN | 0.006915 | 1.0326 (1.0089–1.0570) |
GCST90133292 | Veillonella (unc.) | Moist | Finngen_R7_L12_NONIONRADISKIN | 0.041941 | 0.9764 (0.9542–0.9991) |
GCST90133180 | S. hominis | Moist | Finngen_R10_L12_RADIODERMATITIS | 0.034968 | 1.2295 (1.0147–1.4899) |
GCST90133209 | Anaerococcus (unc.) | Sebaceous | Finngen_R10_L12_RADIODERMATITIS | 0.027989 | 0.7618 (0.5976–0.9710) |
GCST90133239 | Genus: finegoldia | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.010572 | 0.7096 (0.5455–0.9231) |
GCST90133259 | Micrococcus (unc.) | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.043059 | 1.3403 (1.0092–1.7801) |
GCST90133260 | S. salivarius | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.021987 | 0.8075 (0.6725–0.9696) |
GCST90133310 | Family: flavobacteriaceae | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.046799 | 1.3124 (1.0039–1.7158) |
GCST90133238 | Genus: paracoccus | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.033441 | 1.2433 (1.0172–1.5195) |
GCST90133247 | E. aerosaccus | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.046408 | 1.2556 (1.0036–1.5710) |
GCST90133267 | Streptococcus (unc.) | Dry | Finngen_R10_L12_RADIODERMATITIS | 0.027266 | 1.2456 (1.0249–1.5138) |
GCST90133290 | Class: alphaproteobacteria | Moist | Finngen_R10_L12_RADIODERMATITIS | 0.034046 | 1.3103 (1.0206–1.6824) |
GCST90133298 | Family: rhodobacteraceae | Moist | Finngen_R10_L12_RADIODERMATITIS | 0.034046 | 1.3103 (1.0206–1.6824) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Xia, X.; Shi, K.; Xie, T.; Sun, X.; Xu, Z.; Ge, X. Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity. Microorganisms 2025, 13, 194. https://doi.org/10.3390/microorganisms13010194
Chen H, Xia X, Shi K, Xie T, Sun X, Xu Z, Ge X. Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity. Microorganisms. 2025; 13(1):194. https://doi.org/10.3390/microorganisms13010194
Chicago/Turabian StyleChen, Hui, Xiaojie Xia, Kexin Shi, Tianyi Xie, Xinchen Sun, Zhipeng Xu, and Xiaolin Ge. 2025. "Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity" Microorganisms 13, no. 1: 194. https://doi.org/10.3390/microorganisms13010194
APA StyleChen, H., Xia, X., Shi, K., Xie, T., Sun, X., Xu, Z., & Ge, X. (2025). Bidirectional Mendelian Randomization Analysis to Study the Relationship Between Human Skin Microbiota and Radiation-Induced Skin Toxicity. Microorganisms, 13(1), 194. https://doi.org/10.3390/microorganisms13010194