Investigation of the Structure and Functional Activity of the YqeK Protein in Streptococcus pyogenes with High Efficiency in Hydrolyzing Ap4A
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cloning, Expression, and Purification of Streptococcus pyogenes yqeK Protein or Mutant Proteins
2.2. Crystallization, Data Collection and Structure Determination
2.3. Hydrolysis Activity Assay of Sp-yqeK on Ap4A
2.4. Investigation of the Optimal Temperature for the Hydrolytic Activity of Sp-yqeK on Ap4A
2.5. Investigation of the Optimal pH for the Hydrolytic Activity of Sp-yqeK on Ap4A
2.6. Research on the Optimal Divalent Metal Ions for the Hydrolytic Activity of Sp-yqeK on Ap4A
2.7. Investigation of the Hydrolytic Efficiency of Sp-yqeK on Different Concentrations of Ap4A Under Optimal Conditions
2.8. Structural Determination of the Sp-yqeK-Ap4A Complex from Streptococcus pyogenes
3. Results
3.1. Investigation of the Functional Activity of Sp-yqeK
3.2. Investigation of the Optimal Hydrolytic Activity of Sp-yqeK
3.3. Crystal Structure of the Sp-yqeK-Mg²⁺-ADP Complex
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferretti, J.J.; Stevens, D.L.; Fischetti, V.A. (Eds.) Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Cunningham, M.W. Pathogenesis of Group a Streptococcal Infections. Clin. Microbiol. Rev. 2000, 13, 470–511. [Google Scholar] [CrossRef] [PubMed]
- Kheirkhah, D.; Sharif, A. Treatment Options of Streptococcal Pharyngitis in Infancy. Jundishapur J. Microbiol. 2016, 9, e41798. [Google Scholar] [CrossRef] [PubMed]
- Solomon, S.L.; Oliver, K.B. Antibiotic Resistance Threats in the United States: Stepping Back from the Brink. Am. Fam. Physician 2014, 89, 938–941. [Google Scholar] [PubMed]
- Despotovic, D.; Brandis, A.; Savidor, A.; Levin, Y.; Fumagalli, L.; Tawfik, D.S. Diadenosine Tetraphosphate (Ap4A)—An E. coli Alarmone or a Damage Metabolite? FEBS J. 2017, 284, 2194–2215. [Google Scholar] [CrossRef] [PubMed]
- Luciano, D.J.; Levenson-Palmer, R.; Belasco, J.G. Stresses That Raise Np(4)a Levels Induce Protective Nucleoside Tetraphosphate Capping of Bacterial RNA. Mol. Cell 2019, 75, 957–966.e8. [Google Scholar] [CrossRef] [PubMed]
- McLennan, A.G. Substrate Ambiguity among the Nudix Hydrolases: Biologically Significant, Evolutionary Remnant, or Both? Cell. Mol. Life Sci. 2013, 70, 373–385. [Google Scholar] [CrossRef]
- Guo, R.T.; Chong, Y.E.; Guo, M.; Yang, X.L. Crystal Structures and Biochemical Analyses Suggest a Unique Mechanism and Role for Human Glycyl-Trna Synthetase in Ap4a Homeostasis. J. Biol. Chem. 2009, 284, 28968–28976. [Google Scholar] [CrossRef]
- Giammarinaro, P.I.; Young, M.K.M.; Steinchen, W.; Mais, C.N.; Hochberg, G.; Yang, J.; Stevenson, D.M.; Amador-Noguez, D.; Paulus, A.; Wang, J.D.; et al. Diadenosine Tetraphosphate Regulates Biosynthesis of Gtp in Bacillus Subtilis. Nat. Microbiol. 2022, 7, 1442–1452. [Google Scholar] [CrossRef] [PubMed]
- Marriott, A.S.; Vasieva, O.; Fang, Y.; Copeland, N.A.; McLennan, A.G.; Jones, N.J. Nudt2 Disruption Elevates Diadenosine Tetraphosphate (Ap4a) and Down-Regulates Immune Response and Cancer Promotion Genes. PLoS ONE 2016, 11, e0154674. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zou, J.; Peng, H.; Stolle, A.S.; Xie, R.; Zhang, H.; Peng, B.; Mekalanos, J.J.; Zheng, J. Alarmone Ap4a Is Elevated by Aminoglycoside Antibiotics and Enhances Their Bactericidal Activity. Proc. Natl. Acad. Sci. USA 2019, 116, 9578–9585. [Google Scholar] [CrossRef] [PubMed]
- Monds, R.D.; Newell, P.D.; Wagner, J.C.; Schwartzman, J.A.; Lu, W.; Rabinowitz, J.D.; O’Toole, G.A. Di-Adenosine Tetraphosphate (Ap4a) Metabolism Impacts Biofilm Formation by Pseudomonas fluorescens Via Modulation of C-Di-Gmp-Dependent Pathways. J. Bacteriol. 2010, 192, 3011–3023. [Google Scholar] [CrossRef] [PubMed]
- Zegarra, V.; Mais, C.N.; Freitag, J.; Bange, G. The Mysterious Diadenosine Tetraphosphate (AP4A). Microlife 2023, 4, uqad016. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Yu, R.; Zhu, M.; Zhang, C.; Zhou, L.; Cai, T.; Li, W. Diadenosine Tetraphosphate Modulated Quorum Sensing in Bacteria Treated with Kanamycin. BMC Microbiol. 2023, 23, 353. [Google Scholar] [CrossRef] [PubMed]
- Cervoni, M.; Sposato, D.; Ferri, G.; Bahre, H.; Leoni, L.; Rampioni, G.; Visca, P.; Recchiuti, A.; Imperi, F. The Diadenosine Tetraphosphate Hydrolase ApaH Contributes to Pseudomonas aeruginosa Pathogenicity. PLoS Pathog. 2024, 20, e1012486. [Google Scholar] [CrossRef]
- Almine, J.F.; O’Hare, C.A.; Dunphy, G.; Haga, I.R.; Naik, R.J.; Atrih, A.; Connolly, D.J.; Taylor, J.; Kelsall, I.R.; Bowie, A.G.; et al. Ifi16 and Cgas Cooperate in the Activation of Sting During DNA Sensing in Human Keratinocytes. Nat. Commun. 2017, 8, 14392. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, F.; McLennan, A.G.; Urbaniak, M.D.; Jones, N.J.; Copeland, N.A. Re-Evaluation of Diadenosine Tetraphosphate (Ap(4)a) from a Stress Metabolite to Bona Fide Secondary Messenger. Front. Mol. Biosci. 2020, 7, 606807. [Google Scholar] [CrossRef] [PubMed]
- Guerra, J.; Valadao, A.L.; Vlachakis, D.; Polak, K.; Vila, I.K.; Taffoni, C.; Prabakaran, T.; Marriott, A.S.; Kaczmarek, R.; Houel, A.; et al. Lysyl-Trna Synthetase Produces Diadenosine Tetraphosphate to Curb Sting-Dependent Inflammation. Sci. Adv. 2020, 6, eaax3333. [Google Scholar] [CrossRef]
- Hou, W.T.; Li, W.Z.; Chen, Y.; Jiang, Y.L.; Zhou, C.Z. Structures of Yeast Apa2 Reveal Catalytic Insights into a Canonical Ap(4)a Phosphorylase of the Histidine Triad Superfamily. J. Mol. Biol. 2013, 425, 2687–2698. [Google Scholar] [CrossRef]
- Wright, M.; Boonyalai, N.; Tanner, J.A.; Hindley, A.D.; Miller, A.D. The Duality of Lysu, a Catalyst for Both Ap4a and Ap3a Formation. FEBS J. 2006, 273, 3534–3544. [Google Scholar] [CrossRef] [PubMed]
- Dahai, Y.; Sanyuan, S.; Hong, L.; Di, Z.; Chong, Z. A Relationship between Replication Protein a and Occurrence and Prognosis of Esophageal Carcinoma. Cell Biochem. Biophys. 2013, 67, 175–180. [Google Scholar] [CrossRef]
- Farr, S.B.; Arnosti, D.N.; Chamberlin, M.J.; Ames, B.N. An Apah Mutation Causes Appppa to Accumulate and Affects Motility and Catabolite Repression in Escherichia coli. Proc. Natl. Acad. Sci. USA 1989, 86, 5010–5014. [Google Scholar] [CrossRef]
- Kramer, S. The Apah-Like Phosphatase Tbalph1 Is the Major Mrna Decapping Enzyme of Trypanosomes. PLoS Pathog. 2017, 13, e1006456. [Google Scholar] [CrossRef] [PubMed]
- Abdelghany, H.M.; Gasmi, L.; Cartwright, J.L.; Bailey, S.; Rafferty, J.B.; McLennan, A.G. Cloning, Characterisation and Crystallisation of a Diadenosine 5′,5′′′-P(1),P(4)-Tetraphosphate Pyrophosphohydrolase from Caenorhabditis Elegans. Biochim. Biophys. Acta 2001, 1550, 27–36. [Google Scholar] [CrossRef]
- Cartwright, J.L.; Britton, P.; Minnick, M.F.; McLennan, A.G. The Iala Invasion Gene of Bartonella Bacilliformis Encodes a (De)Nucleoside Polyphosphate Hydrolase of the Mutt Motif Family and Has Homologs in Other Invasive Bacteria. Biochem. Biophys. Res. Commun. 1999, 256, 474–479. [Google Scholar] [CrossRef]
- Tanaka, S.; Kihara, M.; Sugimoto, M. Structure and Molecular Characterization of Barley Nudix Hydrolase Genes. Biosci. Biotechnol. Biochem. 2015, 79, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Arif, S.M.; Varshney, U.; Vijayan, M. Hydrolysis of Diadenosine Polyphosphates. Exploration of an Additional Role of Mycobacterium Smegmatis Mutt1. J. Struct. Biol. 2017, 199, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Bessman, M.J. A Cryptic Activity in the Nudix Hydrolase Superfamily. Protein Sci. 2019, 28, 1494–1500. [Google Scholar] [CrossRef] [PubMed]
- Bessman, M.J.; Walsh, J.D.; Dunn, C.A.; Swaminathan, J.; Weldon, J.E.; Shen, J. The Gene Ygdp, Associated with the Invasiveness of Escherichia Coli K1, Designates a Nudix Hydrolase, Orf176, Active on Adenosine (5′)-Pentaphospho-(5′)-Adenosine (Ap5a). J. Biol. Chem. 2001, 276, 37834–37838. [Google Scholar] [CrossRef] [PubMed]
- Minazzato, G.; Gasparrini, M.; Amici, A.; Cianci, M.; Mazzola, F.; Orsomando, G.; Sorci, L.; Raffaelli, N. Functional Characterization of Cog1713 (Yqek) as a Novel Diadenosine Tetraphosphate Hydrolase Family. J. Bacteriol. 2020, 202. [Google Scholar] [CrossRef]
- Sun, T.X.; Li, M.Y.; Zhang, Z.H.; Wang, J.Y.; Xing, Y.; Ri, M.; Jin, C.H.; Xu, G.H.; Piao, L.X.; Jin, H.L.; et al. Usnic Acid Suppresses Cervical Cancer Cell Proliferation by Inhibiting Pd-L1 Expression and Enhancing T-Lymphocyte Tumor-Killing Activity. Phytother. Res. 2021, 35, 3916–3935. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Jing, M.; Gong, T.; Yan, J.; Zeng, J.; Li, Y. Deletion of the Yqek Gene Leads to the Accumulation of Ap4a and Reduced Biofilm Formation in Streptococcus Mutans. Mol. Oral. Microbiol. 2022, 37, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Ke, J.; Zheng, P.; Zhang, H.; Zhu, Z.; Niu, L. Structural and Biochemical Characterization of a Nucleotide Hydrolase from Streptococcus Pneumonia. Structure 2024, 32, 1197–1207.e4. [Google Scholar] [CrossRef]
- Dolot, R.; Kaczmarek, R.; Seda, A.; Krakowiak, A.; Baraniak, J.; Nawrot, B. Crystallographic Studies of the Complex of Human Hint1 Protein with a Non-Hydrolyzable Analog of Ap4a. Int. J. Biol. Macromol. 2016, 87, 62–69. [Google Scholar] [CrossRef]
- Otwinowski, Z.; Minor, W. Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzym. 1997, 276, 307–326. [Google Scholar]
- Aravind, L.; Koonin, E.V. The Hd Domain Defines a New Superfamily of Metal-Dependent Phosphohydrolases. Trends Biochem. Sci. 1998, 23, 469–472. [Google Scholar] [CrossRef]
- Sasaki, M.; Takegawa, K.; Kimura, Y. Enzymatic Characteristics of an Apah-Like Phosphatase, Prpa, and a Diadenosine Tetraphosphate Hydrolase, Apah, from Myxococcus xanthus. FEBS Lett. 2014, 588, 3395–3402. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.H.; Hu, W.X.; Gao, W.; Bi, R.C. Crystal Structure of the Diadenosine Tetraphosphate Hydrolase from Shigella flexneri 2a. Proteins 2006, 65, 1032–1035. [Google Scholar] [CrossRef]
- Zhang, T.Y.; Li, C.S.; Cui, M.Y.; Bai, X.Q.; Chen, J.H.; Song, Z.W.; Feng, B.; Liu, X.K. Design, Synthesis and Evaluation of Dihydrotriazine Derivatives-Bearing 5-Aryloxypyrazole Moieties as Antibacterial Agents. Mol. Divers. 2021, 25, 861–876. [Google Scholar] [CrossRef] [PubMed]
Data Collection | Sp-yqeK in Complex with ADP and Mg |
---|---|
Space group | C 1 2 1 |
PDB ID | 8WMY |
Wavelength (Å) | 1.0000 |
Cell dimensions | |
a (Å) | 159.944 |
b (Å) | 37.672 |
c (Å) | 76.301 |
α, β, γ (°) | 90, 92.704, 90 |
Molecule/ASU | dimer |
Resolution range (Å) a | 28.25–1.91 (1.978–1.91) |
Rsym (%) a | 7.6 (40.2) |
I/(I) | 44.1 (6.3) |
Completeness (%) a | 98.40 (98.40) |
Redundancy a | 11.0 (10.9) |
Refinement | |
Search Model | 2OGI |
Resolution (Å) a | 1.91 (1.978–1.91) |
No. reflections | 35,247 (3499) |
Rwork (Rfree) (%) | 21.66/25.21 (28.44/33.72) |
No. atoms | 3433 |
Protein | 3117 |
Ligands | 54 |
Solvent | 262 |
B-factors (Å2) | 36.31 |
Protein | 35.87 |
Ligands | 31.85 |
Solvent | 42.50 |
R.m.s. deviations | |
Bond lengths (Å) | 0.014 |
Bond angles (º) | 1.68 |
% favored (allowed) in Ramachandran plot | 98.71 (1.29) |
Di-ions | (µmol/min/mg ± SD) |
---|---|
EDTA | 0.0675 ± 0.0345 |
Zn2+ | 1.1418 ± 0.0693 |
Mg2+ | 1.3499 ± 0.0773 |
Ca2+ | 1.1987 ± 0.0577 |
Mn2+ | 1.3176 ± 0.0298 |
Ni2+ | 1.0316 ± 0.0194 |
No | (µmol/min/mg ± SD) |
---|---|
WT | 1.2165 ± 0.0886 |
H29A | 0.0330 ± 0.0066 |
K62A | 0.0505 ± 0.0043 |
H91A | 0.0161 ± 0.0005 |
H116A | 0.0421 ± 0.0024 |
N135A | 0.1789 ± 0.0082 |
L172A | 0.8819 ± 0.0390 |
F180A | 0.6060 ± 0.3536 |
T183A | 0.7765 ± 0.0075 |
Mutation | Km (µM ± SD) |
---|---|
WT | 216.38842 ± 21.65011 |
L172A | 1008.58396 ± 346.4237 |
F180A | 1986.78696 ± 651.3617 |
T183A | 1023.7566 ± 328.12593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Hu, S.; Yao, Y.; Li, K.; Wang, Z.; Wang, X.; Ma, D.; Bi, M.; Mo, X. Investigation of the Structure and Functional Activity of the YqeK Protein in Streptococcus pyogenes with High Efficiency in Hydrolyzing Ap4A. Microorganisms 2025, 13, 230. https://doi.org/10.3390/microorganisms13020230
Yang K, Hu S, Yao Y, Li K, Wang Z, Wang X, Ma D, Bi M, Mo X. Investigation of the Structure and Functional Activity of the YqeK Protein in Streptococcus pyogenes with High Efficiency in Hydrolyzing Ap4A. Microorganisms. 2025; 13(2):230. https://doi.org/10.3390/microorganisms13020230
Chicago/Turabian StyleYang, Kai, Suhua Hu, Yao Yao, Kaijie Li, Zunbao Wang, Xinyu Wang, Dan Ma, Mingfang Bi, and Xiaobing Mo. 2025. "Investigation of the Structure and Functional Activity of the YqeK Protein in Streptococcus pyogenes with High Efficiency in Hydrolyzing Ap4A" Microorganisms 13, no. 2: 230. https://doi.org/10.3390/microorganisms13020230
APA StyleYang, K., Hu, S., Yao, Y., Li, K., Wang, Z., Wang, X., Ma, D., Bi, M., & Mo, X. (2025). Investigation of the Structure and Functional Activity of the YqeK Protein in Streptococcus pyogenes with High Efficiency in Hydrolyzing Ap4A. Microorganisms, 13(2), 230. https://doi.org/10.3390/microorganisms13020230