Antimicrobial Susceptibility of Escherichia coli Isolates Causing Community-Acquired Urinary Tract Infections: Comparison of Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Samples
2.2. Bacterial Identification
2.3. Antimicrobial Susceptibility Testing
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whelan, S.; Lucey, B.; Finn, K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023, 11, 2169. [Google Scholar] [CrossRef] [PubMed]
- Le, T.P.; Miller, L.G. Empirical Therapy for Uncomplicated Urinary Tract Infections in an Era of Increasing Antimicrobial Resistance: A Decision and Cost Analysis. Clin. Infect. Dis. 2001, 33, 615–621. [Google Scholar] [CrossRef] [PubMed]
- van Belkum, A.; Bachmann, T.T.; Lüdke, G.; Lisby, J.G.; Kahlmeter, G.; Mohess, A.; Becker, K.; Hays, J.P.; Woodford, N.; Mitsakakis, K.; et al. Developmental roadmap for antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2019, 17, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.P.; Carvalho, J.K.B.P.; de Oliveira, M.S.; Rossato, A.M.; Dani, C.; Corção, G.; d’Azevedo, P.A. Coagulase-negative staphylococci in outpatient routines: The implications of switching from CLSI to BrCAST/EUCAST guidelines. Braz. J. Microbiol. 2020, 51, 1071–1078. [Google Scholar] [CrossRef] [PubMed]
- Del Franco, M.; Paone, L.; Novati, R.; Giacomazzi, C.G.; Bagattini, M.; Galotto, C.; Montanera, P.G.; Triassi, M.; Zarrilli, R. Molecular epidemiology of carbapenem resistant Enterobacteriaceae in Valle d’Aosta region, Italy, shows the emergence of KPC-2 producing Klebsiella pneumoniae clonal complex 101 (ST101 and ST1789). BMC Microbiol. 2015, 15, 260. [Google Scholar] [CrossRef] [PubMed]
- Gajic, I.; Kabic, J.; Kekic, D.; Jovicevic, M.; Milenkovic, M.; Mitic-Culafic, D.; Trudic, A.; Ranin, L.; Opavski, N. Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics 2022, 11, 427. [Google Scholar] [CrossRef] [PubMed]
- Kahlmeter, G.; Giske, C.G.; Kirn, T.J.; Sharp, S.E. Point-Counterpoint: Differences between the European Committee on Antimicrobial Susceptibility Testing and Clinical and Laboratory Standards Institute Recommendations for Reporting Antimicrobial Susceptibility Results. J. Clin. Microbiol. 2019, 57, e01129-19. [Google Scholar] [CrossRef] [PubMed]
- CLSI (Clinical and Laboratory Standards Institute). Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100, 30th ed.; CLSI: Wayne, PA, USA, 2020; ISBN 978-1-68440-067-6. [Google Scholar]
- BRCAST (Brazilian Committee on Antimicrobial Susceptibility Testing). Clinical Breakpoints Table. Version 13.0 [Internet]. 2023. Available online: https://brcast.org.br (accessed on 10 December 2024).
- Viera, A.J.; Garrett, J.M. Understanding interobserver agreement: The kappa statistic. Fam. Med. 2005, 37, 360–363. [Google Scholar] [PubMed]
- Cusack, T.P.; Ashley, E.A.; Ling, C.L.; Roberts, T.; Turner, P.; Wangrangsimakul, T.; Dance, D.A.B. Time to switch from CLSI to EUCAST? A Southeast Asian perspective. Clin. Microbiol. Infect. 2019, 25, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Cuba, G.T.; Pignatari, A.C.C.; Patekoski, K.S.; Luchesi, L.J.; Kiffer, C.V.V. Pharmacodynamic profiling of commonly prescribed antimicrobial drugs against Escherichia coli isolates from urinary tract. Braz. J. Inf. Dis. 2014, 18, 512–517. [Google Scholar] [CrossRef] [PubMed]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, present, and future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed]
- Mancuso, G.; De Gaetano, S.; Midiri, A.; Zummo, S.; Biondo, C. The Challenge of Overcoming Antibiotic Resistance in Carbapenem-Resistant Gram-Negative Bacteria: “Attack on Titan”. Microorganisms 2023, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Miller, W.R.; Axell-House, D.; Munita, J.M.; Arias, C.A. Antimicrobial Susceptibility Testing for Enterococci. J. Clin. Microbiol. 2022, 60, e0084321. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.L.; Bragg, B.N. Antimicrobial Susceptibility Testing. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK539714 (accessed on 10 December 2024).
- Kassim, A.; Omuse, G.; Premji, Z.; Revathi, G. Comparison of Clinical Laboratory Standards Institute and European Committee on Antimicrobial Susceptibility Testing guidelines for the interpretation of antibiotic susceptibility at a University teaching hospital in Nairobi, Kenya: A cross-sectional study. Ann. Clin. Microbiol. Antimicrob. 2016, 15, 21. [Google Scholar] [CrossRef]
- Wang, H.; Jia, C.; Li, H.; Yin, R.; Chen, J.; Li, Y.; Yue, M. Paving the way for precise diagnostics of antimicrobial resistant bacteria. Front. Mol. Biosci. 2022, 9, 976705. [Google Scholar] [CrossRef]
- Cockerill, F.R., 3rd. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents Chemother. 1999, 43, 199–212. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial Tested | DD | S | S% | R | R% | I | I% | C% | K | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Aminoglycosides | ||||||||||
Amikacin (30 μg) | CLSI | 39 | 73.59% | 3 | 5.66% | 11 | 20.75% | 73% | 0.807 | <0.0001 |
BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Gentamicin (10 μg) | CLSI | 42 | 79.25% | 11 | 20.75% | 0 | 0.00% | 95% | 0.846 | 0.6425 |
BrCAST | 40 | 75.47% | 13 | 24.53% | 0 | 0.00% | ||||
Tobramycin (10 μg) | CLSI | 38 | 71.70% | 14 | 26.42% | 1 | 1.89% | 93% | 0.837 | 0.8406 |
BrCAST | 36 | 67.92% | 17 | 32.08% | 0 | 0.00% | ||||
Penicillins | ||||||||||
Ampicilin (10 μg) | CLSI | 12 | 22.64% | 37 | 69.81% | 4 | 7.55% | 93% | 0.844 | 0.1206 |
BrCAST | 16 | 30.19% | 37 | 69.81% | 0 | 0.00% | ||||
Amoxicillin/Clavulanate (30 μg) | CLSI | 33 | 62.26% | 5 | 9.43% | 15 | 28.30% | 63% | 0.889 | 0.2287 |
BrCAST | 27 | 50.94% | 26 | 49.06% | 0 | 0.00% | ||||
Ampicillin/Sulbactam (20 μg) | CLSI | 23 | 43.40% | 20 | 37.74% | 10 | 18.87% | 82% | 0.699 | 0.1307 |
BrCAST | 23 | 43.40% | 30 | 56.60% | 0 | 0.00% | ||||
Piperacillin/Tazobactam (110 μg) | CLSI | 44 | 83.02% | 2 | 3.77% | 7 | 13.21% | 88% | 0.894 | 0.0745 |
BrCAST | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | ||||
Cephalosporins | ||||||||||
Cefazoline (30 μg) | CLSI | 12 | 22.64% | 24 | 45.28% | 17 | 32.08% | 57% | 0.894 | 0.0319 |
BrCAST | 0 | 0.00% | 34 | 64.15% | 19 | 35.85% | ||||
Cefoxitin (30 μg) | CLSI | 50 | 94.34% | 1 | 1.89% | 2 | 3.77% | 82% | 0.843 | 0.1525 |
BrCAST | 42 | 79.25% | 11 | 20.75% | 0 | 0.00% | ||||
Cefuroxime (30 μg) | CLSI | 37 | 69.81% | 14 | 26.42% | 2 | 3.77% | 27% | 0.169 | <0.0001 |
BrCAST | 0 | 0.00% | 19 | 35.85% | 34 | 64.15% | ||||
Cefotaxime (30 μg) | CLSI | 38 | 71.70% | 15 | 28.30% | 0 | 0.00% | 96% | 0.915 | 0.8380 |
BrCAST | 38 | 71.70% | 14 | 26.42% | 1 | 1.89% | ||||
Ceftriaxone (30 μg) | CLSI | 39 | 73.58% | 14 | 26.42% | 0 | 0.00% | 100% | 1 | >0.9999 |
BrCAST | 39 | 73.58% | 14 | 26.42% | 0 | 0.00% | ||||
Cefepime (30 μg) | CLSI | 39 | 73.58% | 8 | 15.09% | 6 | 11.32% | 88% | 0.706 | 0.3111 |
BrCAST | 39 | 73.58% | 14 | 26.42% | 0 | 0.00% | ||||
Carbapenems | ||||||||||
Ertapenem (10 μg) | CLSI | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 100% | 1 | >0.9999 |
BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Imipenem (10 μg) | CLSI | 52 | 98.11% | 0 | 0.00% | 1 | 1.89% | 2% | 0 | <0.0001 |
BrCAST | 0 | 0.00% | 0 | 0.00% | 53 | 100.00% | ||||
Meropenem (10 μg) | CLSI | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 100% | 1 | >0.9999 |
BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Monobactams | ||||||||||
Aztreonam (30 μg) | CLSI | 38 | 71.70% | 12 | 22.64% | 3 | 5.66% | 91% | 0.8 | 0.8640 |
BrCAST | 36 | 67.92% | 15 | 28.30% | 2 | 3.77% | ||||
Fluoroquinolones | ||||||||||
Ciprofloxacin (5 μg) | CLSI | 29 | 54.72% | 20 | 37.74% | 4 | 7.55% | 96% | 0.933 | 0.5191 |
BrCAST | 31 | 58.49% | 20 | 37.74% | 2 | 3.77% | ||||
Levofloxacin (5 μg) | CLSI | 32 | 60.38% | 18 | 33.96% | 3 | 5.66% | 98% | 0.965 | 0.8679 |
BrCAST | 32 | 60.38% | 19 | 35.85% | 2 | 3.77% | ||||
Norfloxacin (10 μg) | CLSI | 35 | 66.04% | 17 | 32.08% | 1 | 1.89% | 88% | 0.749 | 0.3409 |
BrCAST | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | ||||
Nitrofurans | ||||||||||
Nitrofurantoin (300 μg) | CLSI | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | 100% | 1 | >0.9999 |
BrCAST | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | ||||
Phosphonic acids | ||||||||||
Phosphomicin (200 μg) | CLSI | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | 96% | 0.837 | 0.7672 |
BrCAST | 46 | 86.79% | 7 | 13.21% | 0 | 0.00% | ||||
Sulfonamides | ||||||||||
Sulfazotrim (25 μg) | CLSI | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | 100% | 1 | >0.9999 |
BrCAST | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | ||||
Tetracyclines | ||||||||||
Tetracycline (30 μg) | CLSI | 24 | 45.28% | 28 | 52.83% | 1 | 1.89% | 98% | 0.965 | 0.8505 |
BrCAST | 24 | 45.28% | 29 | 54.72% | 0 | 0.00% |
Antimicrobial Tested | DD | S | S% | R | R% | I | I% | C% | K | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Aminoglycosides | ||||||||||
Amikacin (30 μg) | DD/CLSI | 39 | 73.58% | 3 | 5.66% | 11 | 20.75% | 70 | 0.325 | 0.0022 |
PHOENIX | 51 | 96.23% | 0 | 0.00% | 2 | 3.77% | ||||
Gentamicin (10 μg) | DD/CLSI | 42 | 79.25% | 11 | 20.75% | 0 | 0.00% | 71 | 0.705 | 0.6866 |
PHOENIX | 43 | 81.13% | 7 | 13.21% | 3 | 5.66% | ||||
Penicillins | ||||||||||
Ampicilin (10 μg) | DD/CLSI | 12 | 22.64% | 37 | 69.81% | 4 | 7.55% | 59 | 0.246 | 0.0156 |
PHOENIX | 24 | 45.28% | 27 | 50.94% | 2 | 3.77% | ||||
Piperacillin/Tazobactam (110 μg) | DD/CLSI | 44 | 83.02% | 2 | 3.77% | 7 | 13.21% | 84 | 0.862 | 0.0403 |
PHOENIX | 51 | 96.23% | 0 | 0.00% | 2 | 3.77% | ||||
Cephalosporins | ||||||||||
Cefoxitin (30 μg) | DD/CLSI | 50 | 94.34% | 1 | 1.89% | 2 | 3.77% | 91 | 0.780 | 0.5352 |
PHOENIX | 49 | 92.45% | 0 | 0.00% | 4 | 7.55% | ||||
Cefepime (30 μg) | DD/CLSI | 39 | 73.58% | 8 | 15.09% | 6 | 11.32% | 68 | 0.205 | 0.4481 |
PHOENIX | 42 | 79.25% | 7 | 13.21% | 4 | 7.55% | ||||
Carbapenems | ||||||||||
Ertapenem (10 μg) | DD/CLSI | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 89 | 0.801 | 0.0117 |
PHOENIX | 47 | 88.68% | 0 | 0.00% | 6 | 11.32% | ||||
Imipenem (10 μg) | DD/CLSI | 52 | 98.11% | 0 | 0.00% | 1 | 1.89% | 95 | 0.789 | 0.5581 |
PHOENIX | 51 | 96.23% | 0 | 0.00% | 2 | 3.77% | ||||
Meropenem (10 μg) | DD/CLSI | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 96 | 0.856 | 0.1534 |
PHOENIX | 51 | 96.23% | 0 | 0.00% | 2 | 3.77% | ||||
Fluoroquinolones | ||||||||||
Ciprofloxacin (5 μg) | DD/CLSI | 29 | 54.72% | 20 | 37.74% | 4 | 7.55% | 68 | 0.409 | 0.7533 |
PHOENIX | 30 | 56.60% | 20 | 37.74% | 3 | 5.66% | ||||
Levofloxacin (5 μg) | DD/CLSI | 32 | 60.38% | 18 | 33.96% | 3 | 5.66% | 100 | 1 | >0.9999 |
PHOENIX | 32 | 60.38% | 18 | 33.96% | 3 | 5.66% | ||||
Sulfonamides | ||||||||||
Sulfazotrim (25 μg) | DD/CLSI | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | 60 | 0.672 | 0.7152 |
PHOENIX | 33 | 62.26% | 18 | 33.96% | 2 | 3.77% |
Antimicrobial Tested | DD | S | S% | R | R% | I | I% | C% | K | p Value |
---|---|---|---|---|---|---|---|---|---|---|
Aminoglycosides | ||||||||||
Amikacin (30 μg) | DD/BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 100 | 1 | >0.9999 |
VITEK2 | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Gentamicin (10 μg) | DD/BrCAST | 40 | 75.47% | 13 | 24.53% | 0 | 0.00% | 81 | 0.878 | 0.0763 |
VITEK2 | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | ||||
Penicillins | ||||||||||
Amoxicillin/Clavulanate (30 μg) | DD/BrCAST | 27 | 50.94% | 26 | 49.06% | 0 | 0.00% | 100 | 1 | >0.9999 |
VITEK2 | 27 | 50.94% | 26 | 49.06% | 0 | 0.00% | ||||
Piperacillin/Tazobactam (110 μg) | DD/BrCAST | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | 89 | 0.812 | 0.7672 |
VITEK2 | 46 | 86.79% | 7 | 13.21% | 0 | 0.00% | ||||
Cephalosporins | ||||||||||
Cefuroxime (30 μg) | DD/BRCAST | 0 | 0.00% | 19 | 35.85% | 34 | 64.15% | 100 | 1 | 0.8385 |
VITEK2 | 0 | 0.00% | 18 | 33.96% | 35 | 66.04% | ||||
Ceftriaxone (30 μg) | DD/BrCAST | 39 | 73.58% | 14 | 26.42% | 0 | 0.00% | 87 | 0.845 | 0.5397 |
VITEK2 | 37 | 69.81% | 15 | 28.30% | 1 | 1.89% | ||||
Cefepime (30 μg) | DD/BrCAST | 39 | 73.58% | 14 | 26.42% | 0 | 0.00% | 85 | 0.806 | 0.4818 |
VITEK2 | 40 | 75.47% | 8 | 15.09% | 5 | 9.43% | ||||
Carbapenems | ||||||||||
Ertapenem (10 μg) | DD/BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 100 | 1 | >0.9999 |
VITEK2 | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Meropenem (10 μg) | DD/BrCAST | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | 100 | 1 | >0.9999 |
VITEK2 | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Fluoroquinolones | ||||||||||
Ciprofloxacin (5 μg) | DD/BrCAST | 31 | 58.49% | 20 | 37.74% | 2 | 3.77% | 81 | 0.868 | 0.5191 |
VITEK2 | 29 | 54.72% | 20 | 37.74% | 4 | 7.55% | ||||
Norfloxacin (10 μg) | DD/BrCAST | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | 86 | 0.816 | 0.845 |
VITEK2 | 30 | 56.60% | 23 | 43.40% | 0 | 0.00% | ||||
Nitrofurans | ||||||||||
Nitrofurantoin (300 μg) | DD/BrCAST | 47 | 88.68% | 6 | 11.32% | 0 | 0.00% | 89 | 0.8 | 0.0117 |
VITEK2 | 53 | 100.00% | 0 | 0.00% | 0 | 0.00% | ||||
Sulfonamides | ||||||||||
Sulfazotrim (25 μg) | DD/BrCAST | 29 | 54.72% | 24 | 45.28% | 0 | 0.00% | 88 | 0.864 | 0.2437 |
VITEK2 | 23 | 43.40% | 30 | 56.60% | 0 | 0.00% |
Feature | CLSI | BrCAST |
---|---|---|
Accessibility | Requires annual subscription fees (approx. $500 for non-members) [8,17]. | Freely available as part of the EUCAST guidelines [9,17]. |
Methodology | Based on Minimum Inhibitory Concentrations (MICs), pharmacokinetics, and resistance mechanisms [8,17]. | Similar approach to EUCAST, focusing on epidemiological cut-offs (ECOFFs) [4,9]. |
Implementation Date | Established guidelines have been in place for many years, with updates [4,8]. | Adopted as the national standard in Brazil in 2019 [4,9]. |
Impact on Susceptibility Profiles | Variability in categorization; may lead to underestimation of resistance in certain pathogens [4,8]. | Increased categorization of intermediate susceptibility (I) and resistant results [4,9]. |
Specific Pathogen Findings | Significant differences noted in susceptibility rates for drugs like cefepime and imipenem compared to BrCAST [4,8]. | Higher rates of multidrug-resistant isolates reported under BrCAST guidelines, particularly for coagulase-negative staphylococci [4,9]. |
Decision-Making Process | Involves industry representatives in decision-making; less transparency [8,17]. | Industry has a consultative role only; promotes inclusivity through National Antimicrobial Susceptibility Testing Committees [9,17]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, A.M.; Flores, V.R.; do Rosario, G.G.; Succar, J.B.; Berbert, L.C.; Oliveira, M.C.d.F.; Canellas, A.L.B.; Laport, M.S.; Souza, C.R.V.M.; Chagas, T.P.G.; et al. Antimicrobial Susceptibility of Escherichia coli Isolates Causing Community-Acquired Urinary Tract Infections: Comparison of Methods. Microorganisms 2025, 13, 231. https://doi.org/10.3390/microorganisms13020231
Cardoso AM, Flores VR, do Rosario GG, Succar JB, Berbert LC, Oliveira MCdF, Canellas ALB, Laport MS, Souza CRVM, Chagas TPG, et al. Antimicrobial Susceptibility of Escherichia coli Isolates Causing Community-Acquired Urinary Tract Infections: Comparison of Methods. Microorganisms. 2025; 13(2):231. https://doi.org/10.3390/microorganisms13020231
Chicago/Turabian StyleCardoso, Alexander Machado, Vinicius Ribeiro Flores, Gabriel Gomes do Rosario, Juliana Barbosa Succar, Lidiane Coelho Berbert, Maria Clara de Freitas Oliveira, Anna Luiza Bauer Canellas, Marinella Silva Laport, Cláudia Rezende Vieira Mendonça Souza, Thiago Pavoni Gomes Chagas, and et al. 2025. "Antimicrobial Susceptibility of Escherichia coli Isolates Causing Community-Acquired Urinary Tract Infections: Comparison of Methods" Microorganisms 13, no. 2: 231. https://doi.org/10.3390/microorganisms13020231
APA StyleCardoso, A. M., Flores, V. R., do Rosario, G. G., Succar, J. B., Berbert, L. C., Oliveira, M. C. d. F., Canellas, A. L. B., Laport, M. S., Souza, C. R. V. M., Chagas, T. P. G., Dias, R. C. d. S., Fortes, F. d. S. d. A., & Pellegrino, F. L. P. C. (2025). Antimicrobial Susceptibility of Escherichia coli Isolates Causing Community-Acquired Urinary Tract Infections: Comparison of Methods. Microorganisms, 13(2), 231. https://doi.org/10.3390/microorganisms13020231