Emergence of NDM-7-Producing Klebsiella quasipneumoniae subs. simillipneumoniae ST138 in a Hospital from the Northern Region of Brazil
Abstract
:1. Introduction
2. Material and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chew, K.L.; Octavia, S.; Lai, D.; Lin, R.T.P.; Teo, J.W.P. Genomic Characterization of Klebsiella quasipneumoniae from Clinical Specimens in Singapore. Antimicrob. Agents Chemother. 2021, 65, e0041221. [Google Scholar] [CrossRef] [PubMed]
- Long, S.W.; Linson, S.E.; Ojeda Saavedra, M.; Cantu, C.; Davis, J.J.; Brettin, T.; Olsen, R.J. Whole-Genome Sequencing of Human Clinical Klebsiella pneumoniae Isolates Reveals Misidentification and Misunderstandings of Klebsiella pneumoniae, Klebsiella variicola, and Klebsiella quasipneumoniae. MSphere 2017, 2, e00290-17. [Google Scholar] [CrossRef] [PubMed]
- Octavia, S.; Kalisvar, M.; Venkatachalam, I.; Ng, O.T.; Xu, W.; Sridatta, P.S.R.; Ong, Y.F.; De Wang, L.; Chua, A.; Cheng, B.; et al. Klebsiella pneumoniae and Klebsiella quasipneumoniae define the population structure of blaKPC-2Klebsiella: A 5 year retrospective genomic study in Singapore. J. Antimicrob. Chemother. 2019, 74, 3205–3210. [Google Scholar] [CrossRef] [PubMed]
- Morgado, S.; Fonseca, E.; Vicente, A.C. Genomics of Klebsiella pneumoniae Species Complex Reveals the Circulation of High-Risk Multidrug-Resistant Pandemic Clones in Human, Animal, and Environmental Sources. Microorganisms 2022, 10, 2281. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Liu, Z.; Wu, Z.; Zhang, T.; Xia, Z.; Zhao, Y.; Li, Y.; Shi, J.; Wang, Z.; Li, R.; et al. Characterization of a Conjugative Hybrid Plasmid Coharboring bla KPC-2 and bla IMP-4 in a Klebsiella quasipneumoniae Clinical Isolate. Microbiol. Spectr. 2023, 11, e0261622. [Google Scholar] [CrossRef] [PubMed]
- Fuga, B.; Cerdeira, L.; Andrade, F.; Zaccariotto, T.; Esposito, F.; Cardoso, B.; Rodrigues, L.; Neves, I.; Levy, C.E.; Lincopan, N. Genome Sequences of Clinical Isolates of NDM-1-Producing Klebsiella quasipneumoniae subsp. similipneumoniae and KPC-2-Producing Klebsiella quasipneumoniae subsp. quasipneumoniae from Brazil. Microbiol. Resour. Announc. 2020, 9, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Hala, S.; Antony, C.P.; Alshehri, M.; Althaqafi, A.O.; Alsaedi, A.; Mufti, A.; Kaaki, M.; Alhaj-Hussein, B.T.; Zowawi, H.M.; Al-Amri, A.; et al. First report of Klebsiella quasipneumoniae harboring blaKPC-2 in Saudi Arabia. Antimicrob. Resist. Infect. Control 2019, 8, 203. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.Y.; Ponnampalavanar, S.; Lee, W.S.; Jabar, K.A.; Chua, K.H.; Idris, N.; Chong, C.W.; Yap, P.S.X.; Teh, C.S.J. First detection of Klebsiella quasipneumoniae producing OXA-181 carbapenemase in Malaysia. J. Infect. Chemother. 2020, 26, 1058–1061. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Crook, D.; Vaughan, A.; Barry, K.E.; Vegesana, K.; Stoesser, N.; Parikh, H.I.; Sebra, R.; Kotay, S.; Walker, A.S.; et al. Klebsiella quasipneumoniae Provides a Window into Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions with the Hospital Environment. Antimicrob. Agents Chemother. 2019, 63, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Shankar, C.; Karunasree, S.; Manesh, A.; Veeraraghavan, B. First Report of Whole-Genome Sequence of Colistin-Resistant Klebsiella quasipneumoniae subsp. similipneumoniae Producing KPC-9 in India. Microb. Drug Resist. 2019, 25, 489–493. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Wang, Z.; Bai, L.; Li, R. Emergence of mcr-8.2-bearing Klebsiella quasipneumoniae of animal origin. J. Antimicrob. Chemother. 2019, 74, 2814–2817. [Google Scholar] [CrossRef] [PubMed]
- Zagui, G.S.; Almeida, O.G.G.; de Moreira, N.C.; Abichabki, N.; Machado, G.P.; De Martinis, E.C.P.; Darini, A.L.C.; Andrade, L.N.; Segura-Muñoz, S.I. A set of antibiotic-resistance mechanisms and virulence factors in GES-16-producing Klebsiella quasipneumoniae subsp. similipneumoniae from hospital wastewater revealed by whole-genome sequencing. Environ. Pollut. 2023, 316, 120645. [Google Scholar] [CrossRef] [PubMed]
- Camargo, C.H. Current status of NDM-producing Enterobacterales in Brazil: A narrative review. Braz. J. Microbiol. 2022, 53, 1339–1344. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, Y.C.; Lobato, A.R.F.; Quaresma, A.J.P.G.; Guerra, L.M.G.D.; Brasiliense, D.M. The Spread of NDM-1 and NDM-7-Producing Klebsiella pneumoniae Is Driven by Multiclonal Expansion of High-Risk Clones in Healthcare Institutions in the State of Pará, Brazilian Amazon Region. Antibiotics 2021, 10, 1527. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Shi, Q.; Wu, S.; Yin, D.; Peng, M.; Dong, D.; Zheng, Y.; Guo, Y.; Zhang, R.; Hu, F. China Antimicrobial Surveillance Network (CHINET) Study Group. Dissemination of Carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) Among Carbapenem-Resistant Enterobacteriaceae Isolated from Adult and Children Patients in China. Front. Cell Infect. Microbiol. 2020, 10, 314. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance standards for antimicrobial susceptibility testing. In CLSI Supplement M100, 34th ed.; CLSI: Wayne, PA, USA, 2024; Volume 1. [Google Scholar]
- United States Food and Drug Administration. Antibacterial Susceptibility Test Interpretive Criteria. 2023. Available online: https://www.fda.gov/drugs/development-resources/antibacterial-susceptibility-test-interpretive-criteria (accessed on 5 May 2023).
- Joshi, N.A.; Fass, J. Sickle: A Sliding-Window, Adaptive, Quality-Based Trimming Tool for FastQ Files, Version 1.33; 2011. Available online: https://github.com/najoshi/sickle (accessed on 22 January 2025).
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. J. Comput. Mol. Cell Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed]
- Kosugi, S.; Hirakawa, H.; Tabata, S. GMcloser: Closing gaps in assemblies accurately with a likelihood-based selection of contig or long-read alignments. Bioinformatics 2015, 31, 3733–3741. [Google Scholar] [CrossRef] [PubMed]
- Bao, E.; Jiang, T.; Girke, T. AlignGraph: Algorithm for secondary de novo genome assembly guided by closely related references. Bioinformatics 2014, 30, i319–i328. [Google Scholar] [CrossRef]
- Bosi, E.; Donati, B.; Galardini, M.; Brunetti, S.; Sagot, M.-F.; Lió, P.; Crescenzi, P.; Fani, R.; Fondi, M. MeDuSa: A multi-draft based scaffolder. Bioinformatics 2015, 31, 2443–2451. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Carattoli, A.; Hasman, H. PlasmidFinder and In Silico pMLST: Identification and Typing of Plasmid Replicons in Whole-Genome Sequencing (WGS). Methods Mol. Biol. 2020, 2075, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Robertson, J.; Nash, J.H.E. MOB-suite: Software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2018, 47, D687–D692. [Google Scholar] [CrossRef] [PubMed]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef]
- Bertelli, C.; Laird, M.R.; Williams, K.P.; Simon Fraser University Research Computing Group; Lau, B.Y.; Hoad, G.; Winsor, G.L.; Brinkman, F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017, 45, W30–W35. [Google Scholar] [CrossRef] [PubMed]
- Durrant, M.G.; Li, M.M.; Siranosian, B.A.; Montgomery, S.B.; Bhatt, A.S. A Bioinformatic Analysis of Integrative Mobile Genetic Elements Highlights Their Role in Bacterial Adaptation. Cell Host Microbe 2020, 27, 140–153.e9. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Meier-Kolthoff, J.P.; Carbasse, J.S.; Peinado-Olarte, R.L.; Göker, M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022, 50, D801–D807. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhai, Y.; Zhang, Z.; Li, D.; Wang, Z.; Li, J.; He, Z.; Hu, S.; Kang, Y.; Gao, Z. Complete Genomic Analysis of a Kingdom-Crossing Klebsiella variicola Isolate. Front. Microbiol. 2018, 9, 2428. [Google Scholar] [CrossRef]
- Sun, L.; Li, G.; Meng, N.; Wang, Z.; Wang, H.; Wang, J.; Jiao, X. Case Report of blaNDM-7-Harboring IncX3 Plasmid in ST196 Klebsiella quasipneumoniae in China. Infect. Drug Resist. 2022, 15, 4453–4456. [Google Scholar] [CrossRef] [PubMed]
- Shibu, P.; McCuaig, F.; McCartney, A.L.; Kujawska, M.; Hall, L.J.; Hoyles, L. Improved molecular characterization of the Klebsiella oxytoca complex reveals the prevalence of the kleboxymycin biosynthetic gene cluster. Microb. Genom. 2021, 7, 000592. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, J.; Bosilj, T.K.M.; Mioc, V.; Trkov, M.; Paragi, M. Complete genome sequence of multi-drug resistant Klebsiella quasipneumoniae isolated for the first time from a wastewater treatment plant in Slovenia. Arch. Epidemiol. Public Health Res. 2022, 1, 69–72. [Google Scholar]
- Miliotis, G.; McDonagh, F.; Singh, N.K.; O’Connor, L.; Tuohy, A.; Morris, D.; Venkateswaran, K. Genomic analysis reveals the presence of emerging pathogenic Klebsiella lineages aboard the International Space Station. Microbiol. Spectr. 2023, 11, e01897-23. [Google Scholar] [CrossRef] [PubMed]
- Acman, M.; Wang, R.; van Dorp, L.; Shaw, L.P.; Wang, Q.; Luhmann, N.; Balloux, F. Role of mobile genetic elements in the global dissemination of the carbapenem resistance gene bla NDM. Nat. Commun. 2022, 13, 1131. [Google Scholar] [CrossRef] [PubMed]
- Veltri, D.; Wight, M.M.; Crouch, J.A. SimpleSynteny: A web-based tool for visualization of microsynteny across multiple species. Nucleic Acids Res. 2016, 44, W41–W45. [Google Scholar] [CrossRef] [PubMed]
- Venkitapathi, S.; Wijesundara, Y.H.; Cornelius, S.A.; Herbert, F.C.; Gassensmith, J.J.; Zimmern, P.E.; De Nisco, N.J. Conserved FimK Truncation Coincides with Increased Expression of Type 3 Fimbriae and Cultured Bladder Epithelial Cell Association in Klebsiella quasipneumoniae. J. Bacteriol. 2022, 204, e0017222. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, L.; Tavares, P.; Alonso, J.C. Headful DNA packaging: Bacteriophage SPP1 as a model system. Virus Res. 2013, 173, 247–259. [Google Scholar] [CrossRef] [PubMed]
Antimicrobial | MIC (µg/mL) | Interpretation |
---|---|---|
Ampicillin | >256 | R |
Ampicilin/sulbactam | >256/4 | R |
Piperacillin/tazobactam | >256/4 | R |
Cefuroxime | >256 | R |
Ceftazidime | >256 | R |
Cefepime | 256 | R |
Aztreonam | ≤1 | S |
Imipenem | 32 | R |
Meropenem | 64 | R |
Doripenem | >4 | R |
Gentamicin | ≤1 | S |
Amikacin | 4 | S |
Tobramycin | 2 | S |
Tetracycline | 2 | S |
Ciprofloxacin | 2 | S |
Levofloxacin | ≤1 | S |
Doxycyclin | 8 | I |
Minocycline | 4 | S |
Tigecycline | 0.5 | S |
Sulfamethoxazole/trimethoprim | ≤0.5/9.5 | S |
Colistin | ≤0.25 | S |
Polymyxin B | ≤0.25 | S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobato, A.R.F.; Souza, M.J.S.; Pereira, E.S.; Cazuza, T.B.; Silva, A.; Baraúna, R.A.; Brasiliense, D.M. Emergence of NDM-7-Producing Klebsiella quasipneumoniae subs. simillipneumoniae ST138 in a Hospital from the Northern Region of Brazil. Microorganisms 2025, 13, 314. https://doi.org/10.3390/microorganisms13020314
Lobato ARF, Souza MJS, Pereira ES, Cazuza TB, Silva A, Baraúna RA, Brasiliense DM. Emergence of NDM-7-Producing Klebsiella quasipneumoniae subs. simillipneumoniae ST138 in a Hospital from the Northern Region of Brazil. Microorganisms. 2025; 13(2):314. https://doi.org/10.3390/microorganisms13020314
Chicago/Turabian StyleLobato, Amália R. F., Mikhail J. S. Souza, Emanoele S. Pereira, Thalyta B. Cazuza, Artur Silva, Rafael A. Baraúna, and Danielle M. Brasiliense. 2025. "Emergence of NDM-7-Producing Klebsiella quasipneumoniae subs. simillipneumoniae ST138 in a Hospital from the Northern Region of Brazil" Microorganisms 13, no. 2: 314. https://doi.org/10.3390/microorganisms13020314
APA StyleLobato, A. R. F., Souza, M. J. S., Pereira, E. S., Cazuza, T. B., Silva, A., Baraúna, R. A., & Brasiliense, D. M. (2025). Emergence of NDM-7-Producing Klebsiella quasipneumoniae subs. simillipneumoniae ST138 in a Hospital from the Northern Region of Brazil. Microorganisms, 13(2), 314. https://doi.org/10.3390/microorganisms13020314