Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments
Abstract
:1. Introduction
2. Antimicrobial Potential of LAB
Bacteriocins from LAB
3. Meat Ecosystems as Pathogens Source
4. Antimicrobial Interventions
4.1. Antimicrobial Interventions during Meat Conditioning and Raw Meats
4.2. Fermented Meat Products
4.3. Chilled Vacuum and Modified Atmosphere Packaged Raw Meat
4.4. Cooked Ready to Eat Meat Products
5. Other Antimicrobial Interventions
5.1. Antimicrobial Packaging Systems
5.2. Pathogen Biofilms Prevention
6. Antimicrobial Hurdle Combinations
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016, 14, 4634–4865. [Google Scholar]
- Crim, S.M.; Griffin, P.M.; Tauxe, R.; Marder, E.P.; Gilliss, D.; Cronquist, A.B.; Cartter, M.; Tobin-D’Angelo, M.; Blythe, D.; Smith, K. Preliminary incidence and trends of infection with pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 us sites, 2006–2014. Morb. Mortal. Wkly. Rep. 2015, 64, 495–499. [Google Scholar]
- Jordan, K.; Dalmasso, M.; Zentek, J.; Mader, A.; Bruggeman, G.; Wallace, J.; De Medici, D.; Fiore, A.; Prukner-Radovcic, E.; Lukac, M.; et al. Microbes versus microbes: Control of pathogens in the food chain. J. Sci. Food Agric. 2014, 94, 3079–3089. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, V.; Khan, M.S.; Jamal, Q.M.S.; Alzohairy, M.A.; Al Karaawi, M.A.; Siddiqui, M.U. Antimicrobial potential of bacteriocins: In therapy, agriculture and food preservation. Int. J. Antimicrob. Agents 2017, 49, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cotter, P.D.; Ross, R.P.; Hill, C. Bacteriocins—A viable alternative to antibiotics? Nat. Rev. Microbiol. 2013, 11, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Line, J.; Svetoch, E.; Eruslanov, B.; Perelygin, V.; Mitsevich, E.; Mitsevich, I.; Levchuk, V.; Svetoch, O.; Seal, B.; Siragusa, G. Isolation and purification of enterocin E-760 with broad antimicrobial activity against gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 2008, 52, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Prudêncio, C.V.; Dos Santos, M.T.; Vanetti, M.C.D. Strategies for the use of bacteriocins in gram-negative bacteria: Relevance in food microbiology. J. Food Sci. Technol. 2015, 52, 5408–5417. [Google Scholar] [CrossRef] [PubMed]
- Gálvez, A.; López, R.L.; Abriouel, H.; Valdivia, E.; Omar, N.B. Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit. Rev. Biotechnol. 2008, 28, 125–152. [Google Scholar] [CrossRef] [PubMed]
- Barboza de Martinez, Y.; Ferrer, K.; Salas, E.M. Combined effects of lactic acid and nisin solution in reducing levels of microbiological contamination in red meat carcasses. J. Food Prot. 2002, 65, 1780–1783. [Google Scholar] [CrossRef] [PubMed]
- Begley, M.; Cotter, P.D.; Hill, C.; Ross, R.P. Glutamate decarboxylase-mediated nisin resistance in Listeria monocytogenes. Appl. Environ. Microbiol. 2010, 76, 6541–6546. [Google Scholar] [CrossRef] [PubMed]
- Fontana, C.; Cocconcelli, P.S.; Vignolo, G.; Saavedra, L. Occurrence of antilisterial structural bacteriocins genes in meat borne lactic acid bacteria. Food Control 2015, 47, 53–59. [Google Scholar] [CrossRef]
- Zendo, T. Screening and characterization of novel bacteriocins from lactic acid bacteria. Biosci. Biotechnol. Biochem. 2013, 77, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Woraprayote, W.; Malila, Y.; Sorapukdee, S.; Swetwiwathana, A.; Benjakul, S.; Visessanguan, W. Bacteriocins from lactic acid bacteria and their applications in meat and meat products. Meat Sci. 2016, 120, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Rea, M.C.; Ross, R.P.; Cotter, P.D.; Hill, C. Classification of bacteriocins from gram-positive bacteria. In Prokaryotic Antimicrobial Peptides; Springer: New York, NY, USA, 2011; pp. 29–53. [Google Scholar]
- Alvarez-Sieiro, P.; Montalbán-López, M.; Mu, D.; Kuipers, O.P. Bacteriocins of lactic acid bacteria: Extending the family. Appl. Microbiol. Biotechnol. 2016, 100, 2939–2951. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, P.M.; Ross, R.P.; Hill, C.; Cotter, P.D. Antimicrobial antagonists against food pathogens: A bacteriocin perspective. Curr. Opin. Food Sci. 2015, 2, 51–57. [Google Scholar] [CrossRef]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (lab): Various structures and applications. Microb. Cell Fact. 2014, 13, S3. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, C.; Wang, Y.; Shi, J.; Zhang, L.; Ding, Z.; Qu, X.; Cui, H. Class IIa bacteriocins: Diversity and new developments. Int. J. Mol. Sci. 2012, 13, 16668–16707. [Google Scholar] [CrossRef] [PubMed]
- Fimland, G.; Johnsen, L.; Dalhus, B.; Nissen-Meyer, J. Pediocin-like antimicrobial peptides (class IIa bacteriocins) and their immunity proteins: Biosynthesis, structure, and mode of action. J. Peptide Sci. 2005, 11, 688–696. [Google Scholar] [CrossRef] [PubMed]
- Nissen-Meyer, J.; Oppegård, C.; Rogne, P.; Haugen, H.S.; Kristiansen, P.E. Structure and mode-of-action of the two-peptide (class-IIb) bacteriocins. Probiotics Antimicrob. Proteins 2010, 2, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Castellano, P.; Raya, R.; Vignolo, G. Mode of action of lactocin 705, a two-component bacteriocin from Lactobacillus casei CRL705. Int. J. Food Microbiol. 2002, 85, 35–43. [Google Scholar] [CrossRef]
- Castellano, P.; Vignolo, G. Inhibition of Listeria innocua and Brochothrix. thermosphacta in vacuum-packaged meat by addition of bacteriocinogenic Lactobacillus curvatus CRL705 and its bacteriocins. Lett. Appl. Microbiol. 2006, 43, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Acedo, J.Z.; van Belkum, M.J.; Lohans, C.T.; McKay, R.T.; Miskolzie, M.; Vederas, J.C. Solution structure of acidocin B, a circular bacteriocin produced by Lactobacillus acidophilus M46. Appl. Environ. Microbiol. 2015, 81, 2910–2918. [Google Scholar] [CrossRef] [PubMed]
- Sofos, J.N. Challenges to meat safety in the 21st century. Meat Sci. 2008, 78, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Mor-Mur, M.; Yuste, J. Emerging bacterial pathogens in meat and poultry: An overview. Food Bioproc. Technol. 2010, 3, 24. [Google Scholar] [CrossRef]
- Baer, A.A.; Miller, M.J.; Dilger, A.C. Pathogens of interest to the pork industry: A review of research on interventions to assure food safety. Compr. Rev. Food Sci. Food Saf. 2013, 12, 183–217. [Google Scholar] [CrossRef]
- Seliwiorstow, T.; Baré, J.; Berkvens, D.; Van Damme, I.; Uyttendaele, M.; De Zutter, L. Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process. Int. J. Food Microbiol. 2016, 226, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Hurst, A.; Hoover, D.N. Antimicrobials in Food; Davidson, P.M., Branen, A.L., Eds.; Marcel Dekker: New York, NY, USA, 1993; pp. 369–394. [Google Scholar]
- Wheeler, T.; Kalchayanand, N.; Bosilevac, J.M. Pre-and post-harvest interventions to reduce pathogen contamination in the US beef industry. Meat Sci. 2014, 98, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Rhoades, J.; Duffy, G.; Koutsoumanis, K. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: A review. Food Microbiol. 2009, 26, 357–376. [Google Scholar] [CrossRef] [PubMed]
- Loretz, M.; Stephan, R.; Zweifel, C. Antimicrobial activity of decontamination treatments for poultry carcasses: A literature survey. Food Control 2010, 21, 791–804. [Google Scholar] [CrossRef]
- Bosilevac, J.M.; Nou, X.; Barkocy-Gallagher, G.A.; Arthur, T.M.; Koohmaraie, M. Treatments using hot water instead of lactic acid reduce levels of aerobic bacteria and enterobacteriaceae and reduce the prevalence of Escherichia coli O157: H7 on preevisceration beef carcasses. J. Food Prot. 2006, 69, 1808–1813. [Google Scholar] [CrossRef] [PubMed]
- Arthur, T.M.; Kalchayanand, N.; Bosilevac, J.M.; Brichta-Harhay, D.M.; Shackelford, S.D.; Bono, J.L.; Wheeler, T.L.; Koohmaraie, M. Comparison of effects of antimicrobial interventions on multidrug-resistant Salmonella, susceptible Salmonella, and Escherichia coli O157:H7. J. Food Prot. 2008, 71, 2177–2181. [Google Scholar] [CrossRef] [PubMed]
- Carlson, B.A.; Geornaras, I.; Yoon, Y.; Scanga, J.A.; Sofos, J.N.; Smith, G.C.; Belk, K.E. Studies to evaluate chemicals and conditions with low-pressure applications for reducing microbial counts on cattle hides. J. Food Prot. 2008, 71, 1343–1348. [Google Scholar] [CrossRef] [PubMed]
- Hudson, J.; Billington, C.; Carey-Smith, G.; Greening, G. Bacteriophages as biocontrol agents in food. J. Food Prot. 2005, 68, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Maragkoudakis, P.A.; Mountzouris, K.C.; Psyrras, D.; Cremonese, S.; Fischer, J.; Cantor, M.D.; Tsakalidou, E. Functional properties of novel protective lactic acid bacteria and application in raw chicken meat against Listeria monocytogenes and Salmonella enteritidis. Int. J. Food Microbiol. 2009, 130, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Dortu, C.; Huch, M.; Holzapfel, W.; Franz, C.; Thonart, P. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-b28 and Lactobacillus sakei CWBI-b1365 on raw beef and poultry meat. Lett. Appl. Microbiol. 2008, 47, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.A.; Wilke, T.; Erdmann, R. Efficacy of bacteriocin-containing cell-free culture supernatants from lactic acid bacteria to control Listeria monocytogenes in food. Int. J. Food. Microbiol. 2011, 146, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Cho, G.-S.; Hanak, A.; Huch, M.; Holzapfel, W.H.; Franz, C.M. Investigation into the potential of bacteriocinogenic Lactobacillus plantarum BFE 5092 for biopreservation of raw turkey meat. Probiotics Aantimicro. Proteins 2010, 2, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Leroy, F.; De Vuyst, L. Simulation of the effect of sausage ingredients and technology on the functionality of the bacteriocin-producing Lactobacillus sakei CTC 494 strain. Int. J. Food Microbiol. 2005, 100, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Dicks, L.; Mellett, F.; Hoffman, L. Use of bacteriocin-producing starter cultures of Lactobacillus plantarum and Lactobacillus curvatus in production of ostrich meat salami. Meat Sci. 2004, 66, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Ruiz, G.; Omar, N.B.; Abriouel, H.; Cantilde, M.M.; Galvez, A. Inhibition of Listeria monocytogenes and Escherichia coli by bacteriocin-producing Lactobacillus plantarum EC52 in a meat sausage model system. Afr. J. Microbiol. Res. 2012, 6, 1103–1108. [Google Scholar]
- Todorov, S.; Koep, K.; Van Reenen, C.; Hoffman, L.; Slinde, E.; Dicks, L. Production of salami from beef, horse, mutton, blesbok (damaliscus dorcas phillipsi) and springbok (antidorcas marsupialis) with bacteriocinogenic strains of Lactobacillus plantarum and Lactobacillus curvatus. Meat Sci. 2007, 77, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, A.; Di Martino, V.; Ferranti, P.; Picariello, L.; Villani, F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control 2016, 59, 31–45. [Google Scholar] [CrossRef]
- De Souza Barbosa, M.; Todorov, S.D.; Ivanova, I.; Chobert, J.-M.; Haertlé, T.; de Melo Franco, B.D.G. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate. Food Microbiol. 2015, 46, 254–262. [Google Scholar] [CrossRef] [PubMed]
- Ravyts, F.; Barbuti, S.; Frustoli, M.A.; Parolari, G.; Saccani, G.; De Vuyst, L.; Leroy, F. Competitiveness and antibacterial potential of bacteriocin-producing starter cultures in different types of fermented sausages. J. Food Prot. 2008, 71, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, D.; Liu, X. Bacteriocin-producing Lactobacillus sakei C2 as starter culture in fermented sausages. Food Control 2014, 35, 1–6. [Google Scholar] [CrossRef]
- Liu, G.; Griffiths, M.W.; Shang, N.; Chen, S.; Li, P. Applicability of bacteriocinogenic Lactobacillus pentosus 31–1 as a novel functional starter culture or coculture for fermented sausage manufacture. J. Food Prot. 2010, 73, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Antara, N.S.; Sujaya, I.N.; Yokota, A.; Asano, K.; Tomita, F. Effects of indigenous starter cultures on the microbial and physicochemical characteristics of urutan, a balinese fermented sausage. J. Biosci. Bioeng. 2004, 98, 92–98. [Google Scholar] [CrossRef]
- Nieto-Lozano, J.C.; Reguera-Useros, J.I.; Peláez-Martínez, M.d.C.; Sacristán-Pérez-Minayo, G.; Gutiérrez-Fernández, Á.J.; de la Torre, A.H. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 2010, 21, 679–685. [Google Scholar] [CrossRef]
- Kingcha, Y.; Tosukhowong, A.; Zendo, T.; Roytrakul, S.; Luxananil, P.; Chareonpornsook, K.; Valyasevi, R.; Sonomoto, K.; Visessanguan, W. Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for nham, a traditional fermented pork sausage. Food Control 2012, 25, 190–196. [Google Scholar] [CrossRef]
- Benkerroum, N.; Daoudi, A.; Kamal, M. Behaviour of Listeria monocytogenes in raw sausages (merguez) in presence of a bacteriocin-producing lactococcal strain as a protective culture. Meat Sci. 2003, 63, 479–484. [Google Scholar] [CrossRef]
- Hugas, M.; Garriga, M.; Aymerich, M. Functionalty of enterococci in meat products. Int. J. Food Microbiol. 2003, 88, 223–233. [Google Scholar] [CrossRef]
- Aymerich, T.; Garriga, M.; Ylla, J.; Vallier, J.; Monfort, J.; Hugas, M. Application of enterocins as biopreservatives against Listeria innocua in meat products. J. Food Prot. 2000, 63, 721–726. [Google Scholar] [CrossRef] [PubMed]
- Sabia, C.; De Niederhäusern, S.; Messi, P.; Manicardi, G.; Bondi, M. Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). Int. J. Food Microbiol. 2003, 87, 173–179. [Google Scholar] [CrossRef]
- Ananou, S.; Garriga, M.; Hugas, M.; Maqueda, M.; Martínez-Bueno, M.; Gálvez, A.; Valdivia, E. Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int. J. Food Microbiol. 2005, 103, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Nychas, G.-J.E.; Skandamis, P.N.; Tassou, C.C.; Koutsoumanis, K.P. Meat spoilage during distribution. Meat Sci. 2008, 78, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Macedo, M.L.; Barancelli, G.V.; Contreras-Castillo, C.J. Microbial deterioration of vacuum-packaged chilled beef cuts and techniques for microbiota detection and characterization: A review. Braz. J. Microbiol. 2011, 42, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cayré, M.; Garro, O.; Vignolo, G. Effect of storage temperature and gas permeability of packaging film on the growth of lactic acid bacteria and Brochothrix thermosphacta in cooked meat emulsions. Food Microbiol. 2005, 22, 505–512. [Google Scholar] [CrossRef]
- Ray, B.; Bhunia, A. Fundamental Food Microbiology; CRC press, Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- Vignolo, G.; Fontana, C.; Cocconcelli, P.S. New approaches for the study of lactic acid bacteri biodiversity: A focus on meat ecosystems. In Biotechnology of Lactic Acid Bacteria. Novel Applications; Mozzi, F., Raya, R., Vignolo, G., Eds.; Wily-Blackwell: Ames, IA, USA, 2010; pp. 251–271. [Google Scholar]
- Castellano, P.; González, C.; Carduza, F.; Vignolo, G. Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Sci. 2010, 85, 394–401. [Google Scholar] [CrossRef] [PubMed]
- Katla, T.; Møretrø, T.; Sveen, I.; Aasen, I.; Axelsson, L.; Rørvik, L.; Naterstad, K. Inhibition of Listeria monocytogenes in chicken cold cuts by addition of sakacin P and sakacin P-producing Lactobacillus sakei. J. Appl. Microbiol. 2002, 93, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Hugas, M.; Garriga, M.; Aymerich, M.T.; Monfort, J.M. Bacterial cultures and metabolites for the enhancement of safety and quality in meat products. In Research Advances in the Quality of Meat and Meat Products; Toldrà, F., Ed.; Research Signpost: Trivandrum, India, 2002; pp. 225–247. [Google Scholar]
- Katikou, P.; Ambrosiadis, I.; Georgantelis, D.; Koidis, P.; Georgakis, S. Effect of Lactobacillus-protective cultures with bacteriocin-like inhibitory substances’ producing ability on microbiological, chemical and sensory changes during storage of refrigerated vacuum-packaged sliced beef. J. Appl. Microbiol. 2005, 99, 1303–1313. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.; Wiklund, E.; Zagorec, M.; Tagg, J. Evaluation of stored lamb bio-preserved using a three-strain cocktail of Lactobacillus sakei. Meat Sci. 2010, 86, 955–959. [Google Scholar] [CrossRef] [PubMed]
- Tu, L.; Mustapha, A. Reduction of Brochothrix thermosphacta and Salmonella serotype typhimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. J. Food Sci. 2002, 67, 302–306. [Google Scholar] [CrossRef]
- Vermeiren, L.; Devlieghere, F.; De Graef, V.; Debevere, J. In vitro and in situ growth characteristics and behaviour of spoilage organisms associated with anaerobically stored cooked meat products. J. Appl. Microbiol. 2005, 98, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.P.d. The impact of food manufacturing practices on food borne diseases. Braz. Arch. Biol. Technol. 2008, 51, 615–623. [Google Scholar] [CrossRef]
- Leong, D.; NicAogáin, K.; Luque-Sastre, L.; McManamon, O.; Hunt, K.; Alvarez-Ordóñez, A.; Scollard, J.; Schmalenberger, A.; Fanning, S.; O’Byrne, C. A 3-year multi-food study of the presence and persistence of Listeria monocytogenes in 54 small food businesses in Ireland. Int. J. Food Microbiol. 2017, 249, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, C.; Ravyts, F.; De Maere, H.; De Mey, E.; Paelinck, H.; De Vuyst, L.; Leroy, F. Evaluation of the spoilage lactic acid bacteria in modified-atmosphere-packaged artisan-type cooked ham using culture-dependent and culture-independent approaches. J. Appl. Microbiol. 2008, 104, 1341–1353. [Google Scholar] [CrossRef] [PubMed]
- Elmali, M.; CAN, H.Y.; Yaman, H. Prevalence of Listeria monocytogenes in poultry meat. Food Sci. Technol. 2015, 35, 672–675. [Google Scholar] [CrossRef]
- Gómez, D.; Iguácel, L.P.; Rota, M.; Carramiñana, J.J.; Ariño, A.; Yangüela, J. Occurrence of Listeria monocytogenes in ready-to-eat meat products and meat processing plants in Spain. Foods 2015, 4, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Vermeiren, L.; Devlieghere, F.; Vandekinderen, I.; Debevere, J. The interaction of the non-bacteriocinogenic Lactobacillus sakei 10a and lactocin S producing Lactobacillus sakei 148 towards Listeria monocytogenes on a model cooked ham. Food Microbiol. 2006, 23, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Vasilopoulos, C.; De Mey, E.; Dewulf, L.; Paelinck, H.; De Smedt, A.; Vandendriessche, F.; De Vuyst, L.; Leroy, F. Interactions between bacterial isolates from modified-atmosphere-packaged artisan-type cooked ham in view of the development of a bioprotective culture. Food Microbiol. 2010, 27, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, T.; Budde, B.; Koch, A. Application of Leuconostoc carnosum for biopreservation of cooked meat products. J. Appl. Microbiol. 2003, 95, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Metaxopoulos, J.; Mataragas, M.; Drosinos, E. Microbial interaction in cooked cured meat products under vacuum or modified atmosphere at 4 °C. J. Appl. Microbiol. 2002, 93, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Mataragas, M.; Drosinos, E.; Metaxopoulos, J. Antagonistic activity of lactic acid bacteria against Listeria monocytogenes in sliced cooked cured pork shoulder stored under vacuum or modified atmosphere at 4 ± 2 °C. Food Microbiol. 2003, 20, 259–265. [Google Scholar] [CrossRef]
- Comi, G.; Andyanto, D.; Manzano, M.; Iacumin, L. Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial cooked bacon. Food Microbiol. 2016, 58, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, P.P.; Muriana, P.M. Inhibition of Listeria monocytogenes on ready-to-eat meats using bacteriocin mixtures based on mode-of-action. Foods 2017, 6, 22. [Google Scholar] [CrossRef] [PubMed]
- Kerry, J.; O’grady, M.; Hogan, S. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat Sci. 2006, 74, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Lee, S.J.; Choi, D.S.; Hur, S.J. Current topics in active and intelligent food packaging for preservation of fresh foods. J. Sci. Food Agric. 2015, 95, 2799–2810. [Google Scholar] [CrossRef] [PubMed]
- Irkin, R.; Esmer, O.K. Novel food packaging systems with natural antimicrobial agents. J. Food Sci. Technol. 2015, 52, 6095–6111. [Google Scholar] [CrossRef] [PubMed]
- Blanco Massani, M.; Morando, P.J.; Vignolo, G.M.; Eisenberg, P. Characterization of a multilayer film activated with Lactobacillus curvatus CRL705 bacteriocins. J. Sci. Food Agric. 2012, 92, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Blanco Massani, M.; Fernandez, M.; Ariosti, A.; Eisenberg, P.; Vignolo, G. Development and characterization of an active polyethylene film containing Lactobacillus curvatus CRL705 bacteriocins. Food Add. Contam. A 2008, 25, 1424–1430. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, G.; Ercolini, D.; La Storia, A.; Casaburi, A.; Villani, F. Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J. Appl. Microbiol. 2004, 97, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; An, D.S.; Park, H.J.; Lee, D.S. Wide-spectrum antimicrobial packaging materials incorporating nisin and chitosan in the coating. Pack. Technol. Sci. 2003, 16, 99–106. [Google Scholar] [CrossRef]
- Ye, M.; Neetoo, H.; Chen, H. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 2008, 25, 260–268. [Google Scholar] [CrossRef] [PubMed]
- Emiroğlu, Z.K.; Yemiş, G.P.; Coşkun, B.K.; Candoğan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Kuorwel, K.K.; Cran, M.J.; Sonneveld, K.; Miltz, J.; Bigger, S.W. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents. J. Food Sci. 2011, 76, R90–R102. [Google Scholar] [CrossRef] [PubMed]
- Ferrocino, I.; La Storia, A.; Torrieri, E.; Musso, S.S.; Mauriello, G.; Villani, F.; Ercolini, D. Antimicrobial packaging to retard the growth of spoilage bacteria and to reduce the release of volatile metabolites in meat stored under vacuum at 1 °C. J. Food Prot. 2013, 76, 52–58. [Google Scholar] [CrossRef] [PubMed]
- La Storia, A.; Mauriello, G.; Villani, F.; Ercolini, D. Coating-activation and antimicrobial efficacy of different polyethylene films with a nisin-based solution. Food Bioprocess. Technol. 2013, 6, 2770–2779. [Google Scholar] [CrossRef]
- Ming, X.; Weber, G.H.; Ayres, J.W.; Sandine, W.E. Bacteriocins applied to food packaging materials to inhibit Listeria monocytogenes on meats. J. Food Sci. 1997, 62, 413–415. [Google Scholar] [CrossRef]
- Santiago-Silva, P.; Soares, N.F.; Nóbrega, J.E.; Júnior, M.A.; Barbosa, K.B.; Volp, A.C.P.; Zerdas, E.R.; Würlitzer, N.J. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 2009, 20, 85–89. [Google Scholar] [CrossRef]
- Iseppi, R.; Pilati, F.; Marini, M.; Toselli, M.; de Niederhäusern, S.; Guerrieri, E.; Messi, P.; Sabia, C.; Manicardi, G.; Anacarso, I. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with enterocin 416K1 for use as bioactive food packaging. Int. J. Food Microbiol. 2008, 123, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. Use of antimicrobial biodegradable packaging to control Listeria monocytogenes during storage of cooked ham. Int. J. Food Microbiol. 2007, 120, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Ercolini, D.; Storia, A.; Villani, F.; Mauriello, G. Effect of a bacteriocin-activated polythene film on Listeria monocytogenes as evaluated by viable staining and epifluorescence microscopy. J. Appl. Microbiol. 2006, 100, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Blanco Massani, M.; Botana, A.; Eisenberg, P.; Vignolo, G. Development of an active wheat gluten film with Lactobacillus curvatus CRL705 bacteriocins and a study of its antimicrobial performance during ageing. Food Add. Contam. A 2014, 31, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Trinetta, V.; Floros, J.D.; Cutter, C.N. Sakacin a containing pullulan film: An active packaging system to control epidemicclones of Listeria monocytogenes in ready-to-eat foods. J. Food Saf. 2010, 30, 366–381. [Google Scholar] [CrossRef]
- Gialamas, H.; Zinoviadou, K.G.; Biliaderis, C.G.; Koutsoumanis, K.P. Development of a novel bioactive packaging based on the incorporation of Lactobacillus sakei into sodium-caseinate films for controlling Listeria monocytogenes in foods. Food Res. Int. 2010, 43, 2402–2408. [Google Scholar] [CrossRef]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. New weapons to fight old enemies: Novel strategies for the (bio) control of bacterial biofilms in the food industry. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Bridier, A.; Sanchez-Vizuete, P.; Guilbaud, M.; Piard, J.-C.; Naïtali, M.; Briandet, R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol. 2015, 45, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Renier, S.; Hébraud, M.; Desvaux, M. Molecular biology of surface colonization by listeria monocytogenes: An additional facet of an opportunistic gram-positive foodborne pathogen. Environ. Microbiol. 2011, 13, 835–850. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Heir, E.; Hébraud, M.; Chorianopoulos, N.; Langsrud, S.; Møretrø, T.; Habimana, O.; Desvaux, M.; Renier, S.; Nychas, G.-J. Attachment and biofilm formation by foodborne bacteria in meat processing environments: Causes, implications, role of bacterial interactions and control by alternative novel methods. Meat Sci. 2014, 97, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Carpentier, B.; Cerf, O. Review—Persistence of listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef] [PubMed]
- García-Almendárez, B.E.; Cann, I.K.; Martin, S.E.; Guerrero-Legarreta, I.; Regalado, C. Effect of Lactococcus lactis UQ2 and its bacteriocin on Listeria monocytogenes biofilms. Food Control 2008, 19, 670–680. [Google Scholar] [CrossRef]
- Winkelstroeter, L.K.; Gomes, B.C.; Thomaz, M.R.; Souza, V.M.; De Martinis, E.C. Lactobacillus sakei 1 and its bacteriocin influence adhesion of Listeria monocytogenes on stainless steel surface. Food Control 2011, 22, 1404–1407. [Google Scholar] [CrossRef]
- Pérez Ibarreche, M.; Castellano, P.; Vignolo, G. Evaluation of anti-listeria meat borne Lactobacillus for biofilm formation on selected abiotic surfaces. Meat Sci. 2014, 96, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Perez-Ibarreche, M.; Castellano, P.; Leclercq, A.; Vignolo, G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol. Lett. 2016, 363, fnw118. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, E.; de Niederhäusern, S.; Messi, P.; Sabia, C.; Iseppi, R.; Anacarso, I.; Bondi, M. Use of lactic acid bacteria (lab) biofilms for the control of Listeria monocytogenes in a small-scale model. Food Control 2009, 20, 861–865. [Google Scholar] [CrossRef]
- Ndahetuye, J.B.; Koo, O.K.; O’BRYAN, C.A.; Ricke, S.C.; Crandall, P.G. Role of lactic acid bacteria as a biosanitizer to prevent attachment of Listeria monocytogenes F6900 on deli slicer contact surfaces. J. Food Prot. 2012, 75, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Ahn, J. Probiotic-mediated competition, exclusion and displacement in biofilm formation by food-borne pathogens. Lett. Appl. Microbiol. 2013, 56, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Ouali, F.A.; Al Kassaa, I.; Cudennec, B.; Abdallah, M.; Bendali, F.; Sadoun, D.; Chihib, N.-E.; Drider, D. Identification of lactobacilli with inhibitory effect on biofilm formation by pathogenic bacteria on stainless steel surfaces. Int. J. Food Microbiol. 2014, 191, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Brackman, G.; Coenye, T. Quorum sensing inhibitors as anti-biofilm agents. Curr. Pharm. Des. 2015, 21, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, W.; Xu, S.X.; Magarvey, N.A.; McCormick, J.K. Lactobacillus reuteri-produced cyclic dipeptides quench agr-mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc. Natl. Acad. Sci. USA 2011, 108, 3360–3365. [Google Scholar] [CrossRef] [PubMed]
- Algburi, A.; Zehm, S.; Netrebov, V.; Bren, A.B.; Chistyakov, V.; Chikindas, M.L. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicro. Proteins 2017, 9, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Cutter, C.N.; Siragusa, G.R. Efficacy of organic acids against Escherichia coli O157: H7 attached to beef carcass tissue using a pilot scale model carcass washer. J. Food Prot. 1994, 57, 97–103. [Google Scholar] [CrossRef]
- Carlson, B.A.; Ruby, J.; Smith, G.C.; Sofos, J.N.; Bellinger, G.R.; Warren-Serna, W.; Centrella, B.; Bowling, R.A.; Belk, K.E. Comparison of antimicrobial efficacy of multiple beef hide decontamination strategies to reduce levels of Escherichia coli O157: H7 and Salmonella. J. Food Prot. 2008, 71, 2223–2227. [Google Scholar] [CrossRef] [PubMed]
- Gill, C. Effects on the microbiological condition of product of decontaminating treatments routinely applied to carcasses at beef packing plants. J. Food Prot. 2009, 72, 1790–1801. [Google Scholar] [CrossRef] [PubMed]
- Riedel, C.T.; Brøndsted, L.; Rosenquist, H.; Haxgart, S.N.; Christensen, B.B. Chemical decontamination of Campylobacter jejuni on chicken skin and meat. J. Food Prot. 2009, 72, 1173–1180. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.; Vimini, B.; Schwarz, J.; Nichols, P.; Parveen, S. Application of antimicrobial agents via commercial spray cabinet to inactivate salmonella on skinless chicken meat. J. Food Prot. 2016, 79, 569–573. [Google Scholar] [CrossRef] [PubMed]
- Shefet, S.M.; Sheldon, B.W.; Klaenhammer, T.R. Efficacy of optimized nisin-based treatments to inhibit Salmonella typhimurium and extend shelf life of broiler carcasses. J. Food Prot. 1995, 58, 1077–1082. [Google Scholar] [CrossRef]
- Pawar, D.; Malik, S.; Bhilegaonkar, K.; Barbuddhe, S. Effect of nisin and its combination with sodium chloride on the survival of Listeria monocytogenes added to raw buffalo meat mince. Meat Sci. 2000, 56, 215–219. [Google Scholar] [CrossRef]
- Govaris, A.; Solomakos, N.; Pexara, A.; Chatzopoulou, P. The antimicrobial effect of oregano essential oil, nisin and their combination against Salmonella enteritidis in minced sheep meat during refrigerated storage. Int. J. Food Microbiol. 2010, 137, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Ghabraie, M.; Vu, K.D.; Tata, L.; Salmieri, S.; Lacroix, M. Antimicrobial effect of essential oils in combinations against five bacteria and their effect on sensorial quality of ground meat. LWT—Food Sci. Technol. 2016, 66, 332–339. [Google Scholar] [CrossRef]
- Garriga, M.; Aymerich, M.; Costa, S.; Monfort, J.; Hugas, M. Bactericidal synergism through bacteriocins and high pressure in a meat model system during storage. Food Microbiol. 2002, 19, 509–518. [Google Scholar] [CrossRef]
- Aymerich, T.; Jofré, A.; Garriga, M.; Hugas, M. Inhibition of Listeria monocytogenes and Salmonella by natural antimicrobials and high hydrostatic pressure in sliced cooked ham. J. Food Prot. 2005, 68, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Hereu, A.; Bover-Cid, S.; Garriga, M.; Aymerich, T. High hydrostatic pressure and biopreservation of dry-cured ham to meet the food safety objectives for Listeria monocytogenes. Int. J. Food Microbiol. 2012, 154, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Patterson, M.; Mackle, A.; Linton, M. Effect of high pressure, in combination with antilisterial agents, on the growth of Listeria monocytogenes during extended storage of cooked chicken. Food Microbiol. 2011, 28, 1505–1508. [Google Scholar] [CrossRef] [PubMed]
- Marcos, B.; Aymerich, T.; Monfort, J.M.; Garriga, M. High-pressure processing and antimicrobial biodegradable packaging to control listeria monocytogenes during storage of cooked ham. Food Microbiol. 2008, 25, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Mendonca, A.; Ismail, H.; Du, M.; Lee, E.; Ahn, D. Impact of antimicrobial ingredients and irradiation on the survival of Listeria monocytogenes and the quality of ready-to-eat turkey ham. Poult. Sci. 2005, 84, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Knight, T.; Castillo, A.; Maxim, J.; Keeton, J.; Miller, R. Effectiveness of potassium lactate and sodium diacetate in combination with irradiation to control Listeria monocytogenes on frankfurters. J. Food Sci. 2007, 72, M026–M030. [Google Scholar] [CrossRef] [PubMed]
- El-Shibiny, A.; Scott, A.; Timms, A.; Metawea, Y.; Connerton, P.; Connerton, I. Application of a group ii campylobacter bacteriophage to reduce strains of Campylobacter jejuni and Campylobacter coli colonizing broiler chickens. J. Food Prot. 2009, 72, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Sukumaran, A.T.; Nannapaneni, R.; Kiess, A.; Sharma, C.S. Reduction of Salmonella on chicken breast fillets stored under aerobic or modified atmosphere packaging by the application of lytic bacteriophage preparation salmofreshtm. Poult. Sci. 2016, 95, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Abuladze, T.; Li, M.; Menetrez, M.Y.; Dean, T.; Senecal, A.; Sulakvelidze, A. Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157: H7. Appl. Environ. Microbiol. 2008, 74, 6230–6238. [Google Scholar] [CrossRef] [PubMed]
- Lecompte, J.-Y.; Kondjoyan, A.; Sarter, S.; Portanguen, S.; Collignan, A. Effects of steam and lactic acid treatments on inactivation of Listeria innocua surface-inoculated on chicken skins. Int. J. Food Microbiol. 2008, 127, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Northcutt, J.; Smith, D.; Ingram, K.; Hinton, A.; Musgrove, M. Recovery of bacteria from broiler carcasses after spray washing with acidified electrolyzed water or sodium hypochlorite solutions. Poult. Sci. 2007, 86, 2239–2244. [Google Scholar] [CrossRef] [PubMed]
- Yuste, J.; Pla, R.; Capellas, M.; Mor-Mur, M. Application of high-pressure processing and nisin to mechanically recovered poultry meat for microbial decontamination. Food Control 2002, 13, 451–455. [Google Scholar] [CrossRef]
LAB and Antimicrobial Metabolites | Microorganism Inhibition | Meat Product | Reference | |
---|---|---|---|---|
I Meat conditioning and raw meats | Acetic, citric and lactic acids and their salts | Aerobic bacteria and Enterobacteriaceae | In fresh pre-eviscerated carcasses | [33] |
Acetic and lactic acid spraying | Coliforms, Enterobacteriaceae and E. coli | Carcasses | [34,35] | |
Bacteriophages | L. monocytogenes | Carcasses (decontamination limited) | [36] | |
Nisina | Marginal reductions of Listeria | Beef carcasses yielded | [10] | |
Nisin and lactic acid spraying | Aerobic bacteria, coliforms and E. coli | Beef carcasses yielded | [10] | |
E. faecium PCD71 and L. fermentum ACA-DC179 | L. monocytogenes, S. enteritidis | Raw ground chicken meat | [37] | |
L. sakei CWBI-B1365 and L. curvatus CWBI-B28 | L. monocytogenes | Raw beef and poultry meat | [38] | |
sakacin A produced by L. sakei IDE0216 | L. monocytogenes | Ground beef | [39] | |
L. plantarum BFE5092 (plantaricins EF, JK and N producer) | L. monocytogenes | Turkey meat | [40] | |
Fermented meat products | L. plantarum and L. curvatus (plantaricin 423 and curvacin DF126 producer) | L. monocytogenes | Ostrich meat salami | [42] |
L. plantarum EC52 bacteriocinogenic strain | L. monocytogenes and E. coli O157:H7 | Meat sausage | [43] | |
L. curvatus DF38 (curvacin DF38 producer) | L. monocytogenes | Different meat origins salami | [44] | |
L. curvatus 54M16 (sakacin producer) | L. monocytogenes | Fermented sausage | [45] | |
Sakacin P and sakacin X produced by L. curvatus | L. monocytogenes | Brazilian salami | [46] | |
Sakacin K produced by L. sakei CTC494 | L. monocytogenes | Dry-fermented sausages | [47] | |
Sakacin produced by L. sakei C2 | Spoilage and pathogenic microorganisms | Sausage | [48] | |
L. pentosus 31-1 bacteriocinogenic strain | L. innocua and S. aureus | Sausage | [49] | |
Pediocin-producing Pediococcus (P.) acidilactici U318 and L. plantarum U201 | Enterobacteriaceae | Balinese sausages | [50] | |
P. acidilactici MCH14 (pediocin PA-1 producer) | L. monocytogenes and Cl. perfringens | Spanish dry-fermented sausages | [51] | |
P. pentosaceus BCC3772 (pediocin PA-1/AcH producer) | Listeria strains | Nham, a Thai traditional fermented pork sausage | [52] | |
Bacteriocins produced by Lc. Lactis M | L. monocytogenes | Mildly acid sausages | [53] | |
Enterocins producing enterococci | L. monocytogenes and other spoilage LAB | Sausage | [54] | |
Bacteriocin-producing E. casseliflavus IM416K1 | L. monocytogenes | Italian “cacciatore” sausage | [55] | |
E. faecium CTC492 (enterocin A and B producer) | L. monocytogenes | Italian “cacciatore” sausage | [56] | |
E. faecalis A-48-32 and E. faecium S-32-81 and semipurified AS-48 bacteriocin | L. monocytogenes CECT4032 | Sausages | [57] | |
Bacteriocin-producing L. curvatus MBSa2 in calcium alginate | L. monocytogenes | Salami | [48] | |
Chilled vacuum- and modified atmosphere-packaged raw meat | L. curvatus CRL705 and lactocin AL705 | Listeria and B. thermosphacta | VP fresh beef | [23,63] |
Sakacin P/sakacin P-producing L. sakei Lb790 and sakacin K/sakacin K-producing L. sakei CTC494 | Listeriostatic effect | VP chicken cold cuts and refrigerated VP fresh meat | [64,65] | |
Bacteriocin-producing L. sakei CECT4808 | B. thermosphacta and spoilage LAB | VP sliced beef | [66] | |
Bacteriocinogenic strans of L. sakei | Anaerobic microbial population | VP lamb | [67] | |
Lactocin 705, enterocins A/B and sakacin P | Listeria and B. thermosphacta | VP raw beef and chicken | [23,55,64,65] | |
Nisin or nisin/EDTA | B. thermosphacta | VP fresh beef | [68] | |
Cooked ready to eat meat products | L. sakei 1 and 10A | L. monocytogenes | VP baked ham | [75] |
Ln. Carnosum 3M42 | Spoilage microorganisms | Artisan-type cooked ham | [76] | |
Ln. Carnosum 4010 | L. monocytogenes | VP sliced cooked pork product | [77] | |
Ln. mesenteroides L124 and L. curvatus L442 | Listeria strains | Sliced cooked cured pork | [78] | |
Bacteriocins produced by Ln. mesenteroides L124 and L. curvatus L442 | Listeria strains and B. thermosphacta | Sliced cooked cured pork | [79] | |
Pediocin PA-1 produced by P. acidilactici MCH14 | L. monocytogenes and Cl. perfringens | Frankfurters | [51] | |
Lc. Lactis and L. sakei | Ln. mesenteroides | Cooked bacon | [80] | |
Bacteriocins mixtures (different classes) | L. monocytogenes | Hotdogs | [81] |
Combination | Microorganisms | Meat Product | Reference |
---|---|---|---|
Acetic acid + hot water | E. coli O157:H7 Salmonella | Beef carcasses and carcass parts | [34] |
Aerobic bacteria E. coli O157:H7 Salmonella | Cattle hides | [35] | |
Lactic acid + hot water | Aerobic bacteria Coliforms S. thyphimurium | Beef carcasses | [35] |
Aerobic bacteria Enterobacteriaceae | Pre-eviscerated beef carcasses | [33] | |
E. coli O157:H7 | Beef carcasses | [30] | |
Lactic acid + steam | L. innocua | Chicken skin | [139] |
Lactic acid + nisin | Aerobic bacteria Coliforms E. coli | Red meat carcasses | [10] |
Lactic acid + acetic acid spraying | E. coli | Beef carcasses | [122] |
Lactic acid + acetic acid + NaOH | E. coli O157:H7 Salmonella | Beef hides | [121] |
Acetic acid + air injection | Aerobic bacteria Enterobacteriaceae | Poultry carcasses | [32] |
Acetic acid + ultrasound | Aerobic bacteria | Broiler drumsticks skin | [32] |
Na2CO3 + hot water | L monocytogenes S. aureus S. typhimurium | Chicken wings | [32] |
Electricity + chlorinated compounds | S. thyphymurium | Chicken skin | [32] |
NaClO + electrolized water | Aerobic bacteria Campylobacter jejuni E. Coli Salmonella | Broiler carcasses | [140] |
Nisin + EDTA + citric acid + Tween 20 | S. typhimurium | Broiler carcasses | [125] |
Nisin + hot water | L. innocua, Carnobacterium divergens B. thermosphacta | Beef carcasses tissue | [120] |
Combination | Microorganism | Meat Product | Reference |
---|---|---|---|
Lauric arginate + vinegar | Aerobic bacteria S. thyphimurium | Skinless chicken meat | [124] |
Lactic acid + other chemicals + water | Campylobacter jejuni | Chicken skin and meat | [123] |
Nisin + NaCl | L. monocytogenes | Raw buffalo meat mince | [126] |
Nisin + oregano essential oil | S. enteritidis | Sheep meat mince | [127] |
Nisin + organic acids + cinnamon | L. monocytogenes | Sausage model | [128] |
HHP + nisin | L. monocytogenes | Dry cured ham | [131] |
HHP + nisin + enterocins A/B + sakacin K + pediocin AcH | Slime-producer LAB Salmonella Staphylococcus | Meat model system | [129] |
HHP + nisin+ lactate salts | L. monocytogenes Salmonella | Sliced cooked ham | [130] |
HHP + enterocins A/B | L. monocytogenes | Cooked ham | [133] |
HHP + nisin + glucono-δ-lactone | Aerobic bacteria | Mechanically recovered poultry meat | [141] |
HHP + enterocins A/B activated packaging | L. monocytogenes | Cooked ham | [98] |
HHP + antilisterial W. viridescens | L. monocytogenes | Cooked chicken mince | [132] |
Irradiation + lactate/diacetate salts | L. monocytogenes | Frankfurters | [135] |
Irradiation + lactate/diacetate/benzoate salts | L. monocytogenes | RTE turkey ham | [134] |
Bacteriophage | Campylobacter jejuni Campylobacter coli | Broiler chickens | [136] |
Bacteriophage | Salmonella | Chicken meat and skin | [137] |
Bacteriophage | E. coli O157:H7 | Ground beef | [138] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castellano, P.; Pérez Ibarreche, M.; Blanco Massani, M.; Fontana, C.; Vignolo, G.M. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms 2017, 5, 38. https://doi.org/10.3390/microorganisms5030038
Castellano P, Pérez Ibarreche M, Blanco Massani M, Fontana C, Vignolo GM. Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms. 2017; 5(3):38. https://doi.org/10.3390/microorganisms5030038
Chicago/Turabian StyleCastellano, Patricia, Mariana Pérez Ibarreche, Mariana Blanco Massani, Cecilia Fontana, and Graciela M. Vignolo. 2017. "Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments" Microorganisms 5, no. 3: 38. https://doi.org/10.3390/microorganisms5030038
APA StyleCastellano, P., Pérez Ibarreche, M., Blanco Massani, M., Fontana, C., & Vignolo, G. M. (2017). Strategies for Pathogen Biocontrol Using Lactic Acid Bacteria and Their Metabolites: A Focus on Meat Ecosystems and Industrial Environments. Microorganisms, 5(3), 38. https://doi.org/10.3390/microorganisms5030038