Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics
Abstract
:1. Introduction
2. Sources of Contamination
3. The Major Bacterial Contaminants of Poultry Meat
3.1. Bacterial Contaminants
3.2. Spoilage Bacteria
3.3. Pathogens
4. Variability of Bacterial Communities Regarding Different Matrices and Processes
4.1. Variability of Bacterial Contaminants Regarding Meat Matrix and Origin
4.2. Variability of Bacterial Contaminants Regarding Storage Temperature
4.3. Variability of Bacterial Contaminants Regarding the Packaging Gas Composition
4.4. Variability of Bacterial Contaminants in Marinated Chicken and with Various Additives
4.5. Variability of Bacterial Contaminants Regarding Sanitizing Treatments
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Meat Consumption (Indicator). Available online: https://data.oecd.org/agroutput/meat-consumption.htm (accessed on 24 July 2017).
- Tout Savoir sur la Volaille Française. Available online: https://www.volaille-francaise.fr/la-filiere-avicole/chiffres-cles/ (accessed on 24 July 2017).
- Filières Agricoles et de la Pêche et Aquaculture. Available online: http://www.franceagrimer.fr/ (accessed on 24 July 2017).
- Rouger, A.; Remenant, B.; Prévost, H.; Zagorec, M. A method to isolate bacterial communities and characterize ecosystems from food products: Validation and utilization as a reproducible chicken meat model. Int. J. Food Microbiol. 2017, 247, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Sauter, E.A. Microbiology of frozen poultry products. In The Microbiology of Poultry Meat Products; Cunningham, F.E., Cox, N.A., Eds.; Academic Press: New York, NY, USA, 1987; pp. 333–339. [Google Scholar]
- Nieminen, T.T.; Koskinen, K.; Laine, P.; Hultman, J.; Sade, E.; Paulin, L.; Paloranta, A.; Johansson, P.; Björkroth, J.; Auvinen, P. Comparison of microbial communities in marinated and unmarinated broiler meat by metagenomics. Int. J. Food Microbiol. 2012, 157, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Nieminen, T.T.; Valitalo, H.; Sade, E.; Paloranta, A.; Koskinen, K.; Björkroth, J. The effect of marination on lactic acid bacteria communities in raw broiler fillet strips. Front. Microbiol. 2012, 3, 376. [Google Scholar] [CrossRef] [PubMed]
- Authority, E.F.S. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA. J. 2016, 14, 4634. [Google Scholar]
- Chai, S.J.; Cole, D.; Nisler, A.; Mahon, B.E. Poultry: The most common food in outbreaks with known pathogens, United States, 1998–2012. Epidemiol. Infect. 2017, 145, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Praveen, P.K.; Debnath, C.; Shekhar, S.; Dalai, N.; Ganguly, S. Incidence of Aeromonas spp. infection in fish and chicken meat and its related public health hazards: A review. Vet. World. 2016, 9, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Line, J.E.; Oakley, B.B.; Stern, N.J. Comparison of cumulative drip sampling with whole carcass rinses for estimation of Campylobacter species and quality indicator organisms associated with processed broiler chickens. Poult. Sci. 2013, 92, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Mormile, M.R.; Oakley, B.B.; Morales, C.A.; Line, J.; Berrang, M.E.; Meinersmann, R.J.; Tillman, G.E.; Wise, M.G.; Siragusa, G.R.; Hiett, K.L.; Seal, B.S. The poultry-associated microbiome: Network analysis and farm-to-fork characterizations. PLoS ONE 2013, 8, e57190. [Google Scholar]
- Chaillou, S.; Chaulot-Talmon, A.; Caekebeke, H.; Cardinal, M.; Christieans, S.; Denis, C.; Desmonts, M.H.; Dousset, X.; Feurer, C.; Hamon, E.; et al. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage. ISME J. 2015, 9, 1105–1118. [Google Scholar] [CrossRef] [PubMed]
- SLAUGHTERHOUSES. Available online: http://www.fao.org/WAIRDOCS/LEAD/X6114E/x6114e04.htm#b2–2.2.%20Poultry%20slaughtering%20process (accessed on 27 January 2017).
- Vihavainen, E.; Lundstrom, H.S.; Susiluoto, T.; Koort, J.; Paulin, L.; Auvinen, P.; Bjorkroth, J. Role of broiler carcasses and processing plant air in contamination of modified-atmosphere-packaged broiler products with psychrotrophic lactic acid bacteria. Appl. Environ. Microbiol. 2007, 73, 1136–1145. [Google Scholar] [CrossRef] [PubMed]
- Luber, P. Cross-contamination versus undercooking of poultry meat or eggs—Which risks need to be managed first? Int. J. Food Microbiol. 2009, 134, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Warsow, C.R.; Orta-Ramirez, A.; Marks, B.P.; Ryser, E.T.; Booren, A.M. Single directional migration of Salmonella into marinated whole muscle turkey breast. J. Food Prot. 2008, 71, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.W. Bacterial contamination on rubber picker fingers before, during, and after processing. Poult. Sci. 2007, 86, 2671–2675. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.W.; Yates. Interventions for control of Salmonella: Clearance of microbial growth from rubber picker fingers. Poult. Sci. 2009, 88, 1292–1298. [Google Scholar] [CrossRef] [PubMed]
- Veluz, G.A.; Pitchiah, S.; Alvarado, C.Z. Attachment of Salmonella serovars and Listeria monocytogenes to stainless steel and plastic conveyor belts. Poult. Sci. 2012, 91, 2004–2010. [Google Scholar]
- Álvarez-Astorga, M.; Capita, R.; Alonso-Calleja, C.; Moreno, B.; del Camino Garcı́a-Fernández, M. Microbiological quality of retail chicken by-products in Spain. Meat Sci. 2002, 62, 45–50. [Google Scholar] [CrossRef]
- Göksoy, E.; Kirkan, S.; Kok, F. Microbiological quality of broiler carcasses during processing in two slaughterhouses in Turkey. Poult. Sci. 2004, 83, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Russell, S.M. The Effect of an acidic, copper sulfate-based commercial sanitizer on indicator, pathogenic, and spoilage bacteria associated with broiler chicken carcasses when applied at various intervention points during poultry processing. Poult. Sci. 2008, 87, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Demirok, E.; Veluz, G.; Stuyvenberg, W.V.; Castaneda, M.P.; Byrd, A.; Alvarado, C.Z. Quality and safety of broiler meat in various chilling systems. Poult. Sci. 2013, 92, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Allain, V.; Laisney, M.J.; Le Bouquin, S.; Lalande, F.; Petetin, I.; Rouxel, S.; Quesne, S.; Gloaguen, P.Y.; Picherot, M.; et al. Campylobacter contamination of broiler caeca and carcasses at the slaughterhouse and correlation with Salmonella contamination. Food Microbiol. 2011, 28, 862–868. [Google Scholar] [PubMed]
- Pacholewicz, E.; Swart, A.; Wagenaar, J.A.; Lipman, L.J.; Havelaar, A.H. Explanatory variables associated with Campylobacter and Escherichia coli concentrations on broiler chicken carcasses during processing in two slaughterhouses. J. Food Prot. 2016, 79, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Waite, D.W.; Taylor, M.W. Characterizing the avian gutmicrobiota: membership, driving influences, and potential function. Front. Microbiol. 2014, 5, 223. [Google Scholar] [CrossRef] [PubMed]
- Mohd Shaufi, M.A.; Sieo, C.C.; Chong, C.W.; Gan, H.M.; Ho, Y.W.; Sunway, B. Deciphering chicken gut microbial dynamics based on high-throughput 16S rRNA metagenomics analyses. Gut Pathog. 2015, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Ranjitkar, S.; Lawley, B.; Tannock, G.; Engberg, R.M. Bacterial succession in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 2016, 82, 2399–2410. [Google Scholar] [CrossRef] [PubMed]
- Hinton, A., Jr.; Cason, J.A.; Ingram, K.D. Tracking spoilage bacteria in commercial poultry processing and refrigerated storage of poultry carcasses. Int. J. Food Microbiol. 2004, 91, 155–165. [Google Scholar] [CrossRef]
- Al-Nehlawi, A.; Saldo, J.; Vega, L.F.; Guri, S. Effect of high carbon dioxide atmosphere packaging and soluble gas stabilization pre-treatment on the shelf-life and quality of chicken drumsticks. Meat Sci. 2013, 94, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Balamatsia, C.C.; Patsias, A.; Kontominas, M.G.; Savvaidis, I.N. Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets: Correlation with microbiological and sensory attributes. Food Chem. 2007, 104, 1622–1628. [Google Scholar] [CrossRef]
- Chaiba, A.; Rhazi, F.F.; Chahlaoui, A.; Soulaymani, R.B.; Zerhouni, M. Microbiological quality of poultry meat on the Meknès market (Morocco). Internet J. Food Safety 2007, 9, 67–71. [Google Scholar]
- Capita, R.; Alonso-Calleja, C.; García-Arias, M.T.; Moreno, B.; García-Fernández, M.D.C. Methods to detect the occurrence of various indicator bacteria on the surface of retail poultry in Spain. J. Food Sci. 2002, 67, 765–771. [Google Scholar] [CrossRef]
- Chouliara, E.; Karatapanis, A.; Savvaidis, I.N.; Kontominas, M.G. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat, stored at 4 °C. Food Microbiol. 2007, 24, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Álvarez-Fernández, E.; Fernández-Buelta, E.; Manteca, J.; Alonso-Calleja, C. Decontamination treatments can increase the prevalence of resistance to antibiotics of Escherichia coli naturally present on poultry. Food Microbiol. 2013, 34, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Del Río, E.; Panizo-Morán, M.; Prieto, M.; Alonso-Calleja, C.; Capita, R. Effect of various chemical decontamination treatments on natural microflora and sensory characteristics of poultry. Int. J. Food Microbiol. 2007, 115, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Arnaut-Rollier, I.; De Zutter, L.; Van Hoof, J. Identities of the Pseudomonas spp. in flora from chilled chicken. Int. J. Food Microbiol. 1999, 48, 87–96. [Google Scholar] [CrossRef]
- Arnaut-Rollier, I.; Vauterin, L.; De Vos, P.; Massart, D.L.; Devriese, L.A.; De Zutter, L.; Van Hoof, J.A. numerical taxonomic study of the Pseudomonas flora isolated from poultry meat. J. Appl. Microbiol. 1999, 87, 15–28. [Google Scholar] [CrossRef] [PubMed]
- Säde, E.; Murros, A.; Björkroth, J. Predominant enterobacteria on modified-atmosphere packaged meat and poultry. Food Microbiol. 2013, 34, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Rahkila, R.; Johansson, P.; Säde, E.; Björkroth, J. Identification of enterococci from broiler products and a broiler processing plant and description of Enterococcus viikkiensis sp. nov. Appl. Environ. Microbiol. 2011, 77, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Harada, T.; Dang, V.C.; Nguyen, D.P.; Nguyen, T.A.; Sakamoto, M.; Ohkuma, M.; Motooka, D.; Nakamura, S.; Uchida, K.; Jinnai, M.; et al. Enterococcus saigonensis sp. nov., isolated from retail chicken meat and liver. Int. J. Syst. Evol. Microbiol. 2016, 66, 3779–3785. [Google Scholar] [PubMed]
- Koort, J.; Murros, A.; Coneye, T.; Eerola, S.; Vandamme, P.; Sukura, A.; Björkroth, J. Lactobacillus oligofermentans sp. nov., associated with spoilage of modified-atmosphere-packaged poultry products. Appl. Environ. Microbiol. 2005, 71, 4400–4406. [Google Scholar] [CrossRef] [PubMed]
- Höll, L.; Behr, J.; Vogel, R.F. Identification and growth dynamics of meat spoilage microorganisms in modified atmosphere packaged poultry meat by MALDI-TOF MS. Food Microbiol. 2016, 60, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.Q.; Han, Y.Q.; Cao, J.X.; Xu, X.L.; Zhou, G.H.; Zhang, W.Y. The spoilage of air-packaged broiler meat during storage at normal and fluctuating storage temperatures. Poult. Sci. 2012, 91, 208–214. [Google Scholar] [CrossRef] [PubMed]
- Doulgeraki, A.I.; Ercolini, D.; Villani, F.; Nychas, G.-J.E. Spoilage microbiota associated to the storage of raw meat in different conditions. Int. J. Food Microbiol. 2012, 157, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.Y.; Wang, H.H.; Han, Y.W.; Xing, T.; Ye, K.P.; Xu, X.L.; Zhou, G.H. Evaluation of the spoilage potential of bacteria isolated from chilled chicken in vitro and in situ. Food Microbiol. 2017, 63, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Björkroth, J. Microbiological ecology of marinated meat products. Meat Sci. 2005, 70, 477–480. [Google Scholar] [CrossRef] [PubMed]
- Andreevskaya, M.; Johansson, P.; Laine, P.; Smolander, O.-P.; Sonck, M.; Rahkila, R.; Jääskeläinen, E.; Paulin, L.; Auvinen, P.; Björkroth, J. Genome sequence and transcriptome analysis of meat-spoilage-associated lactic acid bacterium Lactococcus piscium MKFS47. Appl. Environ. Microbiol. 2015, 81, 3800–3811. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, E.; Johansson, P.; Kostiainen, O.; Nieminen, T.; Schmidt, G.; Somervuo, P.; Mohsina, M.; Vanninen, P.; Auvinen, P.; Björkroth, J. Significance of heme-based respiration in meat spoilage caused by Leuconostoc gasicomitatum. Appl. Environ. Microbiol. 2013, 79, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Jääskeläinen, E.; Vesterinen, S.; Parshintsev, J.; Johansson, P.; Riekkola, M.-L.; Björkroth, J. Production of buttery-odor compounds and transcriptome response in Leuconostoc gelidum subsp. gasicomitatum LMG18811T during growth on various carbon sources. Appl. Environ. Microbiol. 2015, 81, 1902–1908. [Google Scholar] [PubMed]
- Grant, A.; Hashem, F.; Parveen, S. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry. Food Microbiol. 2016, 53, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Zisides, N.; Gousia, P.; Petsios, S.; Sakkas, H.; Soultos, N.; Papadopoulou, C. Prevalence and antimicrobial profile of Campylobacter isolates from free-range and conventional farming chicken meat during a 6-year survey. Food Control 2015, 56, 161–168. [Google Scholar] [CrossRef]
- Fontanot, M.; Iacumin, L.; Cecchini, F.; Comi, G.; Manzano, M. Rapid detection and differentiation of important Campylobacter spp. in poultry samples by dot blot and PCR. Food Microbiol. 2014, 43, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Oakley, B.B.; Morales, C.A.; Line, J.E.; Seal, B.S.; Hiett, K.L. Application of high-throughput sequencing to measure the performance of commonly used selective cultivation methods for the foodborne pathogen Campylobacter. FEMS Microbiol. Ecol. 2012, 79, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, T.M.; Newell, D.G. The genus Campylobacter. In the Prokaryotes. Vol. 7: Proteobacteria: Delta and Epsilon Subclasses. Deeply Rooting Bacteria, 3rd ed.; Martin Dworkin, S.F., Ed.; Springer: New York, NY, USA, 2006; pp. 119–138. [Google Scholar]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [PubMed]
- Capita, R.; Alonso-Calleja, C.; Moreno, B.; Garcı́a-Fernández, M.A.C. Occurrence of Listeria species in retail poultry meat and comparison of a cultural/immunoassay for their detection. Int. J. Food Microbiol. 2001, 65, 75–82. [Google Scholar] [CrossRef]
- Gudbjörnsdóttir, B.; Suihko, M.L.; Gustavsson, P.; Thorkelsson, G.; Salo, S.; Sjöberg, A.M.; Niclasen, O.; Bredholt, S. The incidence of Listeria monocytogenes in meat, poultry and seafood plants in the Nordic countries. Food Microbiol. 2004, 21, 217–225. [Google Scholar] [CrossRef]
- Van Nierop, W.; Duse, A.G.; Marais, E.; Aithma, N.; Thothobolo, N.; Kassel, M.; Stewart, R.; Potgieter, A.; Fernandes, B.; Galpin, J.S.; Bloomfield, S.F. Contamination of chicken carcasses in Gauteng, South Africa, by Salmonella, Listeria monocytogenes and Campylobacter. Int. J. Food Microbiol. 2005, 99, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cohen, N.; Ennaji, H.; Bouchrif, B.; Hassar, M.; Karib, H. Comparative study of microbiological quality of raw poultry meat at various seasons and for different slaughtering processes in Casablanca (Morocco). J. Appl. Poult. Res. 2007, 16, 502–508. [Google Scholar] [CrossRef]
- Alonso-Hernando, A.; Prieto, M.; García-Fernández, C.; Alonso-Calleja, C.; Capita, R. Increase over time in the prevalence of multiple antibiotic resistance among isolates of Listeria monocytogenes from poultry in Spain. Food Control 2012, 23, 37–41. [Google Scholar] [CrossRef]
- Waters, A.E.; Contente-Cuomo, T.; Buchhagen, J.; Liu, C.M.; Watson, L.; Pearce, K.; Foster, J.T.; Bowers, J.; Driebe, E.M.; Engelthaler, D.M.; Keim, P.S.; Price, L.B. Multidrug-resistant Staphylococcus aureus in US meat and poultry. Clin. Infect. Dis. 2011, 52, 1227–1230. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Anal, A.K. Prevalence and antibiogram study of Salmonella and Staphylococcus aureus in poultry meat. Asian Pac. J. Trop. Biomed. 2013, 3, 163–168. [Google Scholar] [CrossRef]
- Krupa, P.; Bystron, J.; Bania, J.; Podkowik, M.; Empel, J.; Mroczkowska, A. Genotypes and oxacillin resistance of Staphylococcus aureus from chicken and chicken meat in Poland. Poult. Sci. 2014, 93, 3179–3186. [Google Scholar] [CrossRef] [PubMed]
- Juneja, V.K.; Baker, D.A.; Thippareddi, H.; Snyder, O.P., Jr.; Mohr, TB. Growth potential of Clostridium perfringens from spores in acidified beef, pork and poultry products during chilling. J. Food Prot. 2013, 76, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Mohr, T.B.; Juneja, V.K.; Thippareddi, H.H.; Schaffner, D.W.; Bronstein, P.A.; Silverman, M.; Cook, L.V., Jr. Assessing the performance of Clostridium perfringens cooling models for cooked, uncured meat and poultry products. J. Food Prot. 2015, 78, 1512–1526. [Google Scholar] [CrossRef] [PubMed]
- Huang, L. Evaluating the performance of a new model for predicting the growth of Clostridium perfringens in cooked, uncured meat and poultry products under isothermal, heating, and dynamically cooling conditions. J. Food Sci. 2016, 81, 1754–1765. [Google Scholar] [CrossRef] [PubMed]
- Tuncer, B.; Sireli, U.T. Microbial growth on broiler carcasses stored at different temperatures after air- or water-chilling. Poult. Sci. 2008, 87, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Smolander, M.; Alakomi, H.-L.; Ritvanen, T.; Vainionpää, J.; Ahvenainen, R. Monitoring of the quality of modified atmosphere packaged broiler chicken cuts stored in different temperature conditions. A. Time-temperature indicators as quality-indicating tools. Food Control 2014, 15, 217–229. [Google Scholar] [CrossRef]
- Rossaint, S.; Klausmann, S.; Kreyenschmidt, J. Effect of high-oxygen and oxygen-free modified atmosphere packaging on the spoilage process of poultry breast fillets. Poult. Sci. 2015, 94, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Balamatsia, C.C.; Paleologos, E.K.; Kontominas, M.G.; Savvaidis, I.N. Correlation between microbial flora, sensory changes and biogenic amines formation in fresh chicken meat stored aerobically or under modified atmosphere packaging at 4 degrees C: Possible role of biogenic amines as spoilage indicators. Antonie Van Leeuwenhoek 2006, 89, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Patsias, A.; Chouliara, I.; Badeka, A.; Savvaidis, I.N.; Kontominas, M.G. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: Microbiological, chemical, sensory attributes. Food Microbiol. 2006, 23, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Herbert, U.; Rossaint, S.; Khanna, M.-A.; Kreyenschmidt, J. Comparison of argon-based and nitrogen-based modified atmosphere packaging on bacterial growth and product quality of chicken breast fillets. Poult. Sci. 2013, 92, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Yusop, S.M.; O’Sullivan, M.G.; Kerry, J.F.; Kerry, J.P. Effect of marinating time and low pH on marinade performance and sensory acceptability of poultry meat. Meat Sci. 2010, 85, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Lyhs, U.; Koort, J.M.K.; Lundstrom, H.-S.; Björkroth, J. Leuconostoc gelidum and Leuconostoc gasicomitatum strains dominated the LAB population associated with strong slime formation in an acetic-acid herring preserve. Int. J. Food Microbiol. 2003, 90, 2207–2218. [Google Scholar]
- Alonso-Hernando, A.; Alonso-Calleja, C.; Capita, R. Effects of exposure to poultry chemical decontaminants on the membrane fluidity of Listeria monocytogenes and Salmonella enterica strains. Int. J. Food Microbiol. 2010, 137, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Del Río, E.; González de Caso, B.; Prieto, M.; Alonso-Calleja, C.; Capita, R. Effect of poultry decontaminants concentration on growth kinetics for pathogenic and spoilage bacteria. Food Microbiol. 2008, 25, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hernando, A.; Alonso-Calleja, C.; Capita, R. Comparative analysis of acid resistance in Listeria monocytogenes and Salmonella enterica strains before and after exposure to poultry decontaminants. Role of the glutamate decarboxylase (GAD) system. Food Microbiol. 2009, 26, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hernando, A.; Capita, R.; Alonso-Calleja, C. Behaviour of co-inoculated pathogenic and spoilage bacteria on poultry following several decontamination treatments. Int. J. Food Microbiol. 2012, 159, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Hernando, A.; Guevara-Franco, J.A.; Alonso-Calleja, C.; Capita, R. Effect of the temperature of the dipping solution on the antimicrobial effectiveness of various chemical decontaminants against pathogenic and spoilage bacteria on poultry. J. Food Prot. 2013, 76, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Del Río, E.; Muriente, R.; Prieto, M.; Alonso-Calleja, C.; Capita, R. Effectiveness of trisodium phosphate, acidified sodium chlorite, citric acid, and peroxy acids against pathogenic bacteria on poultry during refrigerated storage. J. Food Prot. 2007, 70, 2063–2071. [Google Scholar] [CrossRef] [PubMed]
- Del Río, E.; Capita, R.; Prieto, M.; Alonso-Calleja, C. Comparison of pathogenic and spoilage bacterial levels on refrigerated poultry parts following treatment with trisodium phosphate. Food Microbiol. 2006, 23, 195–198. [Google Scholar] [CrossRef] [PubMed]
- Hinton, A.; Ingram, K.D. Bactericidal activity of tripotassium phosphate and potassium oleate on the native flora of poultry skin. Food Microbiol. 2003, 20, 405–410. [Google Scholar] [CrossRef]
- Okolocha, E.C.; Ellerbroek, L. The influence of acid and alkaline treatments on pathogens and the shelf life of poultry meat. Food Control 2005, 16, 217–225. [Google Scholar] [CrossRef]
- Bolton, D.J.; Meredith, H.; Walsh, D.; McDowell, D.A. The effect of chemical treatments in laboratory and broiler plant studies on the microbial status and shelf-life of poultry. Food Control 2014, 36, 230–237. [Google Scholar] [CrossRef]
- Loretz, M.; Stephan, R.; Zweifel, C. Antimicrobial activity of decontamination treatments for poultry carcasses: A literature survey. Food Control 2010, 21, 791–804. [Google Scholar] [CrossRef]
- Samant, S.S.; Crandall, P.G.; O’Bryan, C.; Lingbeck, J.M.; Martin, E.M.; Seo, H.S. Sensory impact of chemical and natural antimicrobials on poultry products: A review. Poult. Sci. 2015, 88, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Yuste, J.; Mor-Mur, M.; Capellas, M.; Guamis, B.; Pla, R. Microbiological quality of mechanically recovered poultry meat treated with high hydrostatic pressure and nisin. Food Microbiol. 1998, 15, 407–414. [Google Scholar] [CrossRef]
- Chouliara, E.; Badeka, A.; Savvaidis, I.; Kontominas, M.G. Combined effect of irradiation and modified atmosphere packaging on shelf-life extension of chicken breast meat: Microbiological, chemical and sensory changes. Eur. Food Res. Technol. 2008, 226, 877–888. [Google Scholar] [CrossRef]
- Ahn, D.U.; Kim, I.S.; Lee, E.J. Irradiation and additive combinations on the pathogen reduction and quality of poultry meat. Poult. Sci. 2013, 92, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Directive 1999/2/EC of the European Parliament and of the Council of 22 February 1999 on the Approximation of the Laws of the Member States Concerning Foods and Food Ingredients Treated with Ionising Radiation. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1503584069651&uri=CELEX:01999L0002-20081211 (accessed on 26 July 2017).
- European Food Safety Authority (EFSA). Scientific Opinion on the public health hazards to be covered by inspection of meat (poultry). EFSA Panels on Biological Hazards (BIOHAZ), EFSA Panel on Contaminants in the Food Chain (CONTAM) and EFSA Panel on Animal Health and Welfare (AHAW). EFSA. J. 2012, 10, 2741. [Google Scholar]
Reference 1 | [31] | [32] | [33] | [34] | [35] | [36] | [37] |
---|---|---|---|---|---|---|---|
Total viable count | 5 | 4.9 | ND 2 | 4.88−5.41 | 4.28 | 5.66 | ND |
Psychrotrophic bacteria | ND | ND | 4.02−4.48 | ND | ND | ND | 4.34 |
Mesophilic bacteria | ND | ND | 4.74−6.18 | ND | ND | ND | 5.10 |
LAB 3 | ND | 3.9 | ND | ND | 3.66 | ND | 3.50 |
Pseudomonas | 3.5 | 4.2 | ND | ND | 3.38 | ND | 4.70 |
Enterobacteriaceae | ND | ND | ND | 2.58−3.53 | ND | ND | 2.78 |
B. thermosphacta | ND | 3 | ND | ND | 3.04 | ND | 4.06 |
E. coli | 2 | ND | 0.70−2.34 | 2.60−3.63 | ND | ND | ND |
Coliforms | 2.2 | ND | 3.54−4.64 | ND | ND | 3.08 | 2.86 |
S. aureus | ND | ND | 0.68−2.43 | ND | ND | ND | ND |
Storage conditions | [45] 1 | [36] | [35] | [31] | [32] | [46] 2 |
---|---|---|---|---|---|---|
Duration (days) | 4 | 5 | 9 | 11 | 15 | Until spoiled |
Temperature (°C) | 4 to 10 | 7 | 4 | 3 | 4 | 6 |
Packaging | Air | Air | Air | 70% CO2, 15% O2, 15% N2 | Air | 65% N2, 35% CO2 |
Total viable count 3 | 7.55 | 8.27 | 7.55 | 6.5 | 8 | 9.14 |
LAB | 8.04 | ND 4 | 7.02 | ND | 7 | 9.04 |
Enterobacteriaceae | 8.36 | ND | ND | ND | 6 | 7.59 |
B. thermosphacta | ND | ND | 7.23 | ND | 7 | ND |
Pseudomonas | 6 | ND | 7.21 | 5 | 6 | ND |
Coliforms | ND | 4.38 | ND | 3.7 | ND | ND |
Days to Reach Spoilage (Total Viable Count ≥ 7 log CFU/g) | |||||
Air | Air | 30% CO2−70% N2 | 30% CO2−70% N2 | 70% CO2 30% N2 | |
6 1 | 5 2 | 12 1 | 8 2 | 15 1 | |
Bacterial Counts (log CFU/g) When Spoilage Was Reached | |||||
LAB | 2.91 | 3.2 | 6.88 | 4.1 | 6.89 |
Pseudomonas | 6.28 | 6.2 | 6.83 | 6.1 | 6.71 |
B. thermosphacta | 6.90 | ND 3 | 6.39 | ND | 7.21 |
Enterobacteriaceae | 6.15 | 5.8 | 6.42 | 5.8 | 6.71 |
Experimental Design | TSP 1 | ASC | CA | PA | CD | LA | AA | KP | KO | G |
---|---|---|---|---|---|---|---|---|---|---|
Laboratory conditions | ||||||||||
[77] 2 | X 3 | X | X | X | ||||||
[78] | X | X | X | |||||||
[79] | X | X | X | X | X | |||||
Challenge-tests | ||||||||||
[80] | X | X | X | X | X | |||||
[81] | X | X | X | X | X | |||||
[82] | X | X | X | X | ||||||
[83] | X | |||||||||
Natural contamination | ||||||||||
[37] | X | X | X | X | ||||||
[84] | X | X | ||||||||
[85] | X | X | X | |||||||
[86] | X | X | X | X | X | |||||
[36] | X | X | X | X |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rouger, A.; Tresse, O.; Zagorec, M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms 2017, 5, 50. https://doi.org/10.3390/microorganisms5030050
Rouger A, Tresse O, Zagorec M. Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms. 2017; 5(3):50. https://doi.org/10.3390/microorganisms5030050
Chicago/Turabian StyleRouger, Amélie, Odile Tresse, and Monique Zagorec. 2017. "Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics" Microorganisms 5, no. 3: 50. https://doi.org/10.3390/microorganisms5030050
APA StyleRouger, A., Tresse, O., & Zagorec, M. (2017). Bacterial Contaminants of Poultry Meat: Sources, Species, and Dynamics. Microorganisms, 5(3), 50. https://doi.org/10.3390/microorganisms5030050