Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Maintenance and Growth Conditions
2.2. Extract Preparation
2.3. Enzyme Assays
2.4. Chemical Analyses
2.5. Reproducibility
2.6. Chemicals and General Procedures
3. Results
3.1. Differential Rates of Synthesis of Key Enzyme Activities Induced by (Rac)-Camphor
3.2. Differential Rates of Synthesis of Key Enzyme Activities Induced by Camphor Pathway Intermediates
3.3. The Influence of Isobutyryl-CoA on the Differential Rates of Synthesis of Key (Rac)-Camphor Induced Enzyme Activities
3.4. Differential Rates of Synthesis of Key Enzyme Activities when Growing Anaerobically
3.5. Range of Camphor-Related Compounds Able to Support Growth and Act as Inducer-Substrates for Cytochrome P450 Monooxygenase
4. Discussion
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bradshaw, W.H.; Conrad, H.E.; Corey, E.J.; Gunsalus, I.C.; Lednicer, D. Microbial degradation of(+)-camphor. J. Am. Chem. Soc. 1959, 81, 5507. [Google Scholar] [CrossRef]
- Gunsalus, I.C.; Conrad, H.E.; Trudgill, P.W.; Jacobson, L.A. Regulation of catabolic metabolism. Israel J. Med. Sci. 1965, 1, 1099–1119. [Google Scholar]
- Rheinwald, J.G.; Chakrabarty, A.M.; Gunsalus, I.C. A transmissible plasmid controlling camphor oxidation in Pseudomonas putida. Proc. Nat. Acad. Sci. USA 1973, 70, 885–889. [Google Scholar] [CrossRef] [PubMed]
- Shaham, M.; Chakrabarty, A.M.; Gunsalus, I.C. Camphor plasmid-mediated chromosomal transfer in Pseudomonas putida. J. Bacteriol. 1973, 116, 944–949. [Google Scholar] [PubMed]
- Iwaki, H.; Grosse, S.; Bergeron, H.; Leisch, H.; Morley, K.; Hasegawa, Y.; Lau, P.C. Camphor pathway redox: Functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases in Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalysing Baeyer-Villiger reactions. Appl. Environ. Microbiol. 2013, 79, 3282–3293. [Google Scholar] [CrossRef] [PubMed]
- Willetts, A.; Kelly, D.R. Multiple native flavin reductases in camphor-metabolising Pseudomonas putida NCIMB 10007: Functional interaction with two-component diketocamphane monooxygenase isoenzymes. Microbiology 2014, 160, 1784–1794. [Google Scholar] [CrossRef] [PubMed]
- Massey, L.K.; Sokatch, J.R.; Conrad, R.S. Branched-chain amino acid catabolism in bacteria. Bacteriol. Rev. 1976, 40, 42–54. [Google Scholar] [PubMed]
- Willetts, A.; Kelly, D.R. Flavin-dependent redox transfers by two-component diketocamphane monooxygenases of camphor-grown Pseudomonas putida NCIMB 10007. Microorganisms 2016, 4, 38. [Google Scholar] [CrossRef] [PubMed]
- Gunsalus, I.C.; Bertland, A.U.; Jacobson, L.A. Enzyme induction and repression in anabolic and catabolic pathways. Arch. Mikrobiol. 1967, 59, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Hartline, R.A.; Gunsalus, I.C. Induction specificity and catabolite repression of the early enzymes in camphor degradation by Pseudomonas putida. J. Bacteriol. 1971, 106, 468–478. [Google Scholar] [PubMed]
- Jacob, F.; Monod, J. Genetic regulation mechanisms in the synthesis of proteins. J. Mol. Biol. 1961, 3, 318–356. [Google Scholar] [CrossRef]
- Mandelstam, J. Co-ordination: Induction, repression and feedback inhibition. In Biochemistry of Bacterial Growth; Blackwell Scientific Publications: Oxford, UK, 1968; pp. 414–461. [Google Scholar]
- Beecher, J.E.; Willetts, A. Biotransformation of organic sulphides. Predictive active site models for sulfoxidation catalysed by the 2,5-diketocamphane 1,2-monooxygenase and 3,6-diketocamphane 1,6-monooxygenase, enantiocomplementary enzymes from Pseudomonas putida NCIMB 10007. Tetrahedron Asymmetry 1998, 9, 1899–1916. [Google Scholar] [CrossRef]
- Conrad, H.E.; DuBus, R.; Namtvedt, M.J.; Gunsalus, I.C. Mixed function oxidation. II. Separation and properties of the enzymes catalysing camphor lactonization. J. Biol. Chem. 1965, 240, 495–503. [Google Scholar] [PubMed]
- Jacobson, L.A. Enzyme Induction and Repression in the Catabolism of (+)-Camphor by Pseudomonas putida. Ph.D. Thesis, University of Illinois, Champaign, IL, USA, December 1967. [Google Scholar]
- Leisch, H.; Shi, R.; Grosse, S.; Morley, K.; Bergeron, H.; Cygler, M.; Iwaki, H.; Hasegawa, Y.; Lau, P.C.K. Cloning, Baeyer-Villiger biooxidations and structures of the camphor pathway 2-oxo-∆3-4,5,5-trimethylcyclopentenylacetyl-Coenzyme A monooxygenase of Pseudomonas putida ATCC 17453. Appl. Environ. Microbiol. 2012, 78, 2200–2212. [Google Scholar] [CrossRef] [PubMed]
- Gunsalus, I.C.; Wagner, G.C. Bacterial P-450cam methylene monooxygenase components: Cytochrome m, putidaredoxin and putidaredoxin reductase. Methods Enzymol. 1978, 52, 166–188. [Google Scholar] [PubMed]
- Saikia, S.; Oliveira, D.; Hu, G.; Kronstad, J. Role of ferric reductasesin iron acquisition and virulence in the fungal pathogen Cryptococcus neoforams. Infect. Immun. 2014, 82, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Stellwagen, R.H.; Tomkind, G.M. Differential effect of 5-bromodeoxyuridine on the concentrations of specific enzymes in hepatoma cells in culture. Proc. Natl. Acad. Sci. USA 1971, 68, 1147–1150. [Google Scholar] [CrossRef] [PubMed]
- Gunsalus, I.C.; Marshall, V.P. Monoterpene dissimilation. CRC Crit. Rev. Microbiol. 1971, 1, 291–310. [Google Scholar] [CrossRef]
- Grogan, G. Microbial Biotransformations: Oxygenation of Cyclic Ketones by Baeyer-Villiger Monooxygenases from Pseudomonas putida NCIMB 10007. Ph.D. Thesis, University of Exeter, Exeter, UK, October 1995. [Google Scholar]
- Gagnon, R.; Grogan, G.; Roberts, S.M.; Villa, R.; Willetts, A. Enzymatic Baeyer-Villiger oxidation of some bicyclo[2.2.1]heptan-2-ones using monooxygenases from Pseudomonas putida NCIMB 10007: Enantioselective preparation of a precursor of azadirachtin. J. Chem. Soc. Perkin Trans. 1 1995, 12, 1505–1511. [Google Scholar] [CrossRef]
- Wleets, A.; Masters, P.; Steadman, C. Data from Conducted Experimnts; Curnow Consultancies Ltd.: Helston, Cornwall, UK, 2015. [Google Scholar]
- Mandelstam, J. The intracellular turnover of protein and nucleic acids and its role in biochemical differentiation. Bacteriol. Rev. 1960, 24, 289–308. [Google Scholar] [PubMed]
- Taylor, D.G.; Trudgill, P.W. Camphor revisited: Studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J. Bacteriol. 1986, 165, 489–497. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, G.I. Control and Convergence in the Valine-Isobutyrate Oxidation Pathway. Master’s Thesis, University of Illinois, Champaign, IL, USA, July 1967. [Google Scholar]
- Stanier, R.Y.; Patteroni, N.J.; Doudoroff, M. The aerobic pseudomonads: A taxonomic study. J. Gen. Microbiol. 1966, 43, 159–272. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.A.; Catterall, F.A.; Murray, K. Metabolism of naphthalene, 2-methylnaphthalene, salicylate and benzoate by Pseudomonas PG: Regulation of tangential pathways. J. Bacteriol. 1975, 124, 679–685. [Google Scholar] [PubMed]
- Adger, B.; Bes, M.T.; Grogan, G.; McCague, R.; Pedragosa-Moreau, S.; Roberts, S.; Wan, P.; Willetts, A. Application of enzymatic Baeyer-Villiger oxidations of 2-substituted cycloalkanones in the total synthesis of R-(+)-lipoic acid. J. Chem. Soc. Chem. Commun. 1995, 1563–1564. [Google Scholar] [CrossRef]
- Cohn, M. Contribution of studies on the β-galactosidase of Escherichia coli to our understanding of enzyme synthesis. Bacteriol. Rev. 1957, 21, 140–168. [Google Scholar] [PubMed]
- Cohen, G.N.; Monod, J. Bacterial permeases. Bacteriol. Rev. 1957, 21, 169–194. [Google Scholar] [PubMed]
- Jacob, F.; Monod, J. On the regulation of gene activity. Cold Spring Harb. Symp. Quant. Biol. 1961, 26, 193–209. [Google Scholar] [CrossRef]
- Fujita, M.; Aramaki, H.; Horuichi, T.; Amemura, A. Transcription of the cam operon and camR genes in Pseudomonas putida PpG1. J. Bacteriol. 1993, 175, 6953–6958. [Google Scholar] [CrossRef] [PubMed]
- Ornston, L.N. Regulation of catabolic pathways in Pseudomonas. Bacteriol. Rev. 1971, 35, 87–116. [Google Scholar] [PubMed]
- Ornston, L.N.; Parke, D. The evolution of induction mechanisms in bacteria: Insights derived from the study of the β-ketoadipate pathway. Curr. Top. Cell. Regul. 1977, 12, 209–262. [Google Scholar] [PubMed]
- Gross, H.; Loper, J.E. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 2009, 26, 1408–1446. [Google Scholar] [CrossRef] [PubMed]
- Aiman, S.; Shehroz, M.; Munir, M.; Gui, S.; Shah, M.; Khan, A. Species-wide genome mining of Pseudomonas putida for potential secondary metabolites and drug-like natural product characterization. J. Proteom. Bioinform. 2018, 11, 1–7. [Google Scholar] [CrossRef]
- Grogan, G.; Roberts, S.; Wan, P.; Willetts, A. Camphor-grown Pseudomonas putida, a multifunctional biocatalyst for undertaking Baeyer-Villiger monooxygenase-dependent biotransformations. Biotechnol. Lett. 1993, 15, 913–918. [Google Scholar] [CrossRef]
- Stanier, R.Y. Simultaneous adaption: A new technique for the study of metabolic pathways. J. Bacteriol. 1947, 54, 339–348. [Google Scholar] [PubMed]
- Cohn, M.; Monod, J.; Pollock, R.; Spiegelman, S.; Stanier, R.Y. Terminology of enzyme formation. Nature 1953, 172, 1096. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.A.; Cain, R.B. cis-cis-Muconate, the product inducer of catechol 1,2-dioxygenase in Pseudomonas aeruginosa. Biochem. J. 1968, 109, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Reieke, W.; Jeenes, D.J.; Williams, P.A.; Knackmuss, H.-J. TOL plasmid pWW0 in constructed halobenzoate-degrading Pseudomonas strains: Prevention of meta pathway. J. Bacteriol. 1982, 150, 195–201. [Google Scholar]
- Wheelis, M.L.; Stanier, R.Y. The genetic control of dissimilatory pathways in Pseudomonas putida. Genetics 1970, 66, 245–266. [Google Scholar] [PubMed]
- Kojima, Y.; Fujisawa, H.; Nakazawa, A.; Nakazawa, I.; Kanetsuna, F.; Taniuchi, H.; Nozaki, M.; Hayaishi, O. Studies on pyrocatechase. 1. Purification and spectral properties. J. Biol. Chem. 1967, 242, 3270–3278. [Google Scholar] [PubMed]
- Palleroni, N.J.; Stanier, R.Y. Regulatory mechanisms governing synthesis of the enzymes for tryptophan oxidation in Pseudomonas fluorescens. J. Gen. Microbiol. 1964, 35, 319–334. [Google Scholar] [CrossRef] [PubMed]
- Newell, C.P.; Lessie, T.G. Induction of histidine-degrading enzymes in Pseudomonas aeruginosa. J. Bacteriol. 1970, 104, 596–598. [Google Scholar] [PubMed]
- Leidigh, B.J.; Wheelis, M.L. Genetic control of the histidine dissimilatory pathway in Pseudomonas putida. Mol. Gen. Genet. 1973, 120, 201–210. [Google Scholar] [CrossRef] [PubMed]
- Canovas, J.L.; Stanier, R.Y. Regulation of the enzymes of the β-ketadipate pathway in Moraxella calcoacetica. Eur. J. Biochem. 1967, 1, 289–300. [Google Scholar] [CrossRef] [PubMed]
- Parada, J.L.; Magasanik, B. Expression of the hut operon of Salmonella typhimurium in Klebsiella aerogenes and Escherichia coli. J. Bacteriol. 1975, 124, 1263–1269. [Google Scholar] [PubMed]
- Gerson, S.L.; Magasanik, B. Regulation of the hut operons of Salmonella typhimurium and Klebsiella aerogenes by the heterologous hut repressors. J. Bacteriol. 1975, 124, 1269–1272. [Google Scholar] [PubMed]
- Cozzarelli, N.R.; Freedberg, W.B.; Lin, E.C.C. Genetic control of the L-α-glycerophosphate system in Escherichia coli. J. Mol. Biol. 1968, 31, 371–387. [Google Scholar] [CrossRef]
- Willetts, N.S. Intracellular protein breakdown in non-growing cells of Escherichia coli. Biochem. J. 1967, 103, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Hegeman, G.D. Synthesis of the enzymes of the mandelate pathway in Pseudomonas putida. J. Bacteriol. 1966, 91, 1140–1154. [Google Scholar] [PubMed]
- Reeve, C.A.; Bockman, A.T.; Matin, A. Role of protein degradation in the survival of carbon-starved Escherichia coli and Salmonella typhimurium. J. Bacteriol. 1984, 157, 758–763. [Google Scholar] [PubMed]
- Kadow, M.; Sass, S.; Schmidt, M. Bornscheuer, U. Recombinant expression and purification of the 2,5-diketocamphane 1,2-monooxygenase from camphor metabolising Pseudomonas putida strain NCIMB 10007. AMB Express 2011, 1, 13. [Google Scholar] [CrossRef] [PubMed]
- Kadow, M.; Balke, K.; Willetts, A.; Bornshceuer, U. Functional assembly of camphor converting two-component Baeyer-Villiger monooxygenases with a flavin reductase from E. coli. Appl. Microbiol. Biotechnol. 2014, 98, 3975–3986. [Google Scholar] [CrossRef] [PubMed]
- Ornston, L.N.; Stanier, R.Y. Mechanism of β-ketadipate formation by bacteria. Nature 1964, 204, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- Ornston, L.N.; Stanier, R.Y. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas species. I. Biochemistry. J. Biol. Chem. 1966, 241, 3776–3786. [Google Scholar] [PubMed]
- Ornston, L.N. The conversion of catechol and protocatechuate to β-ketoadipate by Pseudomonas species. II. Enzymes of the protocatechuate pathway. J. Biol. Chem. 1966, 241, 3787–3794. [Google Scholar] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Willetts, A.; Masters, P.; Steadman, C. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007. Microorganisms 2018, 6, 41. https://doi.org/10.3390/microorganisms6020041
Willetts A, Masters P, Steadman C. Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007. Microorganisms. 2018; 6(2):41. https://doi.org/10.3390/microorganisms6020041
Chicago/Turabian StyleWilletts, Andrew, Pamela Masters, and Carol Steadman. 2018. "Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007" Microorganisms 6, no. 2: 41. https://doi.org/10.3390/microorganisms6020041
APA StyleWilletts, A., Masters, P., & Steadman, C. (2018). Regulation of Camphor Metabolism: Induction and Repression of Relevant Monooxygenases in Pseudomonas putida NCIMB 10007. Microorganisms, 6(2), 41. https://doi.org/10.3390/microorganisms6020041