Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections
Abstract
:1. Introduction
2. Pathophysiology
2.1. Characteristics of S. aureus
- Multilocus sequence typing (MLST), a molecular technique based on S. aureus genotypic sequencing of specific housekeeping genes, which are genes typically expressed in all S. aureus cell types. The nucleotide variations or allele of seven housekeeping genes provide a discriminatory allelic profile, known as a sequence type (ST), for each S. aureus isolate. Classification into unique clonal complexes (CC) is based on isolates with identical (≥5 or more) genes [11,12]. The very first MRSA clinical isolates described were ST250 and members of CC8.
- Pulsed-field gel electrophoresis (PFGE) uses electrophoresis to separate S. aureus genomic fragments according to size. Related strains are clustered based on a similarity coefficient [13]. The Centers for Disease Control and Prevention (CDC) national PFGE database for S. aureus uses the “USA” designation; an example is the USA300, a PVL-positive MRSA and the most common cause of community-acquired skin and soft-tissue infections.
- Spa typing [11], a sequence-based analysis of variable number tandem repeats in the gene encoding protein A (Spa). It is a relatively inexpensive method of determining epidemiological relationships.
- Genomic sequencing and analysis of S. aureus population provides insight into S aureus epidemiology, adaptability, virulence and resistance patterns. Lineages of S. aureus populations show genetic variability as well as inter-genetic differences. Ten dominant lineages cause colonization and infection in humans. Genomic sequencing has led to new tools enabling construction of genetically modified clinical S. aureus isolates. For example, genomic analysis of the clinical vancomycin-resistant S. aureus (VRSA) isolates identifies the genetic basis of resistance to multiple antibiotics and suggests multiple strains with variable sensitivity patterns can affect the same patient [14].
2.2. Osteomyelitis
2.3. Septic Arthritis
3. Clinical Spectrum of MRSA OSI
4. Complications
5. Diagnosis
6. Treatment of MRSA OSI
6.1. Antimicrobials
6.2. Duration of Antimicrobial Treatment
6.3. Surgical Intervention
7. Conclusions
Author Contributions
Conflicts of Interest
References
- DeLeo, F.R.; Otto, M.; Kreiswirth, B.N.; Chambers, H.F. Community-associated Methicillin-resistant Staphylococcus-aureus. Lancet 2010, 375, 1557–1568. [Google Scholar] [CrossRef]
- Oliveira, D.C.; Tomasz, A.; de Lencastre, H. Secrets of success of a human pathogen: Molecular evolution of pandemic clones of meticillin-resistant Staphylococcus aureus. Lancet Infect. Dis. 2002, 2, 180–189. [Google Scholar] [CrossRef]
- Benner, E.J.; Kayser, F.H. Growing clinical significance of methicillin-resistant Staphylococcus aureus. Lancet 1968, 2, 741–744. [Google Scholar] [CrossRef]
- Deurenberg, R.H.; Stobberingh, E.E. The evolution of Staphylococcus aureus. Infect. Genet. Evol. 2008, 8, 747–763. [Google Scholar] [CrossRef] [PubMed]
- Glaser, P.; Martins-Simões, P.; Villain, A.; Barbier, M.; Tristan, A.; Bouchier, C.; Ma, L.; Bes, M.; Laurent, F.; Guillemot, D.; et al. Demography and Intercontinental Spread of the USA300 Community-Acquired Methicillin-Resistant Staphylococcus aureus Lineage. MBio 2016, 7. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.C.; Bradley, J.S. Osteoarticular Infections in Children. Infect. Dis. Clin. 2015, 29, 557–574. [Google Scholar] [CrossRef] [PubMed]
- Trueta, J.; Morgan, J.D. The vascular contribution to osteogenesis. I. Studies by the injection method. J. Bone Joint Surg 1960, 42, 97–109. [Google Scholar] [CrossRef]
- Casewell, M.W.; Hill, R.L. The carrier state: Methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 1986, 18, 1–12. [Google Scholar] [CrossRef] [PubMed]
- O’Gara, J.P. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ. Microbiol. 2017, 19, 3823–3833. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.; Kirschning, C.J.; Häcker, H.; Redecke, V.; Hausmann, S.; Akira, S.; Wagner, H.; Lipford, G.B. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc. Natl. Acad. Sci. USA 2001, 98, 9237–9242. [Google Scholar] [CrossRef] [PubMed]
- Enright, M.C.; Day, N.P.; Davies, C.E.; Peacock, S.J.; Spratt, B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [PubMed]
- Haaber, J.; Penadés, J.R.; Ingmer, H. Transfer of Antibiotic Resistance in Staphylococcus aureus. Trends Microbiol. 2017, 25, 893–905. [Google Scholar] [CrossRef] [PubMed]
- Shopsin, B.; Gomez, M.; Montgomery, S.O.; Smith, D.H.; Waddington, M.; Dodge, D.E.; Bost, D.A.; Riehman, M.; Naidich, S.; Kreiswirth, B.N. Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J. Clin. Microbiol. 1999, 37, 3556–3563. [Google Scholar] [PubMed]
- Panthee, S.; Hamamoto, H.; Paudel, A.; Sekimizu, K. Genomic analysis of vancomycin-resistant Staphylococcus aureus VRS3b and its comparison with other VRSA isolates. Drug Discov. Ther. 2017, 11, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Penadés, J.R.; Chen, J.; Quiles-Puchalt, N.; Carpena, N.; Novick, R.P. Bacteriophage-mediated spread of bacterial virulence genes. Curr. Opin. Microbiol. 2015, 23, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, R.; Cockayne, A.; Humphreys, H. Clinical and molecular aspects of the pathogenesis of Staphylococcus aureus bone and joint infections. J. Med. Microbiol. 1996, 44, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Tuchscherr, L.; Bischoff, M.; Lattar, S.M.; Llana, M.N.; Pförtner, H.; Niemann, S.; Geraci, J.; Van de Vyver, H.; Fraunholz, M.J.; Cheung, A.L.; et al. Sigma Factor SigB Is Crucial to Mediate Staphylococcus aureus Adaptation during Chronic Infections. PLoS Pathog. 2015, 11, e1004870. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, D.L.; Chisholm, P.L.; Rice, P.A. Experimental models of bacterial arthritis: A microbiologic and histopathologic characterization of the arthritis after the intraarticular injections of Neisseria gonorrhoeae, Staphylococcus aureus, group A streptococci, and Escherichia coli. J. Rheumatol. 1983, 10, 5–11. [Google Scholar] [PubMed]
- Branson, J.; Vallejo, J.G.; Flores, A.R.; Hulten, K.G.; Mason, E.O.; Kaplan, S.L.; McNeil, J.C. The Contemporary Microbiology and Rates of Concomitant Osteomyelitis in Acute Septic Arthritis. Pediatr. Infect. Dis. J. 2017, 36, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.C.; Cannavino, C.R.; Ross, M.K.; Westley, B.; Miller, T.C.; Riffenburgh, R.H.; Bradley, J. Acute bacterial osteoarticular infections: Eight-year analysis of C-reactive protein for oral step-down therapy. Pediatrics 2012, 130, e821–e828. [Google Scholar] [CrossRef] [PubMed]
- Paakkonen, M.; Kallio, M.J.; Kallio, P.E.; Peltola, H. Sensitivity of erythrocyte sedimentation rate and C-reactive protein in childhood bone and joint infections. Clin. Orthop. Relat. Res. 2010, 468, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.L.; Chang, W.N.; Chen, Y.S.; Hsieh, K.S.; Chen, C.K.; Peng, N.J.; Wu, K.S.; Cheng, M.F. Acute community-acquired osteoarticular infections in children: High incidence of concomitant bone and joint involvement. J. Microbiol. Immunol. Infect. 2010, 43, 332–338. [Google Scholar] [CrossRef]
- Pääkkönen, M.; Peltola, H. Bone and joint infections. Pediatr. Clin. 2013, 60, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Long, S.S.; Prober, C.G.; Fischer, M. (Eds.) Staphylococcus aureus . In Principles and Practice of Pediatric Infectious Diseases, 5th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2017; pp. 692–706. ISBN 978-0-323-40181-4. [Google Scholar]
- Castellazzi, L.; Mantero, M.; Esposito, S. Update on the Management of Pediatric Acute Osteomyelitis and Septic Arthritis. Int. J. Mol. Sci. 2016, 17, 855. [Google Scholar] [CrossRef] [PubMed]
- Ilharreborde, B. Sequelae of pediatric osteoarticular infection. Orthop. Traumatol. Surg. Res. 2015, 101 (Suppl. 1), S129–S137. [Google Scholar] [CrossRef] [PubMed]
- Elledge, R.O.; Dasari, K.K.; Roy, S. Panton-Valentine leukocidin-positive Staphylococcus aureus osteomyelitis of the tibia in a 10-year-old child. J. Pediatr. Orthop. B. 2014, 23, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, H.Q.; Aqil, A.; Kirby, A.; Hossain, F.S. Panton-Valentine leukocidin osteomyelitis in children: A growing threat. Br. J. Hosp. Med. 2015, 76, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children: Executive Summary. Clin. Infect. Dis. 2011, 52, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Akinkugbe, O.; Stewart, C.; McKenna, C. Presentation and Investigation of Pediatric Bone and Joint Infections in the Pediatric Emergency Department. Pediatr. Emerg. Care 2018. [Google Scholar] [CrossRef] [PubMed]
- Yeddes, I.; Meddeb, I.; Bouchoucha, S.; Slim, I.; Zgolli, H.; Mhiri, A.; Ben, M.S. The bone scintigraphy in the diagnosis and management in children with febrile osteoarticular pain. Tunis. Med. 2017, 95, 109–114. [Google Scholar] [PubMed]
- Plumb, J.; Mallin, M.; Bolte, R.G. The role of ultrasound in the emergency department evaluation of the acutely painful pediatric hip. Pediatr. Emerg. Care 2015, 31, 54–58. [Google Scholar] [CrossRef] [PubMed]
- Tickler, I.A.; Goering, R.V.; Mediavilla, J.R.; Kreiswirth, B.N.; Tenover, F.C. Continued expansion of USA300-like methicillin-resistant Staphylococcus aureus (MRSA) among hospitalized patients in the United States. Diagn. Microbiol. Infect. Dis. 2017, 88, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Liang, B.S.; Huang, Y.M.; Chen, Y.S.; Dong, H.; Mai, J.L.; Xie, Y.Q.; Zhong, H.M.; Deng, Q.L.; Long, Y.; Yang, Y.Y.; et al. Antimicrobial resistance and prevalence of CvfB, SEK and SEQ genes among Staphylococcus aureus isolates from paediatric patients with bloodstream infections. Exp. Ther. Med. 2017, 14, 5143–5148. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S., 2nd; Jorgensen, J.H. Inducible clindamycin resistance in staphylococci: Should clinicians and microbiologists be concerned? Clin. Infect. Dis. 2005, 40, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Daurel, C.; Huet, C.; Dhalluin, A.; Bes, M.; Etienne, J.; Leclercq, R. Differences in Potential for Selection of Clindamycin-Resistant Mutants Between Inducible erm(A) and erm(C) Staphylococcus aureus Genes. J. Clin. Microbiol. 2008, 46, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Francois, D.; Hammerschlag, M.R. New Antimicrobial Agents for the Treatment of Staphylococcal Infections in Children. Pediatr. Clin. 2017, 64, 1369–1387. [Google Scholar] [CrossRef] [PubMed]
- Korczowski, B.; Antadze, T.; Giorgobiani, M.; Stryjewski, M.E.; Jandourek, A.; Smith, A.; O’Neal, T.; Bradley, J.S. A Multicenter, Randomized, Observer-blinded, Active-controlled Study to Evaluate the Safety and Efficacy of Ceftaroline Versus Comparator in Pediatric Patients with Acute Bacterial Skin and Skin Structure Infection. Pediatr. Infect. Dis. J. 2016, 35, e239–e247. [Google Scholar] [CrossRef] [PubMed]
- Bradley, J.S.; Flanagan, S.D.; Arrieta, A.C.; Jacobs, R.; Capparelli, E.; Prokocimer, P. Pharmacokinetics, Safety and Tolerability of Single Oral or Intravenous Administration of 200 mg Tedizolid Phosphate in Adolescents. Pediatr. Infect. Dis. J. 2016, 35, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Copley, L.A.; Kinsler, M.A.; Gheen, T.; Shar, A.; Sun, D.; Browne, R. The impact of evidence-based clinical practice guidelines applied by a multidisciplinary team for the care of children with osteomyelitis. J. Bone Joint Surg. 2013, 95, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Peltola, H.; Pääkkönen, M.; Kallio, P.; Osteomyelitis-Septic Arthritis Study Group. Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: Prospective, randomized trial on 131 culture-positive cases. Pediatr. Infect. Dis. J. 2010, 29, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Paakkonen, M.; Peltola, H. Acute osteomyelitis in children. N. Engl. J. Med. 2014, 370, 1365–1366. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaushik, A.; Kest, H. Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections. Microorganisms 2018, 6, 40. https://doi.org/10.3390/microorganisms6020040
Kaushik A, Kest H. Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections. Microorganisms. 2018; 6(2):40. https://doi.org/10.3390/microorganisms6020040
Chicago/Turabian StyleKaushik, Ashlesha, and Helen Kest. 2018. "Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections" Microorganisms 6, no. 2: 40. https://doi.org/10.3390/microorganisms6020040
APA StyleKaushik, A., & Kest, H. (2018). Pediatric Methicillin-Resistant Staphylococcus aureus Osteoarticular Infections. Microorganisms, 6(2), 40. https://doi.org/10.3390/microorganisms6020040