Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars
Abstract
:1. Introduction
Mars UV Radiation
2. Materials and Methods
2.1. Preparation of Growth Media
2.2. Preparation of Stock Cultures of Methanobacterium formicicum and Methanococcus maripaludis
2.3. Preparation of Liquid Methanogenic Cells in Cuvettes for UV Irradiation
2.4. Preparation of Desiccated Methanogenic Cells in Cuvettes for UV Irradiation
2.5. Exposure of Hydrated and Desiccated Methanogenic Cells to UVC Irradiation under Anaerobic Conditions
3. Results
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Cockell, C.S.; Catling, D.C.; Davis, W.L.; Snook, K.; Kepner, R.L.; Lee, P.; McKay, C.P. The ultraviolet environment of Mars: Biological implications past, present, and future. Icarus 2000, 146, 343–359. [Google Scholar] [CrossRef] [PubMed]
- Hassler, D.M.; Zeitlin, C.; Wimmer-Schweingruber, R.F.; Ehresmann, B.; Rafkin, S.; Eigenbrode, J.L.; Brinza, D.E.; Weigle, G.; Böttcher, S.; Böhm, E. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity Rover. Science 2014, 343, 1244797. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Bérces, A.; Kerékgyárto, T.; Rontó, G.; Lammer, H.; Zarnecki, J. Annual solar UV exposure and biological effective dose rates on the Martian surface. Adv. Space Res. 2004, 33, 1247–1252. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Bérces, A.; Kolb, C.; Lammer, H.; Rettberg, P.; Zarnecki, J.; Selsis, F. Seasonal and diurnal variations in Martian surface ultraviolet irradiation: Biological and chemical implications for the Martian regolith. Int. J. Astrobiol. 2003, 2, 21–34. [Google Scholar] [CrossRef]
- Rontó, G.; Bérces, A.; Lammer, H.; Cockell, C.S.; Molina-Cuberos, G.J.; Patel, M.R.; Selsis, F. Solar UV Irradiation Conditions on the Surface of Mars. Photochem. Photobiol. 2003, 77, 34–40. [Google Scholar] [CrossRef]
- Kuhn, W.; Atreya, S. Solar radiation incident on the Martian surface. J. Mol. Evol. 1979, 14, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, E.; Sleep, N. The habitat and nature of early life. Nature 2001, 409, 1083–1091. [Google Scholar] [CrossRef] [PubMed]
- Kasting, J.F. Earth’s early atmosphere. Science 1993, 259, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Sagan, C. Ultraviolet selection pressure on the earliest organisms. J. Theor. Biol. 1973, 39, 195–200. [Google Scholar] [CrossRef]
- Cockell, C.S. Biological effects of high ultraviolet radiation on early Earth—A theoretical evaluation. J. Theor. Biol. 1998, 193, 717–729. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J.; Mancinelli, R.L. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef] [PubMed]
- Martin-Torres, F.J.; Zorzano, M.-P.; Valentin-Serrano, P.; Harri, A.-M.; Genzer, M.; Kemppinen, O.; Rivera-Valentin, E.G.; Jun, I.; Wray, J.; Bo Madsen, M.; et al. Transient liquid water and water activity at Gale crater on Mars. Nat. Geosci. 2015, 8, 357–361. [Google Scholar] [CrossRef]
- Formisano, V.; Atreya, S.; Encrenaz, T.; Ignatiev, N.; Giuranna, M. Detection of methane in the atmosphere of Mars. Science 2004, 306, 1758–1761. [Google Scholar] [CrossRef] [PubMed]
- Mumma, M.; Novak, R.; DiSanti, M.; Bonev, B.; Dello Russo, N. Detection and mapping of methane and water on Mars. Bull. Am. Astronomical Soc. 2004, 36, 1127. [Google Scholar]
- Mumma, M.J.; Villanueva, G.L.; Novak, R.E.; Hewagama, T.; Bonev, B.P.; DiSanti, M.A.; Mandell, A.M.; Smith, M.D. Strong release of methane on Mars in northern summer 2003. Science 2009, 323, 1041–1045. [Google Scholar] [CrossRef] [PubMed]
- Webster, C.R.; Mahaffy, P.R.; Atreya, S.K.; Flesch, G.J.; Mischna, M.A.; Meslin, P.-Y.; Farley, K.A.; Conrad, P.G.; Christensen, L.E.; Pavlov, A.A. Mars methane detection and variability at Gale crater. Science 2015, 347, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Atreya, S.K.; Mahaffy, P.R.; Wong, A.-S. Methane and related trace species on Mars: Origin, loss, implications for life, and habitability. Planet. Space Sci. 2007, 55, 358–369. [Google Scholar] [CrossRef]
- Kendrick, M.G.; Kral, T.A. Survival of methanogens during desiccation: Implications for life on Mars. Astrobiology 2006, 6, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Kral, T.A.; Bekkum, C.R.; McKay, C.P. Growth of methanogens on a Mars soil simulant. Orig. Life Evol. Biosph. 2004, 34, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Kral, T.A.; Brink, K.M.; Miller, S.L.; McKay, C.P. Hydrogen consumption by methanogens on the early Earth. Orig. Life Evol. Biosph. 1998, 28, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Kral, T.A. Stable carbon isotope fractionation by methanogens growing on different Mars regolith analogs. Planet. Space Sci. 2015, 112, 35–41. [Google Scholar] [CrossRef]
- Banin, A.; Mancinelli, R. Life on Mars? I. The chemical environment. Adv. Space Res. 1995, 15, 163–170. [Google Scholar] [CrossRef]
- Gooding, J.L. Soil mineralogy and chemistry on Mars: Possible clues from salts and clays in SNC meteorites. Icarus 1992, 99, 28–41. [Google Scholar] [CrossRef]
- Hecht, M.; Kounaves, S.; Quinn, R.; West, S.; Young, S.; Ming, D.; Catling, D.; Clark, B.; Boynton, W.; Hoffman, J. Detection of perchlorate and the soluble chemistry of martian soil at the Phoenix lander site. Science 2009, 325, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Haskin, L.A.; Squyres, S.W.; Jolliff, B.L.; Crumpler, L.; Gellert, R.; Schröder, C.; Herkenhoff, K.; Hurowitz, J.; Tosca, N.J. Sulfate deposition in subsurface regolith in Gusev crater, Mars. J. Geophys. Res. 2006, 111, E02S17. [Google Scholar] [CrossRef]
- Litchfield, C.D. Survival strategies for microorganisms in hypersaline environments and their relevance to life on early Mars. Meteorit. Planet. Sci. 1998, 33, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Fendrihan, S.; Legat, A.; Pfaffenhuemer, M.; Gruber, C.; Weidler, G.; Gerbl, F.; Stan-Lotter, H. Extremely halophilic archaea and the issue of long-term microbial survival. Rev. Environ. Sci. Biotechnol. 2006, 5, 203–218. [Google Scholar] [CrossRef] [PubMed]
- Mormile, M.R.; Biesen, M.A.; Gutierrez, M.C.; Ventosa, A.; Pavlovich, J.B.; Onstott, T.C.; Fredrickson, J.K. Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ. Microbiol. 2003, 5, 1094–1102. [Google Scholar] [CrossRef] [PubMed]
- Grant, W.D.; Gemmell, R.T.; McGenity, T.J. Halobacteria: The evidence for longevity. Extremophiles 1998, 2, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Shcherbakova, V.A.; Rivkina, E.M.; Pecheritsyna, S.A.; Laurinavichius, K.; Suzina, N.E.; Gilichinsky, D.A. Methanobacterium arcticum sp. nov., methanogenic archaeon from Holocene Arctic permafrost. Int. J. Syst. Evol. Microbiol. 2011, 61, 144–147. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y. Photochemistry and Photobiology of Nucleic Acids; Academic Press: New York, NY, USA, 2012; Volume 1. [Google Scholar]
- Wood, E.R.; Ghane, F.; Grogan, D.W. Genetic responses of the thermophilic archaeon Sulfolobus acidocaldarius to short-wavelength UV light. J. Bacteriol. 1997, 179, 5693–5698. [Google Scholar] [CrossRef] [PubMed]
- Seitz, E.M.; Brockman, J.P.; Sandler, S.J.; Clark, A.J.; Kowalczykowski, S.C. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev. 1998, 12, 1248–1253. [Google Scholar] [CrossRef] [PubMed]
- Jones, D.L.; Baxter, B.K. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea. Front. Microbiol. 2017, 8, 1882. [Google Scholar] [CrossRef] [PubMed]
- Cockell, C.S.; Knowland, J. Ultraviolet radiation screening compounds. Biol. Rev. Camb. Philos. Soc. 1999, 74, 311–345. [Google Scholar] [CrossRef] [PubMed]
- Rothschild, L.J. Earth analogs for Martian life. Microbes in evaporites, a new model system for life on Mars. Icarus 1990, 88, 246–260. [Google Scholar] [CrossRef]
- Mancinelli, R.L.; Klovstad, M. Martian soil and UV radiation: Microbial viability assessment on spacecraft surfaces. Planet. Space Sci. 2000, 48, 1093–1097. [Google Scholar] [CrossRef]
- Newcombe, D.A.; Schuerger, A.C.; Benardini, J.N.; Dickinson, D.; Tanner, R.; Venkateswaran, K. Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl. Environ. Microbiol. 2005, 71, 8147–8156. [Google Scholar] [CrossRef] [PubMed]
- Osman, S.; Peeters, Z.; La Duc, M.T.; Mancinelli, R.; Ehrenfreund, P.; Venkateswaran, K. Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl. Environ. Microbiol. 2008, 74, 959–970. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Whitman, W.B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N. Y. Acad. Sci. 2008, 1125, 171–189. [Google Scholar] [CrossRef] [PubMed]
- Oren, A. Halophilic microorganisms and their environments. In Cellular Origin and Life in Extreme Habitats; Seckbach, J., Ed.; Kluwer Academic Publishers: New York, NY, USA, 2002; Volume 5, pp. 25–35. [Google Scholar]
- Woese, C.R.; Kandler, O.; Wheelis, M.L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579. [Google Scholar] [CrossRef] [PubMed]
- DasSarma, S.; DasSarma, P. Halophiles; John Wiley & Sons Ltd.: Chichester, UK, 2017. [Google Scholar] [CrossRef]
- Jones, W.J.; Paynter, M.J.B.; Gupta, R. Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 1983, 135, 91–97. [Google Scholar] [CrossRef]
- Boone, D.R.; Johnson, R.L.; Liu, Y. Diffusion of the interspecies electron career H2 and formate in methanogenic ecosystems and its implications in the measurement of Km for H2 for formate uptake. Appl. Environ. Microbiol. 1989, 55, 1735–1741. [Google Scholar] [PubMed]
- Ni, S.; Boone, D.R. Isolation and characterization of a dimethyl sulfide-degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 1991, 41, 410–416. [Google Scholar] [CrossRef] [PubMed]
- McEwen, A.S.; Dundas, C.M.; Mattson, S.S.; Toigo, A.D.; Ojha, L.; Wray, J.J.; Chojnacki, M.; Byrne, S.; Murchie, S.L.; Thomas, N. Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 2014, 7, 53–58. [Google Scholar] [CrossRef]
- Kral, T.A.; Altheide, T.S.; Lueders, A.E.; Schuerger, A.C. Low pressure and desiccation effects on methanogens: Implications for life on Mars. Planet. Space Sci. 2011, 59, 264–270. [Google Scholar] [CrossRef]
- Sowers, K.R.; Robb, F.T. Methanogens (Archaea: A Laboratory Manual); Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1995. [Google Scholar]
- Kral, T.A.; Goodhart, T.H.; Harpool, J.D.; Hearnsberger, C.E.; McCracken, G.L.; McSpadden, S.W. Sensitivity and adaptability of methanogens to perchlorates: Implications for life on Mars. Planet. Space Sci. 2016, 120, 87–95. [Google Scholar] [CrossRef]
- Cockell, C.; Rettberg, P.; Horneck, G.; Scherer, K.; Stokes, D.M. Measurements of microbial protection from ultraviolet radiation in polar terrestrial microhabitats. Pol. Biol. 2003, 26, 62–69. [Google Scholar]
- Gómez Gómez, F.; Grau Carles, A.; Vazquez, L.; Amils, R. UV radiation effects over microorganisms and study of protective agents. In Proceedings of the Third European Workshop on Exo- Astrobiology, Madrid, Spain, 18–20 November 2003; pp. 21–25. [Google Scholar]
- Martinez-Frias, J.; Amaral, G.; Vázquez, L. Astrobiological significance of minerals on Mars surface environment. Rev. Environ. Sci. Biotechnol. 2006, 5, 219–231. [Google Scholar] [CrossRef] [Green Version]
Methanobacterium formicicum | Methanococcus maripaludis | |||
---|---|---|---|---|
Exposure Time (h) | Liquid | Desiccated | Liquid | Desiccated |
0 (Control) | 21.7 ± 10.1 | 31.2 ± 1.7 | 28.1 ± 0.1 | 27.3 ± 0.4 |
1 | 22.1 a | 31.6 ± 1.4 | 14.6 ± 12.3 | 26.3 ± 0.4 |
2 | 31.3 ± 1.7 | 29.6 ± 0.2 | 24.0 a | 27.4 ± 0.7 |
4 | 28.8 ± 7.4 | 36.2 ± 0.4 | 26.3 a | 24.3 ± 0.7 |
8 | 27.6 ± 1.9 | 22.4 a | 14.7 ± 13.5 | 24.8 a |
12 | 30.2 ± 0 | 29.8 ± 1.1 | 26.2 a | 28.2 a |
16 | 18.6 ± 15.3 | 0 | 28.2 ± 2.0 | 27.2 ± 1.2 |
24 | 37.2 ± 4.0 | 0 | 23.6 a | 0 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinha, N.; Kral, T.A. Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars. Microorganisms 2018, 6, 43. https://doi.org/10.3390/microorganisms6020043
Sinha N, Kral TA. Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars. Microorganisms. 2018; 6(2):43. https://doi.org/10.3390/microorganisms6020043
Chicago/Turabian StyleSinha, Navita, and Timothy A. Kral. 2018. "Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars" Microorganisms 6, no. 2: 43. https://doi.org/10.3390/microorganisms6020043
APA StyleSinha, N., & Kral, T. A. (2018). Effect of UVC Radiation on Hydrated and Desiccated Cultures of Slightly Halophilic and Non-Halophilic Methanogenic Archaea: Implications for Life on Mars. Microorganisms, 6(2), 43. https://doi.org/10.3390/microorganisms6020043