The Genus Wallemia—From Contamination of Food to Health Threat
Abstract
:1. Introduction
2. The Phylogenetic Enigma of the Genus Wallemia
3. The Most Xerophilic Fungal Genus Known to Date
4. Potential Health Risks of the Bioactive Metabolites of Wallemia spp.
5. Infectious and Allergological Cases Linked to Wallemia spp.
6. Final Remarks
Acknowledgments
Conflicts of Interest
References
- Brewer, M.S. Traditional preservatives—Sodium chloride. In Encylopaedia of Food Microbiology; Robinson, R.K., Blatt, C.A., Patel, P.D., Eds.; Acamedic: London, UK, 1999; Volume 3, pp. 1723–1728. [Google Scholar]
- Leong, S.-L.L.; Pettersson, O.V.; Rice, T.; Hocking, A.D.; Schnürer, J. The extreme xerophilic mould Xeromyces bisporus—Growth and competition at various water activities. Int. J. Food Microbiol. 2011, 145, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Pitt, J.I.; Hocking, A.D. Fungi and Food Spoilage, 3rd ed.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Zajc, J.; Dzeroski, S.; Kocev, D.; Oren, A.; Sonjak, S.; Tkavc, R.; Gunde-Cimerman, N. Chaophilic or chaotolerant fungi: A new category of extremophiles? Front. Microbiol. 2014, 5, 708. [Google Scholar] [CrossRef] [PubMed]
- Zalar, P.; de Hoog, G.S.; Schroers, H.J.; Frank, J.M.; Gunde-Cimerman, N. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie Van Leeuwenhoek 2005, 87, 311–328. [Google Scholar] [CrossRef] [PubMed]
- Jančič, S.; Zalar, P.; Kocev, D.; Schroers, H.-J.; Džeroski, S.; Gunde-Cimerman, N. Halophily reloaded: New insights into the extremophilic life-style of Wallemia with the description of Wallemia hederae sp. nov. Fungal Divers. 2016, 76, 97–118. [Google Scholar] [CrossRef]
- Zajc, J.; Kogej, T.; Ramos, J.; Galinski, E.A.; Gunde-Cimerman, N. The osmoadaptation strategy of the most halophilic fungus Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 2014, 80, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Jančič, S.; Nguyen, H.D.T.; Frisvad, J.C.; Zalar, P.; Schroers, H.-J.; Seifert, K.A.; Gunde-Cimerman, N. A taxonomic revision of the Wallemia sebi species complex. PLoS ONE 2015, 10, e0125933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paterson, R.R.M.; Lima, N. Filamentous Fungal Human Pathogens from Food Emphasising Aspergillus, Fusarium and Mucor. Microorganisms 2017, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Johan-Olsen, O. Om Sop på Klipfisk den Såkaldte Mid; Dybwad: Christiania, Norway, 1887. [Google Scholar]
- Larsson, K.-H.; Natural History Museum, University of Oslo, Oslo, Norway; Zalar, P.; University of Ljubljana, Ljubljana, Slovenia. Personal communication, 2015.
- Gunde-Cimerman, N.; University of Ljubljana, Ljubljana, Slovenia; Zajc, J.; National Institute of Biology, Ljubljana, Slovenia. Personal communication, 2017.
- Guarro, J.; Gugnani, H.C.; Sood, N.; Batra, R.; Mayayo, E.; Gene, J.; Kakkar, S. Subcutaneous phaeohyphomycosis caused by Wallemia sebi in an immunocompetent host. J. Clin. Microbiol. 2008, 46, 1129–1131. [Google Scholar] [CrossRef] [PubMed]
- Matheny, P.B.; Gossmann, J.A.; Zalar, P.; Kumar, T.K.A.; Hibbett, D.S. Resolving the phylogenetic position of the Wallemiomycetes: An enigmatic major lineage of Basidiomycota. Can. J. Bot./Rev. Can. Bot. 2006, 84, 1794–1805. [Google Scholar] [CrossRef]
- Zhao, R.-L.; Li, G.-J.; Sánchez-Ramírez, S.; Stata, M.; Yang, Z.-L.; Wu, G.; Dai, Y.-C.; He, S.-H.; Cui, B.-K.; Zhou, J.-L.; et al. A six-gene phylogenetic overview of Basidiomycota and allied phyla with estimated divergence times of higher taxa and a phyloproteomics perspective. Fungal Divers. 2017, 84, 43–74. [Google Scholar] [CrossRef]
- Hibbett, D.S. A phylogenetic overview of the Agaricomycotina. Mycologia 2006, 98, 917–925. [Google Scholar] [CrossRef] [PubMed]
- Padamsee, M.; Kumar, T.K.; Riley, R.; Binder, M.; Boyd, A.; Calvo, A.M.; Furukawa, K.; Hesse, C.; Hohmann, S.; James, T.Y.; et al. The genome of the xerotolerant mold Wallemia sebi reveals adaptations to osmotic stress and suggests cryptic sexual reproduction. Fungal Genet. Biol. 2012, 49, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Zajc, J.; Liu, Y.; Dai, W.; Yang, Z.; Hu, J.; Gostinčar, C.; Gunde-Cimerman, N. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: Haloadaptations present and absent. BMC Genom. 2013, 14, 617. [Google Scholar] [CrossRef] [PubMed]
- Arx, J.A.V. The Genera of Fungi Sporulating in Pure Culture; With 134 fig., Ill. More than 300 Fungi; Cramer: Lehre, Germany, 1974. [Google Scholar]
- Díaz-Valderrama, J.R.; Nguyen, H.D.T.; Aime, M.C. Wallemia peruviensis sp. nov., a new xerophilic fungus from an agricultural setting in South America. Extremophiles 2017, 21, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Kralj Kunčič, M.; Kogej, T.; Drobne, D.; Gunde-Cimerman, N. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl. Environ. Microbiol. 2010, 76, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Kralj Kunčič, M.; Zajc, J.; Drobne, D.; Pipan Tkalec, Z.; Gunde-Cimerman, N. Morphological responses to high sugar concentrations differ from adaptation to high salt concentrations in the xerophilic fungi Wallemia spp. Fungal Biol. 2013, 117, 466–478. [Google Scholar] [CrossRef] [PubMed]
- Frasz, S.L.; Miller, J.D. Fungi in Ontario maple syrup & some factors that determine the presence of mold damage. Int. J. Food Microbiol. 2015, 207, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Q.S.; Yang, P.; Wu, A.B.; Zuo, D.Y.; He, W.J.; Guo, M.W.; Huang, T.; Li, H.P.; Liao, Y.C. Variation in the Microbiome, Trichothecenes, and Aflatoxins in Stored Wheat Grains in Wuhan, China. Toxins (Basel) 2018, 10, 171. [Google Scholar] [CrossRef] [PubMed]
- Broissin-Vargas, L.M.; Snell-Castro, R.; Godon, J.J.; Gonzalez-Rios, O.; Suarez-Quiroz, M.L. Impact of storage conditions on fungal community composition of green coffee beans Coffea arabica L. stored in jute sacks during 1 year. J. Appl. Microbiol. 2018, 124, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Osimani, A.; Garofalo, C.; Milanovic, V.; Taccari, M.; Cardinali, F.; Aquilanti, L.; Pasquini, M.; Mozzon, M.; Raffaelli, N.; Ruschioni, S.; et al. Insight into the proximate composition and microbial diversity of edible insects marketed in the European Union. Eur. Food Res. Technol. 2017, 243, 1157–1171. [Google Scholar] [CrossRef]
- Jančič, S.; Frisvad, J.C.; Kocev, D.; Gostinčar, C.; Džeroski, S.; Gunde-Cimerman, N. Production of secondary metabolites in extreme environments: Food- and airborne Wallemia spp. produce toxic metabolites at hypersaline conditions. PLoS ONE 2016, 11, e0169116. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.D.T.; Jančič, S.; Meijer, M.; Tanney, J.B.; Zalar, P.; Gunde-Cimerman, N.; Seifert, K.A. Application of the phylogenetic species concept to Wallemia sebi from house dust and indoor air revealed by multi-locus genealogical concordance. PLoS ONE 2015, 10, e0120894. [Google Scholar] [CrossRef] [PubMed]
- De Hoog, G.S.; Zalar, P.; van den Ende, B.G.; Gunde-Cimerman, N. Relation of halotolerance to human pathogenicity in the fungal tree of life: An overview of ecology and evolution under stress. In Adaptation to Life at High Salt-Concentration in Archaea, Bacteria and Eukarya; Gunde-Cimerman, N., Oren, A., Plemenitas, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 373–395. [Google Scholar]
- Sonjak, S.; Frisvad, J.C.; Gunde-Cimerman, N. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol. Ecol. 2005, 53, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Frisvad, J. Halotolerant and halophilic fungi and their extrolite production. In Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology; Gunde-Cimerman, N., Oren, A., Plemenitaš, A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 425–439. [Google Scholar]
- Frisvad, J.C.; Smedsgaard, J.; Larsen, T.O.; Samson, R.A. Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud. Mycol. 2004, 49, 201–241. [Google Scholar]
- Leong, S.L.; Lantz, H.; Pettersson, O.V.; Frisvad, J.C.; Thrane, U.; Heipieper, H.J.; Dijksterhuis, J.; Grabherr, M.; Pettersson, M.; Tellgren-Roth, C.; et al. Genome and physiology of the ascomycete filamentous fungus Xeromyces bisporus, the most xerophilic organism isolated to date. Environ. Microbiol. 2015, 17, 496–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajc, J.; Jančič, S.; Zalar, P.; Gunde-Cimerman, N. Wallemia. In Molecular Biology of Food and Water Borne Mycotoxigenic and Mycotic Fungi of Humans; Paterson, R.R.M., Lima, N., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 569–581. [Google Scholar]
- Wood, G.M.; Mann, P.J.; Lewis, D.F.; Reid, W.J.; Moss, M.O. Studies on a toxic metabolite from the mold Wallemia. Food Addit. Contam. 1990, 7, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.P.; Wang, Y.; Liu, P.P.; Hong, K.; Chen, H.; Yin, X.; Zhu, W.M. Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch. Pharm. Res. 2011, 34, 907–912. [Google Scholar] [CrossRef] [PubMed]
- Sepčić, K.; Zalar, P.; Gunde-Cimerman, N. Low water activity induces the production of bioactive metabolites in halophilic and halotolerant fungi. Mar. Drugs 2011, 9, 59–70. [Google Scholar] [CrossRef]
- Botić, T.; Kunčič, M.K.; Sepčić, K.; Knez, Z.; Gunde-Cimerman, N. Salt induces biosynthesis of hemolytically active compounds in the xerotolerant food-borne fungus Wallemia sebi. FEMS Microbiol. Lett. 2012, 326, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Aimanianda, V.; Bayry, J.; Bozza, S.; Kniemeyer, O.; Perruccio, K.; Elluru, S.R.; Clavaud, C.; Paris, S.; Brakhage, A.A.; Kaveri, S.V.; et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 2009, 460, 1117–1121. [Google Scholar] [CrossRef] [PubMed]
- Linder, M.B.; Szilvay, G.R.; Nakari-Setala, T.; Penttila, M.E. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 2005, 29, 877–896. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.L.; Limon, J.J.; Bar, A.S.; Leal, C.A.; Gargus, M.; Tang, J.; Brown, J.; Funari, V.A.; Wang, H.L.; Crother, T.R.; et al. Immunological Consequences of Intestinal Fungal Dysbiosis. Cell Host Microbe 2016, 19, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Paterson, M.J.; Oh, S.; Underhill, D.M. Host-microbe interactions: Commensal fungi in the gut. Curr. Opin. Microbiol. 2017, 40, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Hanhela, R.; Louhelainen, K.; Pasanen, A.L. Prevalence of Microfungi in Finnish Cow Barns and Some Aspects of the Occurrence of Wallemia-Sebi and Fusaria. Scand. J. Work Environ. Health 1995, 21, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Lappalainen, S.; Pasanen, A.L.; Reiman, M.; Kalliokoski, P. Serum IgG antibodies against Wallemia sebi and Fusarium species in Finnish farmers. Ann. Allergy Asthma Immunol. 1998, 81, 585–592. [Google Scholar] [CrossRef]
- Soumagne, T.; Pana-Katatali, H.; Degano, B.; Dalphin, J.C. Combined pulmonary fibrosis and emphysema in hypersensitivity pneumonitis. BMJ Case Rep. 2015, 2015. [Google Scholar] [CrossRef] [PubMed]
- Reboux, G.; Piarroux, R.; Mauny, F.; Madroszyk, A.; Millon, L.; Bardonnet, K.; Dalphin, J.C. Role of molds in farmer’s lung disease in Eastern France. Am. J. Respir. Crit. Care Med. 2001, 163, 1534–1539. [Google Scholar] [CrossRef] [PubMed]
- Roussel, S.; Reboux, G.; Dalphin, J.C.; Laplante, J.J.; Piarroux, R. Evaluation of salting as a hay preservative against farmer’s lung disease agents. Ann. Agric. Environ. Med. 2005, 12, 217–221. [Google Scholar] [PubMed]
- Roussel, S.; Reboux, G.; Dalphin, J.C.; Pernet, D.; Laplante, J.J.; Millon, L.; Piarroux, R. Farmer’s lung disease and microbiological composition of hay: A case-control study. Mycopathologia 2005, 160, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Roussel, S.; Reboux, G.; Dalphin, J.C.; Bardonnet, K.; Millon, L.; Piarroux, R. Microbiological evolution of hay and relapse in patients with farmer’s lung. Occup. Environ. Med. 2004, 61, e3. [Google Scholar] [PubMed]
- Gbaguidi-Haore, H.; Roussel, S.; Reboux, G.; Dalphin, J.C.; Piarroux, R. Multilevel analysis of the impact of environmental factors and agricultural practices on the concentration in hay of microorganisms responsible for farmer’s lung disease. Ann. Agric. Environ. Med. 2009, 16, 219–225. [Google Scholar] [PubMed]
- Kristiansen, A.; Saunders, A.M.; Hansen, A.A.; Nielsen, P.H.; Nielsen, J.L. Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiol. Ecol. 2012, 80, 390–401. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.Y.; Westermark, S.O.; Rasmuson-Lestander, A.; Wang, X.R. Detection and quantification of Wallemia sebi in aerosols by real-time PCR, conventional PCR, and cultivation. Appl. Environ. Microbiol. 2004, 70, 7295–7302. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, T.; Torii, S.; Yamada, M.; Urisu, A.; Iguchi, H.; Ueda, M.; Matsuda, Y. Allergenic and antigenic activities of the osmophilic fungus Wallemia sebi asthmatic patients. Arerugi Allergy 1989, 38, 352–359. [Google Scholar] [PubMed]
- Sakamoto, T.; Urisu, A.; Yamada, M.; Matsuda, Y.; Tanaka, K.; Torii, S. Studies on the osmophilic fungus Wallemia sebi as an allergen evaluated by skin prick test and radioallergosorbent test. Int. Arch. Allergy Appl. Immunol. 1989, 90, 368–372. [Google Scholar] [CrossRef] [PubMed]
Wallemia spp. | Habitat | Geographic Distribution | Pathogenic Incidence |
---|---|---|---|
W. sebi | Hypersaline water in solar salterns and salt lakes; hay; sea salt; air and dust in indoor environments (house, office, storage areas); pond water, mineral water; seeds (sunflower, wheat, rye, barley, maize, in-shell peanuts, pecans, peas); baked goods (bread, ginger bread, marzipan cake); beans (mung, soybeans and soy products, green coffee beans); cereals (corn, rice, wheat); chocolate, milk and condensed milk; chili and peppers, fruits and fruit products (dates, jams, jellies, dried prunes, sultanas); maple syrup, dried salted fish, meat products, suet | Worldwide (Africa, Asia, Europe, North America) | Chronic ulcerative skin lesion in man (one case reported, Groningen, The Netherlands); fatal livestock toxicosis associated with contaminated hay (one case reported, Berkshire, UK) |
W. mellicola | Salty foods (peanuts, dried fish); sugared food (date honey, cakes, jam, maple syrup, chocolate); dried food (bread, coconut pulp); hypersaline waters of solar salterns; air, dust and surfaces in indoor environments; soil; forest plants; seeds, straw, pollen | Worldwide (Asia, Europe, North America, Middle America, South America, Micronesia) | Subcutaneous lesion (phaeohyphomycosis) on foot in an immunocompetent human patient (Varanasi, Uttar Pradesh, India) |
W. muriae | Sugared food (date honey, cake, chocolate); salty food (peanuts); edible crickets and locusts; hypersaline waters of salterns world-wide; dry substrates (straw, seeds); air in agricultural and human associated environments; an insect (one report) | Worldwide (Asia, Europe, North America, South America) | Farmer’s lung disease; bronchial asthma |
W. ichthyophaga | Hypersaline waters of salterns in Slovenia and Namibia; salted meat and fish; klipfish (salted cod)—not recorded from environmental substrates with high sugar content | Sporadic (Slovenia, Norway, Namibia) | No reports |
W. tropicalis | Soil; house dust | Subtropical and tropical climates (Egypt, Uruguay, Indonesia and Micronesia) | No reports |
W. canadensis | Cedar swamp; catwalk in silos; indoor dust and air | Temperate and cold climates (Canada, UK, Finland) | No reports |
W. hederae | Common on ivy flowers (pollen); oak honey, barley seeds, hay, green coffee beans | Southern Europe (Slovenia, Croatia), South America (Mexico) | No reports |
W. peruviensis | Air in agricultural settings | South America, Peru | No reports |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajc, J.; Gunde-Cimerman, N. The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms 2018, 6, 46. https://doi.org/10.3390/microorganisms6020046
Zajc J, Gunde-Cimerman N. The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms. 2018; 6(2):46. https://doi.org/10.3390/microorganisms6020046
Chicago/Turabian StyleZajc, Janja, and Nina Gunde-Cimerman. 2018. "The Genus Wallemia—From Contamination of Food to Health Threat" Microorganisms 6, no. 2: 46. https://doi.org/10.3390/microorganisms6020046
APA StyleZajc, J., & Gunde-Cimerman, N. (2018). The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms, 6(2), 46. https://doi.org/10.3390/microorganisms6020046