Cyanobacterial Growth in Minimally Amended Anaerobic Digestion Effluent and Flue-Gas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Media Preparation
2.1.1. AD Effluent
2.1.2. AD Effluent Refinement
2.1.3. Synthetic Media
2.1.4. Synthetic Seawater
2.1.5. pH Control
2.2. Experimental Framework and Growth Conditions
2.2.1. Growth on Synthetic Media Versus AD Effluent
2.2.2. pH Dependent Growth Experiments
2.2.3. Ammonia Toxicity Experiment
2.2.4. Growth in Amended AD Media
2.3. Airlift Reactor Growth Conditions
2.4. Sampling
2.5. Biomass Quantification
2.6. Nitrogen Quantification
2.7. Turbidity Analysis
2.8. Elemental Analysis
3. Results
3.1. Substrate Limitations and Inhibition
3.1.1. Comparison of Synthetic Medium and AD Effluent
3.1.2. Turbidity
3.1.3. Ammonia Utilization and Inhibition
3.2. Optimized Growth on Minimally Amended AD Effluent Diluted with Seawater
3.3. Nitrogen Removal Efficiency
3.4. Photobioreactor Scale-Up
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Louw, T.M.; Griffiths, M.J.; Jones, S.M.J.; Harrison, S.T.L. Techno-economics of Algal Biodiesel. In Algae Biotechnology: Products and Processes; Bux, F., Chisti, Y., Eds.; Springer International Publishing: Cham, Germany, 2016; pp. 111–141. [Google Scholar]
- Singh, R.N.; Sharma, S. Development of suitable photobioreactor for algae production—A review. Renew Sustain. Energy Rev. 2012, 16, 2347–2353. [Google Scholar] [CrossRef]
- Wang, B.; Lan, C.Q.; Horsman, M. Closed photobioreactors for production of microalgal biomasses. Biotechnol. Adv. 2012, 30, 904–912. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Yeh, K.-L.; Aisyah, R.; Lee, D.-J.; Chang, J.-S. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresour. Technol. 2011, 102, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Suh, I.S.; Lee, C.-G. Photobioreactor engineering: Design and performance. Biotechnol. Bioprocess Eng. 2003, 8, 313–321. [Google Scholar] [CrossRef]
- Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels 2010, 1, 763–784. [Google Scholar] [CrossRef] [PubMed]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Bogan, R.H.; Albertson, O.E.; Pluntze, J.C. Use of Algae in Removing Phosphorus from Sewage. J. Sanit Eng. Div. 1960, 86, 1–20. [Google Scholar]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient recovery from wastewater streams by microalgae: Status and prospects. Renew Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Xu, Y. Synechococcus Sp. PCC7002: A Robust and Versatile Cyanobacterial Platform for Biofuels Development. Ph.D. Thesis, Pennsylvania State University, University Park, PA, USA, May 2010. [Google Scholar]
- Lu, D.; Zhang, X.; Liu, X.; Zhang, L.; Hines, M. Sustainable microalgae cultivation by using anaerobic centrate and biogas from anaerobic digestion. Algal Res. 2018, 35, 115–124. [Google Scholar] [CrossRef]
- Morales-Amaral, M.; Del, M.; Gómez-Serrano, C.; Acién, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E. Production of microalgae using centrate from anaerobic digestion as the nutrient source. Algal Res. 2015, 9, 297–305. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef] [PubMed]
- Marcilhac, C.; Sialve, B.; Pourcher, A.-M.; Ziebal, C.; Bernet, N.; Béline, F. Digestate color and light intensity affect nutrient removal and competition phenomena in a microalgal-bacterial ecosystem. Water Res. 2014, 64, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Wahal, S. Nutrient Utilization from Anaerobic Digester Effluent through Algae Cultivation. Ph.D. Thesis, Utah State University, Logan, UT, USA, April 2010. [Google Scholar]
- Singh, M.; Reynolds, D.L.; Das, K.C. Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresour. Technol. 2011, 102, 10841–10848. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.S.; Miao, Z.H.; Wyatt, S.K. Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresour. Technol. 2010, 101, 6012–6018. [Google Scholar] [CrossRef] [PubMed]
- Olguín, E.J.; Hernández, B.; Araus, A.; Camacho, R.; González, R.; Ramírez, M.E.; Galicia, S.; Mercado, G. Simultaneous high-biomass protein production and nutrient removal using Spirulina maxima in sea water supplemented with anaerobic effluents. World J. Microbiol. Biotechnol. 1994, 10, 576–578. [Google Scholar]
- Markou, G.; Georgakakis, D. Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review. Appl. Energy 2011, 88, 3389–3401. [Google Scholar] [CrossRef]
- Azov, Y.; Goldman, J.C. Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl. Environ. Microbiol. 1982, 43, 735–739. [Google Scholar]
- Zhu, Y.; Graham, J.E.; Ludwig, M.; Xiong, W.; Alvey, R.M.; Shen, G.; Bryant, D.A. Roles of xanthophyll carotenoids in protection against photoinhibition and oxidative stress in the cyanobacterium Synechococcus sp. strain PCC 7002. Arch. Biochem. Biophys. 2010, 504, 86–99. [Google Scholar] [CrossRef]
- Olguín, E.J. Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnol. Adv. 2012, 30, 1031–1046. [Google Scholar] [CrossRef]
- Knoot, C.J.; Ungerer, J.; Wangikar, P.P.; Pakrasi, H.B. Cyanobacteria: Promising biocatalysts for sustainable chemical production. J. Biol. Chem. 2018, 293, 5044–5052. [Google Scholar] [CrossRef] [Green Version]
- Pott, R.; Johnstone-Robertson, M.; Verster, B.; Rumjeet, S.; Nkadimeng, L.; Raper, T.; Rademeyer, S.; Harrison, S.T.L. Wastewater Biorefineries: Integrating Water Treatment and Value Recovery. In The Nexus: Energy, Environment and Climate Change; Leal Filho, W., Surroop, D., Eds.; Springer International Publishing: Cham, Germany, 2018; pp. 289–302. [Google Scholar]
- Mou, S.; Zhang, Y.; Li, G.; Li, H.; Liang, Y.; Tang, L.; Jiao, N. Effects of elevated CO2 and nitrogen supply on the growth and photosynthetic physiology of a marine cyanobacterium, Synechococcus sp. PCC7002. J. Appl. Phycol. 2017, 29, 1755–1763. [Google Scholar] [CrossRef]
- Arnon, D.I.; McSwain, B.D.; Tsujimoto, H.Y.; Wada, K. Photochemical activity and components of membrane preparations from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. Biochim. Biophys. Acta Bioenerg. 1974, 357, 231–245. [Google Scholar] [CrossRef]
- Chisti, M.Y.; Young, M. Airlift Reactors: Characteristics, Applications and Design Considerations. Chem. Eng. Commun. 1987, 60, 195–242. [Google Scholar] [CrossRef]
- Ong, H.K.; Lim, Y.S.; Suhaimi, M. Environmental impact and removal of phosphates in swine farm effluent. J. Trop. Agric. Food Sci. 2006, 34, 355. [Google Scholar]
- Boussiba, S.; Gibson, J. Ammonia translocation in cyanobacteria. FEMS Microbiol. Lett. 1991, 88, 1–14. [Google Scholar] [CrossRef]
- Ohashi, Y.; Shi, W.; Takatani, N.; Aichi, M.; Maeda, S.; Watanabe, S.; Yoshikawa, H.; Omata, T. Regulation of nitrate assimilation in cyanobacteria. J. Exp. Bot. 2011, 62, 1411–1424. [Google Scholar] [CrossRef] [Green Version]
- Markou, G.; Vandamme, D.; Muylaert, K. Microalgal and cyanobacterial cultivation: The supply of nutrients. Water Res. 2014, 65, 186–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters; Wiley: New York, NY, USA, 1996; 1022p. [Google Scholar]
- Kang, R.; Wang, J.; Shi, D.; Cong, W.; Cai, Z.; Ouyang, F. Interactions between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett. 2004, 26, 1429–1432. [Google Scholar] [CrossRef]
- McGinn, P.J.; Dickinson, K.E.; Bhatti, S.; Frigon, J.-C.; Guiot, S.R.; O’Leary, S.J.B. Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: Opportunities and limitations. Photosynth Res. 2011, 109, 231–247. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Kaushik, P.; Malik, A.; Vijay, V.K. Phycoremediation coupled production of algal biomass, harvesting and anaerobic digestion: Possibilities and challenges. Biotechnol. Adv. 2013, 31, 1408–1425. [Google Scholar] [CrossRef]
Property | Value | Units |
---|---|---|
Specific gravity at 25 °C | 1.0255 | - |
Salinity | 35.5 | g/kg |
pH | 8.2–8.4 | - |
Alkalinity | 7.8–8.2 | °dKH |
Ca concentration | 420–440 | mg/L |
Mg concentration | 1250–1310 | mg/L |
K concentration | 380–400 | mg/L |
Nutrients | pH | CO2 (GAS PHASE) | |
---|---|---|---|
1. | Media A D7 | 8.2 | 400 ppm |
2. | Undiluted AD effluent | 8.2 | 400 ppm |
Undiluted AD effluent with added micronutrients (H3BO3; MnCl2.4H2O; ZnSO4.7H2O; Na2MoO4.2H2O; CuSO4.5H2O; NaVO3; CoCl2.6H2O) | 8.2 | 400 ppm | |
AD effluent diluted at 74% and 90% with deionised water | 8.2 | 400 ppm | |
Media A D7 adjusted as follows: | |||
3. | 0.012 mol-N/L; 75% [(NH4)2SO4] + 25% [NaNO3] | 8.2 | 400 ppm |
0.012 mol-N/L; 25% [(NH4)2SO4] + 75% [NaNO3] | 8.2 | 400 ppm | |
0.012 mol-N/L; 50% [(NH4)2SO4] + 50% [NaNO3] | 6–9 | 400 ppm | |
[(NH4)2SO4] = 0.1–1.5 M | 6.5–7.0 | 400 ppm | |
4. | Synthetic seawater with added [NaNO3] = 0.012 M and [KH2PO4] = 0.37 mM | 8.2 | 400 ppm |
Media A D7, with synthetic seawater replacing NaCl | 8.2 | 400 ppm | |
5. | 60%, 75% and 85% seawater diluted AD effluent and [MgSO4] = 0.2 M | 6.8 | 400 ppm |
6. | 60%, 75% and 85% seawater diluted AD effluent and [MgSO4] = 0.2 M | 6.8 | 10 v/v% CO2 |
7. | 85% seawater diluted AD effluent and [MgSO4] = 0.2 M | 6.8 | 400 ppm |
Sample | Turbidity (NTU) | Turbidity (Classification) | Total Phosphorous Reduction (%) |
---|---|---|---|
Raw AD | 3525 | Poor | 0% |
Centrate | 362 | Poor | 15% |
Filtrate (glass fibre) | 253 | Poor | 20% |
Filtrate (0.45 μm) | 142 | Fair | 25% |
Filtrate (0.22 μm) | 6 | Excellent | 30% |
Property | Media A D7 | AD Effluent | Conclusion |
---|---|---|---|
Potassium [mmol∙L−1] | 11.70 | 14.91 | Reasonable |
Calcium [mmol∙L−1] | 2.50 | 2.92 | Reasonable |
Magnesium [mmol∙L−1] | 200.00 | 1.51 | Possibly limiting |
Total Nitrogen [mmol∙L−1] | 12.00 | 17.08 | Reasonable |
Ammonia [mmol∙L−1] | 0.00 | 15.52 | Possibly inhibitory |
Sulphate [mmol∙L−1] | 200.00 | 0.19 | Possibly limiting |
Ortho-phosphate [mmol∙L−1] | 0.36 | 11.83 | Reasonable |
Dissolved Organic Carbon [mmol∙L−1] | 0.00 | 7.41 | Reasonable |
Total Organic Carbon [mmol∙L−1] | 0.00 | 7.52 | Reasonable |
Electrical Conductivity [mS∙m−1 at 25 °C] | 3500.00 | 291.00 | Possibly limiting |
Turbidity [NTU] | 0.00 | 336.00 | Possibly inhibitory |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beyl, T.; Louw, T.M.; Pott, R.W.M. Cyanobacterial Growth in Minimally Amended Anaerobic Digestion Effluent and Flue-Gas. Microorganisms 2019, 7, 428. https://doi.org/10.3390/microorganisms7100428
Beyl T, Louw TM, Pott RWM. Cyanobacterial Growth in Minimally Amended Anaerobic Digestion Effluent and Flue-Gas. Microorganisms. 2019; 7(10):428. https://doi.org/10.3390/microorganisms7100428
Chicago/Turabian StyleBeyl, Talita, Tobias M. Louw, and Robert W. M. Pott. 2019. "Cyanobacterial Growth in Minimally Amended Anaerobic Digestion Effluent and Flue-Gas" Microorganisms 7, no. 10: 428. https://doi.org/10.3390/microorganisms7100428
APA StyleBeyl, T., Louw, T. M., & Pott, R. W. M. (2019). Cyanobacterial Growth in Minimally Amended Anaerobic Digestion Effluent and Flue-Gas. Microorganisms, 7(10), 428. https://doi.org/10.3390/microorganisms7100428