Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Bacterial Isolation
2.2. Identification of Bacterial Isolates by MALDI-TOF MS
2.3. Phenotypic Antimicrobial Susceptibility Testing
2.4. DNA Extraction and Purification
2.5. Identification of Resistance-Associated Genes
3. Results
3.1. Isolation and Identification of Staphylococcus spp. Isolated from Turkeys
3.2. Phenotypic Antimicrobial Resistance Profiles
3.3. Prevalence of Antimicrobial Resistance-Associated Genes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Becker, K.; Heilmann, C.; Peters, G. Coagulase-negative staphylococci. Clin. Microbiol. Rev. 2014, 27, 870–926. [Google Scholar] [CrossRef] [PubMed]
- Andreasen, C.B. Staphylococcosis. In Diseases of Poultry, 13th ed.; Wiley-Blackwell Publishing: Ames, IA, USA, 2013; pp. 971–977. [Google Scholar]
- Otto, M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection: Staphylococcal commensal species such as Staphylococcus epidermidis are being recognized as important sources of genes promoting MRSA colonization and virulence. Bioessays 2013, 35, 4–11. [Google Scholar] [CrossRef] [PubMed]
- El-Razik, K.A.A.; Arafa, A.A.; Hedia, R.H.; Ibrahim, E.S. Tetracycline resistance phenotypes and genotypes of coagulase-negative staphylococcal isolates from bubaline mastitis in Egypt. Vet. World 2017, 10, 702–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mashaly, G.E.; El-Mahdy, R.H. Vancomycin heteroresistance in coagulase negative Staphylococcus blood stream infections from patients of intensive care units in Mansoura University Hospitals, Egypt. Ann. Clin. Microbiol. Antimicrob. 2017, 16, 63. [Google Scholar] [CrossRef] [PubMed]
- Osman, K.; Badr, J.; Al-Maary, K.S.; Moussa, I.M.; Hessain, A.M.; Girah, Z.M.; Abo-Shama, U.H.; Orabi, A.; Saad, A. Prevalence of the antibiotic resistance genes in coagulase-positive-and negative-Staphylococcus in chicken meat retailed to consumers. Front. Microbiol. 2016, 7, 1846. [Google Scholar] [CrossRef] [PubMed]
- Bender, J.K.; Cattoir, V.; Hegstad, K.; Sadowy, E.; Coque, T.M.; Westh, H.; Hammerum, A.M.; Schaffer, K.; Burns, K.; Murchan, S.; et al. Update on prevalence and mechanisms of resistance to linezolid, tigecycline and daptomycin in enterococci in Europe: Towards a common nomenclature. Drug Resist. Updat. 2018, 40, 25–39. [Google Scholar] [CrossRef]
- Gu, B.; Kelesidis, T.; Tsiodras, S.; Hindler, J.; Humphries, R.M. The emerging problem of linezolid-resistant Staphylococcus. J. Antimicrob. Chemother. 2013, 68, 4–11. [Google Scholar] [CrossRef]
- Long, K.S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob. Agents Chemother. 2006, 50, 2500–2505. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, Y.; Cai, J.; Schwarz, S.; Cui, L.; Hu, Z.; Zhang, R.; Li, J.; Zhao, Q.; He, T.; et al. A novel gene, optrA, that confers transferable resistance to oxazolidinones and phenicols and its presence in Enterococcus faecalis and Enterococcus faecium of human and animal origin. J. Antimicrob. Chemother. 2015, 70, 2182–2190. [Google Scholar] [CrossRef]
- Li, D.; Wang, Y.; Schwarz, S.; Cai, J.; Fan, R.; Li, J.; Fessler, A.T.; Zhang, R.; Wu, C.; Shen, J. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J. Antimicrob. Chemother. 2016, 71, 1474–1478. [Google Scholar] [CrossRef]
- Balandin, B.; Lobo, B.; Orden, B.; Roman, F.; Garcia, E.; Martinez, R.; Valdivia, M.; Ortega, A.; Fernandez, I.; Galdos, P. Emergence of linezolid-resistant coagulase-negative staphylococci in an intensive care unit. Infect. Dis. 2016, 48, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Baos, E.; Candel, F.J.; Merino, P.; Pena, I.; Picazo, J.J. Characterization and monitoring of linezolid-resistant clinical isolates of Staphylococcus epidermidis in an intensive care unit 4 years after an outbreak of infection by cfr-mediated linezolid-resistant Staphylococcus aureus. Diagn. Microbiol. Infect. Dis. 2013, 76, 325–329. [Google Scholar] [CrossRef]
- Cuny, C.; Arnold, P.; Hermes, J.; Eckmanns, T.; Mehraj, J.; Schoenfelder, S.; Ziebuhr, W.; Zhao, Q.; Wang, Y.; Fessler, A.T.; et al. Occurrence of cfr-mediated multiresistance in staphylococci from veal calves and pigs, from humans at the corresponding farms, and from veterinarians and their family members. Vet. Microbiol. 2017, 200, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Steenbergen, J.N.; Alder, J.; Thorne, G.M.; Tally, F.P. Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J. Antimicrob. Chemother. 2005, 55, 283–288. [Google Scholar] [CrossRef]
- Jiang, J.H.; Dexter, C.; Cameron, D.R.; Monk, I.R.; Baines, S.L.; Abbott, I.J.; Spelman, D.W.; Kostoulias, X.; Nethercott, C.; Howden, B.P.; et al. Evolution of Daptomycin Resistance in Coagulase-Negative Staphylococci Involves Mutations of the Essential Two-Component Regulator WalKR. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkovic, I.; Antunovic, M.; Marijanovic, I.; Pavic, K.; Ester, K.; Kralj, M.; Vlainic, J.; Kosalec, I.; Schols, D.; Hadjipavlou-Litina, D.; et al. Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation. Eur. J. Med. Chem. 2016, 124, 622–636. [Google Scholar] [CrossRef] [PubMed]
- Paauw, A.; Jonker, D.; Roeselers, G.; Heng, J.M.; Mars-Groenendijk, R.H.; Trip, H.; Molhoek, E.M.; Jansen, H.J.; van der Plas, J.; de Jong, A.L.; et al. Rapid and reliable discrimination between Shigella species and Escherichia coli using MALDI-TOF mass spectrometry. Int. J. Med. Microbiol. 2015, 305, 446–452. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement M100-S25. Clin. Lab. Stand. Inst. 2015, 35, 64–70. [Google Scholar]
- EUCAST (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0. 2019. Available online: http://www.eucast.org (accessed on 6 March 2019).
- Pedroso, S.H.S.P.; Sandes, S.H.C.; Filho, R.A.T.; Nunes, A.C.; Serufo, J.C.; Farias, L.M.; Carvalho, M.A.R.; Bomfim, M.R.Q.; Santos, S.G. Coagulase-Negative staphylococci isolated from human bloodstream infections showed multidrug resistance profile. Microb. Drug Resist. 2018, 24, 635–647. [Google Scholar] [CrossRef]
- Okolie, C.E.; Wooldridge, K.G.; Turner, D.P.; Cockayne, A.; James, R. Development of a heptaplex PCR assay for identification of Staphylococcus aureus and CoNS with simultaneous detection of virulence and antibiotic resistance genes. BMC Microbiol. 2015, 15, 157. [Google Scholar] [CrossRef]
- Fan, R.; Li, D.; Fessler, A.T.; Wu, C.; Schwarz, S.; Wang, Y. Distribution of optrA and cfr in florfenicol-resistant Staphylococcus sciuri of pig origin. Vet. Microbiol. 2017, 210, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Moawad, A.A.; Hotzel, H.; El-Adawy, H.; Neubauer, H.; Hafez, M.H. Turkey production and health in Egypt: Current situation changes. In Proceedings of the Turkey Production and Health: Challenges and Opportunities, Berlin, Germany, 18–20 May 2017; pp. 12–17. [Google Scholar]
- Nanoukon, C.; Argemi, X.; Sogbo, F.; Orekan, J.; Keller, D.; Affolabi, D.; Schramm, F.; Riegel, P.; Baba-Moussa, L.; Prevost, G. Pathogenic features of clinically significant coagulase-negative staphylococci in hospital and community infections in Benin. Int. J. Med. Microbiol. 2017, 307, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Boamah, V.E.; Agyare, C.; Odoi, H.; Adu, F.; Gbedema, S.Y.; Dalsgaard, A. Prevalence and antibiotic resistance of coagulase-negative staphylococci isolated from poultry farms in three regions of Ghana. Infect. Drug Resist. 2017, 10, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Marek, A.; Stepien-Pysniak, D.; Pyzik, E.; Adaszek, L.; Wilczynski, J.; Winiarczyk, S. Occurrence and characterization of Staphylococcus bacteria isolated from poultry in Western Poland. Berl. Munch. Tierarztl. Wochenschr. 2016, 129, 147–152. [Google Scholar]
- Stepien-Pysniak, D.; Wilczynski, J.; Marek, A.; Smiech, A.; Kosikowska, U.; Hauschild, T. Staphylococcus simulans associated with endocarditis in broiler chickens. Avian Pathol. 2017, 46, 44–51. [Google Scholar] [CrossRef]
- Salmon, S.A.; Watts, J.L. Minimum inhibitory concentration determinations for various antimicrobial agents against 1570 bacterial isolates from turkey poults. Avian Dis. 2000, 44, 85–98. [Google Scholar] [CrossRef]
- Miragaia, M. Factors contributing to the evolution of mecA-mediated beta-lactam resistance in staphylococci: Update and new insights from Whole Genome Sequencing (WGS). Front. Microbiol. 2018, 9, 2723. [Google Scholar] [CrossRef]
- Martineau, F.; Picard, F.J.; Lansac, N.; Menard, C.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Correlation between the resistance genotype determined by multiplex PCR assays and the antibiotic susceptibility patterns of Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 231–238. [Google Scholar] [CrossRef]
- Robles, B.F.; Nóbrega, D.B.; Guimarães, F.F.; Wanderley, G.G.; Langoni, H. Beta-lactamase detection in Staphylococcus aureus and coagulase-negative Staphylococcus isolated from bovine mastitis. J. Pesq. Vet. Bras. 2014, 34, 325–328. [Google Scholar] [CrossRef]
- Srednik, M.E.; Tremblay, Y.D.N.; Labrie, J.; Archambault, M.; Jacques, M.; Fernandez Cirelli, A.; Gentilini, E.R. Biofilm formation and antimicrobial resistance genes of coagulase-negative staphylococci isolated from cows with mastitis in Argentina. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef]
- Karam, G.; Chastre, J.; Wilcox, M.H.; Vincent, J.L. Antibiotic strategies in the era of multidrug resistance. Crit. Care 2016, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Bora, P.; Datta, P.; Gupta, V.; Singhal, L.; Chander, J. Characterization and antimicrobial susceptibility of coagulase-negative staphylococci isolated from clinical samples. J. Lab. Physicians 2018, 10, 414–419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vela, J.; Hildebrandt, K.; Metcalfe, A.; Rempel, H.; Bittman, S.; Topp, E.; Diarra, M. Characterization of Staphylococcus xylosus isolated from broiler chicken barn bioaerosol. Poult. Sci. 2012, 91, 3003–3012. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H. Methicillin (Oxacillin)-resistant Staphylococcus aureus strains isolated from major food animals and their potential transmission to humans. Appl. Environ. Microbiol. 2003, 69, 6489–6494. [Google Scholar] [CrossRef] [PubMed]
- Sampimon, O.C.; Lam, T.J.; Mevius, D.J.; Schukken, Y.H.; Zadoks, R.N. Antimicrobial susceptibility of coagulase-negative staphylococci isolated from bovine milk samples. Vet. Microbiol. 2011, 150, 173–179. [Google Scholar] [CrossRef]
- Uddin, M.J.; Ahn, J. Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in Staphylococcus aureus. Lett. Appl. Microbiol. 2017, 65, 462–468. [Google Scholar] [CrossRef]
- Strommenger, B.; Kettlitz, C.; Werner, G.; Witte, W. Multiplex PCR assay for simultaneous detection of nine clinically relevant antibiotic resistance genes in Staphylococcus aureus. J. Clin. Microbiol. 2003, 41, 4089–4094. [Google Scholar] [CrossRef]
- Xu, J.; Shi, C.; Song, M.; Xu, X.; Yang, P.; Paoli, G.; Shi, X. Phenotypic and genotypic antimicrobial resistance traits of foodborne Staphylococcus aureus isolates from Shanghai. J. Food Sci. 2014, 79, M635–M642. [Google Scholar] [CrossRef]
- Kosmidis, C.; Schindler, B.D.; Jacinto, P.L.; Patel, D.; Bains, K.; Seo, S.M.; Kaatz, G.W. Expression of multidrug resistance efflux pump genes in clinical and environmental isolates of Staphylococcus aureus. Int. J. Antimicrob. Agents 2012, 40, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Khashei, R.; Malekzadegan, Y.; Sedigh Ebrahim-Saraie, H.; Razavi, Z. Phenotypic and genotypic characterization of macrolide, lincosamide and streptogramin B resistance among clinical isolates of staphylococci in southwest of Iran. BMC Res. Notes 2018, 11, 711. [Google Scholar] [CrossRef]
- He, T.; Wang, Y.; Schwarz, S.; Zhao, Q.; Shen, J.; Wu, C. Genetic environment of the multi-resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int. J. Med. Microbiol. 2014, 304, 257–261. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; He, T.; Schwarz, S.; Zhao, Q.; Shen, Z.; Wu, C.; Shen, J. Multidrug resistance gene cfr in methicillin-resistant coagulase-negative staphylococci from chickens, ducks, and pigs in China. Int. J. Med. Microbiol. 2013, 303, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Schoenfelder, S.M.; Dong, Y.; Fessler, A.T.; Schwarz, S.; Schoen, C.; Köck, R.; Ziebuhr, W. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Vet. Microbiol. 2017, 200, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Decousser, J.W.; Desroches, M.; Bourgeois-Nicolaos, N.; Potier, J.; Jehl, F.; Lina, G.; Cattoir, V.; Vandenesh, F.; Doucet-Populaire, F.; Microbs Study, G. Susceptibility trends including emergence of linezolid resistance among coagulase-negative staphylococci and meticillin-resistant Staphylococcus aureus from invasive infections. Int. J. Antimicrob. Agents 2015, 46, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Zorić, N.; Kosalec, I.; Tomić, S.; Bobnjarić, I.; Jug, M.; Vlainić, T.; Vlainić, J. Membrane of Candida albicans as a target of berberine. BMC Complement. Altern. Med. 2017, 17, 268. [Google Scholar] [CrossRef] [PubMed]
Number of | Governorates | Total | ||||
---|---|---|---|---|---|---|
Dakahliya | Damietta | Kafr El-Sheikh | Sharkiya | Gharbiya | 5 | |
Farms * | 4 | 3 | 2 | 2 | 1 | 12 |
Birds | 5000 | 2100 | 1200 | 1800 | 800 | 10,900 |
Samples | 71 | 44 | 46 | 46 | 43 | 250 |
Antibiotic | Class | 0.03125 | 0.0625 | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | R (%) | MIC50 (mg/L) | MIC90 (mg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amikacin (AMK) # | Aminoglycoside | 3 | 2 | 5 | 6 | 23 | 29 (74.4) | 64 | 64 | |||||||||
Ampicillin (AMP) * | β-Lactam (Penicillin) | 22 | 3 | 14 | 39 (100) | 2 | 16 | |||||||||||
Cefoxitin (COX) * | β-Lactam (Cephalosporin) | 10 | 3 | 1 | 25 | 29 (74.4) | 16 | 16 | ||||||||||
Chloramphenicol (CMP) * | Miscellaneous | 2 | 2 | 35 | 37(94.9) | 64 | 64 | |||||||||||
Ciprofloxacin (CIP) # | Fluoroquinolone | 2 | 5 | 6 | 26 | 32(82) | 4 | 4 | ||||||||||
Daptomycin (DPT) * | Cyclic lipopeptide | 3 | 1 | 35 | 35 (89.7) | 4 | 4 | |||||||||||
Erythromycin (ERY) # | Macrolide | 1 | 2 | 36 | 38 (97.4) | 8 | 8 | |||||||||||
Gentamicin (GEN) # | Aminoglycoside | 6 | 2 | 5 | 3 | 23 | 31 (79.5) | 8 | 8 | |||||||||
Imipenem (IMP) * | β-Lactam (Carbapenem) | 8 | 8 | 7 | 4 | 3 | 4 | 2 | 3 | 5 (12.8) | 0.5 | 8 | ||||||
Levofloxacin (LEV) # | Fluoroquinolone | 5 | 2 | 2 | 30 | 32 (82) | 4 | 4 | ||||||||||
Linezolid (LIZ) # | Oxazolidinone | 5 | 3 | 4 | 27 | 31 (79.5) | 16 | 16 | ||||||||||
Moxifloxacin (MOX) * | Fluoroquinolone | 2 | 3 | 2 | 32 | 32 (82) | 2 | 2 | ||||||||||
Oxacillin (OXA) * | β-Lactam(Penicillin) | 3 | 6 | 3 | 3 | 4 | 20 | 36 (92.3) | 16 | 16 | ||||||||
Penicillin (PEN) * | β-Lactam (Penicillin) | 3 | 3 | 33 | 39 (100) | 8 | 8 | |||||||||||
Rifampicin (RAM) * | Ansamycin | 11 | 28 | 28 (71.8) | 4 | 4 | ||||||||||||
Teicoplanin (TPL) # | Glycopeptide | 6 | 20 | 6 | 7 | 13 (33.3) | 2 | 16 | ||||||||||
Tetracycline (TET) # | Tetracycline | 4 | 35 | 39 (100) | 16 | 16 | ||||||||||||
Tigecyclin (TGC) * | Glycylcycline | 3 | 1 | 1 | 34 | 34 (87.2) | 1 | 1 | ||||||||||
Trimethoprim/Sulfamethoxazole (T/S) * | Diaminopyrimidine/Sulfonamide | 39a* | 39 (100) | 4/76 | 4/76 | |||||||||||||
Vancomycin (VAN) # | Glycopeptide | 10 | 9 | 8 | 7 | 4 | 1 | 5 (12.8) | 2 | 8 |
Gene | Antimicrobial Agent | Primer | Primer Sequence (5′–3′) | Reference |
---|---|---|---|---|
mecA | Methicillin/Oxacillin | mecA-F | TCC AGA TTA CAA CTT CAC CAG G | [21] |
mecA-R | CCA CTT CAT ATC TTG TAA CG | |||
erm(A) | Erythromycin | ermA-F | TAT CTT ATC GTT GAG AAG GGA TT | |
ermA-R | CTA CAC TTG GCT TAG GAT GAA A | |||
erm(B) | ermB-F | CTA TCT GAT TGT TGA AGA AGG ATT | ||
ermB-R | GTT TAC TCT TGG TTT AGG ATG AAA | |||
erm(C) | ermC-F | CTT GTT GAT CAC GAT AAT TTC C | ||
ermC-R | ATC TTT TAG CAA ACC CGT ATT C | |||
blaZ | Penicillin | blaZ-F | ACT TCA ACA CCT GCT GCT TTC | |
blaZ-R | TGA CCA CTT TTA TCA GCA ACC | |||
aac-aphD | Gentamicin, amikacin | aac-aphD-F | TAA TCC AAG AGC AAT AAG GGC | |
aac-aphD-R | GCC ACA CTA TCA TAA CCA CTA | |||
vanA | Vancomycin | vanA.F | GCT GTG AGG TCG GTT GTG | [22] |
vanA.R | GCT CGA CTT CCT GAT GAA TAC G | |||
optrA | Linezolid, chloramphenicol | optrA-F | AGG TGG TCA GCG AAC TAA | [23] |
optrA-R | ATC AAC TGT TCC CAT TCA | |||
valS | Linezolid | valS-F | GTA ACG ATC ATC ATT TGG G | This study |
valS-R | CTT TAT TAG AGC TCA ATG GGC | |||
cfr | Oxazolidinones | Cfr-F | TGA AGT ATA AAG CAG GTT GGG AGT CA | [23] |
Cfr-R | ACC ATA TAA TTG ACC ACA AGC AGC |
Isolate 17CS | Age (d) | Governorate | Species | Resistance-Associated Genes | Linezolid Resistance (mg/L) |
---|---|---|---|---|---|
0271-1 | 365 | Dakahlia | S. lentus | erm(B), erm(C), valS | 8 |
0275-1 | 365 | S. sciuri | mecA, erm(C), optrA, valS | 8 | |
0275-2 | 365 | S. lentus | mecA, erm(C) | 1 | |
0281-1 | 365 | S. condimenti | erm(C) | 1 | |
0283-1 | 365 | S. sciuri | mecA, erm(B), erm(C), aac-aphD, valS, cfr | 8 | |
0286-2 | 365 | S. lentus | erm(B), erm(C), valS, cfr | 8 | |
0288-2 | 365 | S. condimenti | erm(C) | 2 | |
0294 | 6 | S. xylosus | erm(B), erm(C), optrA, valS | 8 | |
0298 | 6 | S. saprophyticus | erm(C), valS, cfr | 8 | |
0300 | 6 | S. saprophyticus | erm(C), optrA, valS, cfr | 8 | |
0303 | 6 | S. lentus | erm(A), erm(B), erm(C), aac-aphD, optrA, valS, cfr | 8 | |
0306 | 240 | Damietta | S. lentus | erm(C), optrA, valS | 8 |
0307-2 | 240 | S. xylosus | erm(C), valS | 8 | |
0310-2 | 240 | S. xylosus | erm(C), valS | 8 | |
0311 | 240 | S. lentus | mecA, erm(C), valS, cfr | 8 | |
0312-1 | 240 | S. xylosus | erm(C), valS | 8 | |
0314 | 240 | S. xylosus | erm(C), aac-aphD, valS | 8 | |
0314-1 | 240 | S. lentus | erm(B), erm(C), aac-aphD, optrA | 8 | |
0316 | 240 | S. lentus | erm(B), erm(C), optrA, valS, cfr | 8 | |
0317 | 240 | S. lentus | erm(B), erm(C), optrA, valS, cfr | 8 | |
0318-1 | 240 | S. lentus | erm(C), valS | 8 | |
0321-1 | 240 | S. xylosus | erm(C), aac-aphD, valS | 8 | |
0322-2 | 240 | S. sciuri | mecA, erm(C), aac-aphD, valS | 8 | |
0323-2 | 240 | S. xylosus | erm(B), erm(C), valS | 2 | |
0327 | 240 | S. arlettae | erm(A), erm(B), erm(C), valS, cfr | 8 | |
0330-1 | 240 | S. cohnii | - | 1 | |
0336 | 10 | S. saprophyticus | erm(B), erm(C), aac-aphD, optrA, valS | 8 | |
0338 | 10 | S. cohnii | erm(B), erm(C), aac-aphD | 1 | |
0339-2 | 10 | S. xylosus | erm(C), aac-aphD, optrA | 8 | |
0340 | 21 | Sharkiya | S. lentus | erm(C), valS, cfr | 8 |
0346 | 21 | S. saprophyticus | erm(B), erm(C), aac-aphD, optrA, valS, cfr | 8 | |
0347-2 | 21 | S. saprophyticus | mecA, erm(B), erm(C), aac-aphD | 1 | |
0349 | 21 | S. lentus | erm(C), aac-aphD, valS | 8 | |
0353-1 | 75 | S. lentus | erm(C), valS | 2 | |
0358 | 75 | S. lentus | erm(C), valS | 8 | |
0366 | 75 | S. lentus | erm(C), valS | 8 | |
0368 | 60 | Kafr El-Sheikh | S. simulans | mecA, erm(C), valS | 8 |
0370 | 60 | S. lentus | erm(B), erm(C), aac-aphD, valS | 8 | |
0397 | 123 | Gharbia | S. epidermidis | mecA, blaZ, erm(B), erm(C), optrA, valS | 8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moawad, A.A.; Hotzel, H.; Awad, O.; Roesler, U.; Hafez, H.M.; Tomaso, H.; Neubauer, H.; El-Adawy, H. Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms 2019, 7, 476. https://doi.org/10.3390/microorganisms7100476
Moawad AA, Hotzel H, Awad O, Roesler U, Hafez HM, Tomaso H, Neubauer H, El-Adawy H. Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms. 2019; 7(10):476. https://doi.org/10.3390/microorganisms7100476
Chicago/Turabian StyleMoawad, Amira A., Helmut Hotzel, Omnia Awad, Uwe Roesler, Hafez M. Hafez, Herbert Tomaso, Heinrich Neubauer, and Hosny El-Adawy. 2019. "Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance" Microorganisms 7, no. 10: 476. https://doi.org/10.3390/microorganisms7100476
APA StyleMoawad, A. A., Hotzel, H., Awad, O., Roesler, U., Hafez, H. M., Tomaso, H., Neubauer, H., & El-Adawy, H. (2019). Evolution of Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated from Healthy Turkeys in Egypt: First Report of Linezolid Resistance. Microorganisms, 7(10), 476. https://doi.org/10.3390/microorganisms7100476