Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea
Abstract
:1. Introduction
2. Methods
2.1. Experimental Design and Simple Process
2.2. Sequencing
2.2.1. DNA Extraction
2.2.2. Amplicon Generation
2.2.3. PCR Product Mixing and Purification
2.2.4. Library Preparation and Sequencing
2.3. Data Analysis
2.3.1. Single-End Read Quality Control
2.3.2. OTU Cluster and Species Annotation
2.3.3. Alpha Diversity
2.3.4. Beta Diversity
2.3.5. Environmental Factor Correlation Analysis
3. Results
3.1. Study of Bacterial Community Structure of Straw Mushroom in Response to Temperature and Preservation Time
3.2. Low Temperature (15°C) Reduces Bacterial Diversity
3.3. Environmental Factor Analysis
3.3.1. Spearman Correlation Analysis
3.3.2. Variance Partitioning Canonical Correspondence Analysis
4. Discussion
4.1. Preservation Time and Temperature Significantly Affected the Decay-Causing Bacteria
4.2. High Temperature Promotes the Reproduction of Microorganisms
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chang, S.T. Volvariella volvacea; Hong Kong East Asian Book Company: Hong Kong, China, 1975. [Google Scholar]
- Wu, G.; Xie, B.; Jiang, Y.; Xiao, K.; Wang, D.; Peng, C.; Su, Y. Effect of different packaging regimes on the quality of Volvariella volvacea fruit bodies. Acta Edulis Fungi 2014, 21, 60–65. [Google Scholar]
- Wu, G.; Jiang, Y. Preliminary screening of the preservation technique for Volvaria volvaria fruit bodies. J. Qingyuan Polytech. 2017, 10, 56–60. [Google Scholar]
- Jiang, Y.; Wu, G.; Xiao, K.; Xie, B.; Liu, X.; Deng, Y. One kind of straw mushroom preservation method. CN104012642A, 24 February 2016. [Google Scholar]
- Yu, K.; Fang, D.; Chen, M.; Hu, Q.; Zhao, L. Effect of perforation mediated nano-packaging on postharvest quality of Volvariella volvacea during storage. Food Sci. 2016, 37, 292–298. [Google Scholar]
- Gopalakrishnan, M.; Pruthi, J.S. Nutritional quality of tropical paddy straw mushroom (Volvariella volvacea). Indian Food Pack. 1977, 31, 14–17. [Google Scholar]
- Kaur, M. Antioxidant property of tropical mushrooms: Volvariella volvacea (Paddy Straw Mushroom) and Calocybe indica (Milky Mushroom). Ph.D. Thesis, Punjab Agricultural University, Ludhiana, India, 2016. [Google Scholar]
- Zhao, X.; Song, X.; Li, Y.; Yu, C.; Zhao, Y.; Gong, M.; Shen, X.; Chen, M. Gene expression related to trehalose metabolism and its effect on Volvariella volvacea under low temperature stress. Sci. Rep. 2018, 8, 11011. [Google Scholar] [CrossRef]
- Hou, L.; Li, Y.; Chen, M.; Li, Z. Improved fruiting of the straw mushroom (Volvariella volvacea) on cotton waste supplemented with sodium acetate. Appl. Microbiol. Biotechnol. 2017, 101, 8533–8541. [Google Scholar] [CrossRef]
- Zhao, F.; Lin, J.; Zeng, X.; Guo, L.; Wang, Y.; You, L. Improvement in fruiting body yield by introduction of the Ampullaria crossean multi-functional cellulase gene into Volvariella volvacea. Bioresour. Technol. 2010, 101, 6482–6486. [Google Scholar] [CrossRef]
- Ahlawat, O.P.; Gupta, P.; Dhar, B.L.; Sagar, T.G.; Rajendranath, R.; Rathnam, K. Profile of the extracellular lignocellulolytic enzymes activities as a tool to select the promising strains of Volvariella volvacea (Bull. ex Fr.) sing. Indian J. Microbiol. 2008, 48, 389–396. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Z.; Wu, X.; He, J.; Jiang, W.; Wang, J.; Tang, X. Application of inactivated parental strain protoplasts fusion technology in selection of Volvariella volvacea with higher antifreeze capacity. J. Agric. Sci. Technol. 2013, 15, 166–172. [Google Scholar]
- Chang, S.T.; Hayes, W.A. The Biology and Cultivation of Edible Mushrooms; Academic press: New York, NY, USA, 1978; p. 842. [Google Scholar]
- Duan, Y.; Geng, S.; Han, Y.; Liu, G.; Gu, Z.; Wang, L.; Rui, K. Screen of fresh keeping agents and their application in mushroom storage. Food Ferment. Ind. 2004, 30, 143–146. [Google Scholar]
- Chen, B.; Zhong, Y.; Chen, X.; Wu, G.; Lin, S.; Xie, B.; Jiang, Y. Study on the effect of ethephon and 1-MCP on postharvest preservation process of Volvariella volvacea. Edible Med. Mushrooms 2018, 26, 40–43. [Google Scholar]
- Kumariya, R.; Garsa, A.K.; Rajput, Y.S.; Sood, S.K.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef]
- Mizobuchi, R.; Fukuoka, S.; Tsuiki, C.; Tsushima, S.; Sato, H. Evaluation of major Japanese rice cultivars for resistance to bacterial grain rot caused by Burkholderia glumae and identification of standard cultivars for resistance. Breed. Sci. 2018, 68, 413–419. [Google Scholar] [CrossRef]
- Hall, M.E.; Loeb, G.M.; Cadle-Davidson, L.; Evans, K.J.; Wilcox, W.F. Grape sour rot: A four-way interaction involving the host, yeast, acetic acid bacteria, and insects. Phytopathology 2018, 108, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.R.; Boddy, L.; Weightman, A.J. Bacteria in decomposing wood and their interactions with wood-decay fungi. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Yin, X.; Wang, Q.; Peng, Y.; Ma, Y.; Liu, P.; Shi, J. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit. J. Sci. Food Agric. 2018, 98, 5756–5763. [Google Scholar] [CrossRef]
- Liu, Z.; Peng, Z.; Huang, T.; Guan, Q.; Li, J.; Xie, M. Bacterial community dynamics and physical-chemical characteristics in natural fermentation of jiang-shui, a traditional food made in Northwest China. J. Sci. Food Agric. 2019, 99, 3391–3397. [Google Scholar] [CrossRef]
- Gu, G.; Ottesen, A.; Bolten, S.; Ramachandran, P.; Reed, E.; Rideout, S.; Luo, Y.; Patel, J.; Brown, E.; Nou, X. Shifts in spinach microbial communities after chlorine washing and storage at compliant and abusive temperatures. Food Microbiol. 2018, 73, 73–84. [Google Scholar] [CrossRef]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J. 2011, 17, 10–12. [Google Scholar] [CrossRef]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, 590–596. [Google Scholar] [CrossRef]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, B.J.; Gevers, D.; Earl, A.M.; Feldgarden, M.; Ward, D.V.; Giannoukos, G.; Ciulla, D.; Tabbaa, D.; Highlander, S.K.; Sodergren, E.; et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 2011, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Azevedo, S.; Cunha, L.M.; Fonseca, S.C. Modelling the influence of time and temperature on the respiration rate of fresh oyster mushrooms. Food Sci. Technol. Int. 2014, 21, 593–603. [Google Scholar] [CrossRef]
- Xue, H.; Bi, Y.; Sun, Y.; Hussain, R.; Wang, H.; Zhang, S.; Zhang, R.; Long, H.; Nan, M.; Cheng, X.; et al. Acetylsalicylic acid treatment reduce Fusarium rot development and neosolaniol accumulation in muskmelon fruit. Food Chem. 2019, 289, 278–284. [Google Scholar] [CrossRef]
- Haack, S.E.; Ivors, K.L.; Holmes, G.J.; Forster, H.; Adaskaveg, J.E. Natamycin, a new biofungicide for managing crown rot of strawberry caused by QoI-Resistant Colletotrichum acutatum. Plant Dis. 2018, 102, 1687–1695. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lan, W.; Qin, W. Fabrication of polylactic acid/carbon nanotubes/chitosan composite fibers by electrospinning for strawberry preservation. Int. J. Biol. Macromol. 2019, 121, 1329–1336. [Google Scholar] [CrossRef]
- Yan, R.; Li, N.; Zhu, Z.; Guan, W. Effect of different packing bags on storage quality of Agaricus bisporus. Edible Fungi China 2010, 29, 46–48. [Google Scholar]
- Dasgupta, S.M.; Khan, N.; Nautiyal, C.S. Biologic control ability of plant growth-promoting Paenibacillus lentimorbus NRRL B-30488 isolated from milk. Curr. Microbiol. 2006, 53, 502–505. [Google Scholar] [CrossRef]
- Hong, T.Y.; Meng, M. Biochemical characterization and antifungal activity of an endo-1,3-β-glucanase of Paenibacillus sp. isolated from garden soil. Appl. Microbiol. Biotechnol. 2003, 61, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Soo, L.C.; Yong-Taek, J.; Sooyeon, P.; Tae-Kwang, O.; Jung-Hoon, Y. Lysinibacillus xylanilyticus sp. nov., a xylan-degrading bacterium isolated from forest humus. Int. J. Syst. Evol. Microbiol. 2010, 60, 281–286. [Google Scholar]
- Morohoshi, T.; Tominaga, Y.; Someya, N.; Ikeda, T. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J. Biosci. Bioeng. 2012, 113, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Bergeau, D.; Mazurier, S.; Barbey, C.; Merieau, A.; Chane, A.; Goux, D.; Bernard, S.; Driouich, A.; Lemanceau, P.; Vicre, M.; et al. Unusual extracellular appendages deployed by the model strain Pseudomonas fluorescens C7R12. PLoS ONE 2019, 14, e0221025. [Google Scholar] [CrossRef]
- Brooke, J.S. Stenotrophomonas maltophilia: An emerging global opportunistic pathogen. Clin. Microbiol. Rev. 2012, 25, 2–41. [Google Scholar] [CrossRef]
- Elufisan, T.O.; Lozano, L.; Bustos, P.; Rodriguez-Luna, I.C.; Sanchez-Varela, A.; Oyedara, O.O.; Villalobos-Lopez, M.A.; Guo, X. Complete genome sequence of Stenotrophomonas maltophilia strain SVIA2, isolated from crude oil-contaminated soil in Tabasco, Mexico. Microbiol. Resour. Announc. 2019, 8, e00529-19. [Google Scholar] [CrossRef]
- Nedwell, D.B. Effect of low temperature on microbial growth: Lowered affinity for substrates limits growth at low temperature. FEMS Microbiol. Ecol. 1999, 30, 101–111. [Google Scholar] [CrossRef]
- Roberta, S.; Paola, C.; Paola, C.; Elena, B.; Vilberto, S. Effect of storage on biochemical and microbiological parameters of edible truffle species. Food Chem. 2008, 109, 8–16. [Google Scholar]
- Kumar, A.P.; Kumar, C.D.; Anil, P.; Johri, B.N. Bacterial diversity in a bagasse-based compost prepared for the cultivation of edible mushrooms Agaricus bisporus. Int. J. Agric. Technol. 2011, 7, 1303–1311. [Google Scholar]
- Ntougias, S.; Zervakis, G.I.; Kavroulakis, N.; Ehaliotis, C.; Ehaliotis, C.; Papadopoulou, K.K. Bacterial diversity in spent mushroom compost assessed by amplified rDNA restriction analysis and sequencing of cultivated Isolates. Syst. Appl. Microbiol. 2004, 27, 746–754. [Google Scholar] [CrossRef]
- Silva, C.F.; Azevedo, R.S.; Braga, C.; Da, S.R.; Dias, E.S.; Schwan, R.F. Microbial diversity in a bagasse-based compost prepared for the production of Agaricus brasiliensis. Br. J. Microbiol. 2009, 40, 590–600. [Google Scholar] [CrossRef]
Group | Observed Species | Shannon | Simpson | Chao1 | ACE | Good’s Coverage | PD Whole Tree |
---|---|---|---|---|---|---|---|
D0 | 611 | 5.424 | 0.94 | 711.262 | 714.618 | 0.997 | 46.46 |
AD1 | 461 | 5.189 | 0.929 | 547.522 | 544.016 | 0.998 | 30.138 |
AD2 | 420 | 5.629 | 0.955 | 498.262 | 486.018 | 0.998 | 25.157 |
AD3 | 484 | 5.773 | 0.954 | 551.587 | 546.374 | 0.998 | 28.6 |
AD4 | 409 | 5.361 | 0.936 | 474.942 | 463.02 | 0.998 | 23.895 |
AD5 | 365 | 4.925 | 0.916 | 422.119 | 420.295 | 0.998 | 20.822 |
BD2 | 654 | 5.035 | 0.876 | 805.452 | 805.074 | 0.996 | 50.533 |
BD4 | 471 | 4.226 | 0.822 | 570.405 | 596.579 | 0.998 | 36.328 |
BD6 | 431 | 4.423 | 0.824 | 522.711 | 519.201 | 0.998 | 32.856 |
BD8 | 309 | 4.141 | 0.856 | 470.589 | 410.364 | 0.998 | 20.49 |
BD10 | 261 | 3.713 | 0.788 | 339.822 | 342.007 | 0.998 | 15.637 |
BD12 | 244 | 3.94 | 0.855 | 322.445 | 318.029 | 0.999 | 16.338 |
Group | Observed Species | Shannon | Simpson | Chao1 | ACE | Good’s Coverage | PD Whole Tree |
---|---|---|---|---|---|---|---|
AD | 428 | 5.375 | 0.938 | 498.886 | 491.945 | 0.998 | 25.722 |
BD | 395 | 4.246 | 0.837 | 505.238 | 498.542 | 0.998 | 28.697 |
D0 | 611 | 5.424 | 0.94 | 711.262 | 714.618 | 0.997 | 46.46 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, S.; Chen, M.; Yu, C.; Zhao, Y.; Yang, H.; Zha, L.; Li, Z. Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea. Microorganisms 2019, 7, 475. https://doi.org/10.3390/microorganisms7100475
Wang X, Liu S, Chen M, Yu C, Zhao Y, Yang H, Zha L, Li Z. Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea. Microorganisms. 2019; 7(10):475. https://doi.org/10.3390/microorganisms7100475
Chicago/Turabian StyleWang, Xiuling, Shunjie Liu, Mingjie Chen, Changxia Yu, Yan Zhao, Huanling Yang, Lei Zha, and Zhengpeng Li. 2019. "Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea" Microorganisms 7, no. 10: 475. https://doi.org/10.3390/microorganisms7100475
APA StyleWang, X., Liu, S., Chen, M., Yu, C., Zhao, Y., Yang, H., Zha, L., & Li, Z. (2019). Low Temperature (15 °C) Reduces Bacterial Diversity and Prolongs the Preservation Time of Volvariella volvacea. Microorganisms, 7(10), 475. https://doi.org/10.3390/microorganisms7100475