Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of the Strain
2.2. Extraction of Antifungal Proteins
2.3. Antifungal Assay of the Proteins
2.4. Toxicity Test of the Proteins
2.5. Purification and Identification of Activity Proteins
2.6. Effects of Heat, pH, Ultraviolet, Chloroform, and Enzymes on Antifungal Activity
2.7. Cloning of Genes of Antifungal Proteins
3. Results
3.1. Activity Assay of Proteins
3.2. Purification and Identification of Activity Proteins
3.3. Effects of Heat, pH, Ultraviolet, Chloroform, and Enzymes
3.4. Detection of Genes of Antifungal Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Kim, H.G.; Cho, J.H.; Yoo, S.R.; Lee, J.S.; Han, J.M.; Lee, N.H.; Ahn, Y.C.; Son, C.G. Antifatigue effects of Panax ginseng C.A. Meyer: A randomised, double-blind, placebo-controlled trial. PLoS ONE 2013, 8, e61271. [Google Scholar] [CrossRef] [PubMed]
- Unlu, A.; Nayir, E.; Kirca, O.; Ay, H.; Ozdogan, M. Ginseng and cancer. J. Buon. 2016, 21, 1383–1387. [Google Scholar] [PubMed]
- Yi, Y.S. Roles of ginsenosides in inflammasome activation. J. Ginseng. Res. 2019, 43, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K. American Ginseng: Research Developments, Opportunities, and Challenges. J. Ginseng. Res. 2011, 35, 368–374. [Google Scholar] [CrossRef]
- Farh, M.E.; Kim, Y.J.; Kim, Y.J.; Yang, D.C. Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms. J. Ginseng. Res. 2018, 42, 9–15. [Google Scholar] [CrossRef]
- Chen, J.L.; Sun, S.Z.; Miao, C.P.; Wu, K.; Chen, Y.W.; Xu, L.H.; Guan, H.L.; Zhao, L.X. Endophytic Trichoderma gamsii YIM PH30019: A promising biocontrol agent with hyperosmolar, mycoparasitism, and antagonistic activities of induced volatile organic compounds on root-rot pathogenic fungi of Panax notoginseng. J. Ginseng. Res. 2016, 40, 315–324. [Google Scholar] [CrossRef]
- Tian, L.; Shi, S.; Ji, L.; Nasir, F.; Ma, L.; Tian, C. Effect of the biocontrol bacterium Bacillus amyloliquefaciens on the rhizosphere in ginseng plantings. Int. Microbiol. 2018, 21, 153–162. [Google Scholar] [CrossRef]
- Stevenson, I.L. Antibiotic activity of actinomycetes in soil and their controlling effects on root-rot of wheat. J. Gen. Microbiol. 1956, 14, 440–448. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, P.; Chen, C.-q.; Tian, L.; Li, T.; Zhang, G.-j.; Yin, W.; Chen, G. Characterization and inhibition effects of antagonistic protein from bacillus methylotrophicus on cylindrocarpon destructans. Agrochemicals 2013, 52, 835–838. [Google Scholar]
- Jiang, Y.; Yin, W.; Chen, C.; Tian, L.; Xu, P. ldentification and optimized fermentation condition of an Endophyte Antagonistic Bacteria NJ13. Agrochemicals 2013, 52, 97–101. [Google Scholar]
- Bauer, A.W.; Kirby, W.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Tech. Bull. Regist. Med. Technol. 1966, 36, 49–52. [Google Scholar] [CrossRef]
- Chen, C.; Yan, D.; Jiang, Y.; Xu, P.; Chu, Y.; Gao, J. Inhibition effect of biocontrol bacteria NJ13 and its mixture with chemical fungicides against ginseng root rot caused by Fusarium solani. China J. Chin. Mater. Med. 2019, 44, 2015–2019. [Google Scholar]
- Rabbani, G.; Ahmad, E.; Zaidi, N.; Fatima, S.; Khan, R.H. pH-Induced Molten globule state of rhizopus niveus lipase is more resistant against thermal and chemical denaturation than its native state. Cell Biochem. Biophys. 2012, 62, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Rabbani, G.; Ahmad, E.; Khan, M.V.; Ashraf, M.T.; Bhat, R.; Khan, R.H. Impact of structural stability of cold adapted Candida antarctica lipase B (CaLB): In relation to pH, chemical and thermal denaturation. Rsc. Adv. 2015, 5, 20115–20131. [Google Scholar] [CrossRef]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, E.C.; Leal, V.N.C.; Soares, J.; Fernandes, F.P.; Lima, D.S.d.; Alencar, B.C.d.; Pontillo, A. Flagellin/NLRC4 pathway rescues NLRP3-inflammasome defect in dendritic cells from HIV-infected patients: Perspective for new adjuvant in immunocompromised individuals. Front. Immunol. 2019, 10, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Wangkahart, E.; Secombes, C.J.; Wang, T. Studies on the use of flagellin as an immunostimulant and vaccine adjuvant in fish aquaculture. Front. Immunol. 2018, 9, 1–23. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Macho, A.P.; Han, Z.; Hu, Z.; Zipfel, C.; Zhou, J.M.; Chai, J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 2013, 342, 624–628. [Google Scholar] [CrossRef]
- Lucie, T.; Olivier, F.; Freddy, B.; Marie-Claire, H.; Jani, K.; Xavier, D.; Marielle, A.; Christophe, C.; Cyril, Z.; Stéphan, D. The grapevine flagellin receptor VvFLS2 differentially recognizes flagellin-derived epitopes from the endophytic growth-promoting bacterium Burkholderia phytofirmans and plant pathogenic bacteria. New Phytol. 2014, 201, 1371–1384. [Google Scholar] [CrossRef]
- Tsuneaki, A.; Guillaume, T.; Joulia, P.; Willmann, M.R.; Wan-Ling, C.; Lourdes, G.G.; Thomas, B.; Ausubel, F.M.; Jen, S. MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 2002, 415, 977–983. [Google Scholar] [CrossRef]
- Hind, S.R.; Strickler, S.R.; Boyle, P.C.; Dunham, D.M.; Bao, Z.; O’Doherty, I.M.; Baccile, J.A.; Hoki, J.S.; Viox, E.G.; Clarke, C.R. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants 2016, 2, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Hajam, I.A.; Dar, P.A.; Shahnawaz, I.; Jaume, J.C.; Lee, J.H. Bacterial flagellin-a potent immunomodulatory agent. Exp. Mol. Med. 2017, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Castilleux, R.; Plancot, B.; Gugi, B.; Attard, A.; Loutelier-Bourhis, C.; Lefranc, B.; Nguema-Ona, E.; Arkoun, M.; Yvin, J.C.; Driouich, A.; et al. Extensin arabinosylation is involved in root response to elicitors and limits oomycete colonization. Ann. Bot. 2019, in press. [Google Scholar] [CrossRef]
- Ren, J.J.; Shi, G.L.; Wang, X.Q.; Liu, J.G.; Wang, Y.N. Identification and characterization of a novel Bacillus subtilis strain with potent antifungal activity of a flagellin-like protein. World J. Microbiol. Biotechnol. 2013, 29, 2343–2352. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, Z.J.; Han, Y.; Wang, Z.Z.; Fan, J.; Xiao, H.Z. Isolation and identification of antifungal peptides from Bacillus BH072, a novel bacterium isolated from honey. Microbiol. Res. 2013, 168, 598–606. [Google Scholar] [CrossRef] [PubMed]
Accession Number | Protein Family | Strain | Similarity |
---|---|---|---|
WP 061520525.1 | FlgG | B. nakamurai | 91% |
KIU12641.1 | FlgG | B. subtilis | 72% |
WP 053602811.1 | FlgG | B. gobiensis | 60% |
RFU68865.1 | FlgG | B. sp. V59.32b | 55% |
WP 053584334.1 | FlgG | Lysinibacillus contaminans | 49% |
Accession Number | Protein Family | Strain and Number |
---|---|---|
Antifungal flagellin | ||
WP 014665528.1 | Flagellin | B. subtilis RN-61 |
WP 015714795.1 | Flagellin | B. subtilis BSn5 |
WP 022553864.1 | Flagellin A | B. subtilis N3 |
BAB58972.1 | Flagellin | B. subtilis BH072 |
ABN13608.1 | Flagellin | B. subtilis F3 |
WP 007408329.1 | TasA | B. amyloliquefaciens FZB42 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Ran, C.; Chen, L.; Yin, W.; Liu, Y.; Chen, C.; Gao, J. Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta. Microorganisms 2019, 7, 605. https://doi.org/10.3390/microorganisms7120605
Jiang Y, Ran C, Chen L, Yin W, Liu Y, Chen C, Gao J. Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta. Microorganisms. 2019; 7(12):605. https://doi.org/10.3390/microorganisms7120605
Chicago/Turabian StyleJiang, Yun, Chao Ran, Lin Chen, Wang Yin, Yang Liu, Changqing Chen, and Jie Gao. 2019. "Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta" Microorganisms 7, no. 12: 605. https://doi.org/10.3390/microorganisms7120605
APA StyleJiang, Y., Ran, C., Chen, L., Yin, W., Liu, Y., Chen, C., & Gao, J. (2019). Purification and Characterization of a Novel Antifungal Flagellin Protein from Endophyte Bacillus methylotrophicus NJ13 against Ilyonectria robusta. Microorganisms, 7(12), 605. https://doi.org/10.3390/microorganisms7120605