Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolate
2.2. Antimicrobial Susceptibility Testing
2.3. Whole-Genome Sequencing (WGS)
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gonçalves Pessoa, R.B.; de Oliveira, W.F.; Marques, D.S.C.; dos Santos Correia, M.T.; de Carvalho, E.V.M.M.; Coelho, L.C.B.B. The genus Aeromonas: A general approach. Microb. Pathog. 2019, 130, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.M.; Abbott, S.L. Evolving concepts regarding the genus Aeromonas: An expanding panorama of species, disease presentations, and unanswered questions. Clin. Infect. Dis. 1998, 27, 332–344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monfort, P.; Baleux, B. Distribution and survival of motile Aeromonas spp. in brackish water receiving sewage treatment effluent. Appl. Environ. Microb. 1991, 57, 2459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Micro. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Bravo, A.; Figueras, M.J. An update on the genus: Taxonomy, epidemiology and pathogenicity. Microorganisms 2020, 8, 129. [Google Scholar] [CrossRef] [Green Version]
- Neyts, K.; Huys, G.; Uyttendaele, M.; Swings, J.; Debevere, J. Incidence and identification of mesophilic Aeromonas spp. from retail foods. Lett. Appl. Microbiol. 2000, 31, 359–363. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, S.A.; Bencivengo, M.M.; Del Corral, F.; Williams, A.C.; Buchanan, R.L. Characterization of the Aeromonas hydrophila group isolated from retail foods of animal origin. J. Clin. Microb. 1989, 27, 854. [Google Scholar] [CrossRef] [Green Version]
- Igbinosa, I.H.; Igumbor, E.U.; Aghdasi, F.; Tom, M.; Okoh, A.I. Emerging Aeromonas species infections and their significance in public health. Scientif. World J. 2012, 2012, 625023. [Google Scholar] [CrossRef] [Green Version]
- Grim, C.J.; Kozlova, E.V.; Sha, J.; Fitts, E.C.; van Lier, C.J.; Kirtley, M.L.; Joseph, S.J.; Read, T.D.; Burd, E.M.; Tall, B.D.; et al. Characterization of Aeromonas hydrophila wound pathotypes by comparative genomic and functional analyses of virulence genes. mBio 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.; Khan, S.A.; Khan, A.A.; Sung, K.; Tran, Q.; Kerdahi, K.; Steele, R. Detection and characterization of virulence genes and integrons in Aeromonas veronii isolated from catfish. Food Microbiol. 2010, 27, 327–331. [Google Scholar] [CrossRef]
- Parker, J.L.; Shaw, J.G. Aeromonas spp. clinical microbiology and disease. J. Infect. 2011, 62, 109–118. [Google Scholar] [CrossRef] [PubMed]
- Grim, C.J.; Kozlova, E.V.; Ponnusamy, D.; Fitts, E.C.; Sha, J.; Kirtley, M.L.; van Lier, C.J.; Tiner, B.L.; Erova, T.E.; Joseph, S.J.; et al. Functional Genomic Characterization of Virulence Factors from Necrotizing Fasciitis-Causing Strains of Aeromonas hydrophila. Appl. Environ. Microbiol. 2014, 80, 4162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chopra, A.K.; Houston, C.W. Enterotoxins in Aeromonas-associated gastroenteritis. Microbes Infect. 1999, 1, 1129–1137. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020. In Brief, Sustainability in Action; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Chuah, L.-O.; Effarizah, M.E.; Goni, A.M.; Rusul, G. Antibiotic application and emergence of multiple antibiotic resistance (MAR) in global catfish aquaculture. Curr. Environ. Health Rep. 2016, 3, 118–127. [Google Scholar] [CrossRef]
- Midtlyng, P.J.; Grave, K.; Horsberg, T.E. What has been done to minimize the use of antibacterial and antiparasitic drugs in Norwegian aquaculture? Aquacult. Res. 2011, 42, 28–34. [Google Scholar] [CrossRef]
- MacKenzie, J.S.; Jeggo, M. The One Health approach—Why is it so important? Trop. Med. Infect. Dis. 2019, 4, 88. [Google Scholar] [CrossRef] [Green Version]
- McEwen, S.A.; Collignon, P.J. Antimicrobial resistance: A One Health perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fourth Informational Supplement M100-S24; Wayne, P.A., Ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2014. [Google Scholar]
- CDC. Enteric pathogens human isolates final report. In National Antimicrobial Resistance Monitoring System; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2010. [Google Scholar]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M07-A9; Wayne, P.A., Ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- Davis, J.J.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; Gabbard, J.L.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020. [Google Scholar] [CrossRef]
- Joensen, K.G.; Scheutz, F.; Lund, O.; Hasman, H.; Kaas, R.S.; Nielsen, E.M.; Aarestrup, F.M. Real-time whole-genome sequencing for routine typing, surveillance, and outbreak detection of verotoxigenic Escherichia coli. J. Clin. Microbiol. 2014, 52, 1501–1510. [Google Scholar] [CrossRef] [Green Version]
- Boratyn, G.M.; Thierry-Mieg, J.; Thierry-Mieg, D.; Busby, B.; Madden, T.L. Magic-BLAST, an accurate RNA-seq aligner for long and short reads. BMC Bioinform. 2019, 20, 405. [Google Scholar] [CrossRef] [PubMed]
- Poole, T.L.; Callaway, T.R.; Bischoff, K.M.; Warnes, C.E.; Nisbet, D.J. Macrolide inactivation gene cluster mphA-mrx-mphR adjacent to a class 1 integron in Aeromonas hydrophila isolated from a diarrhoeic pig in Oklahoma. J. Antimicrob. Chemother. 2006, 57, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Piotrowska, M.; Popowska, M. Insight into the mobilome of Aeromonas strains. Front. Microbiol. 2015, 6, 494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-Resistant Enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef] [Green Version]
- Liebert, C.A.; Hall, R.M.; Summers, A.O. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 1999, 63, 507–522. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31. [Google Scholar] [CrossRef] [Green Version]
- Bello-López, J.M.; Cabrero-Martínez, O.A.; Ibáñez-Cervantes, G.; Hernández-Cortez, C.; Pelcastre-Rodríguez, L.I.; Gonzalez-Avila, L.U. Castro-Escarpulli, ansfer and Its association with antibiotic resistance in the genus Aeromonas spp. Microorganisms 2019, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Sunde, M.; Sorum, H. Self-transmissible multidrug resistance plasmids in Escherichia coli of the normal intestinal flora of healthy swine. Micro. Drug Resist. 2001, 7, 191–196. [Google Scholar] [CrossRef]
- Poole, T.L.; Brichta-Harhay, D.M.; Callaway, T.R.; Beier, R.C.; Bischoff, K.M.; Loneragan, G.H.; Anderson, R.C.; Nisbet, D.J. Persistence of resistance plasmids carried by Beta-hemolytic Escherichia coli when maintained in a continuous-flow fermentation system without antimicrobial selection pressure. Foodborne Pathog. Dis. 2011, 8, 535–540. [Google Scholar] [CrossRef] [Green Version]
- Marti, E.; Balcázar, J.L. Multidrug resistance-encoding plasmid from Aeromonas sp. strain P2G1. Clin. Microbiol. Infect. 2012, 18, E366–E368. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, N.; Emura, A.; Matsuyama, H.; O’Hara, L.; Sasatsu, M.; Kono, M. Nucleotide sequence and characterization of erythromycin resistance determinant that encodes macrolike 2′-phosphotransferase I in Escherichia coli. Antimicrob. Agents Chemother. 1995, 39, 2359–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, F.; Zhang, W.; Schwarz, S.; Zhu, Y.; Li, R.; Hua, X.; Liu, S. Genetic characterization of an MDR/virulence genomic element carrying two T6SS gene clusters in a clinical Klebsiella pneumoniae isolate of swine origin. J. Antimicrob. Chemother. 2019, 74, 1539–1544. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.P.; Wang, Y.W.; Huang, I.H.; Liao, Y.C.; Kuo, H.C.; Liu, Y.Y.; Tu, Y.H.; Chen, B.H.; Liao, Y.S.; Chiou, C.S. Genetic relationships among multidrug-resistant Salmonella enterica Serovar Typhimurium strains from humans and animals. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Wibberg, D.; Szczepanowski, R.; Eikmeyer, F.; Pühler, A.; Schlüter, A. The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant’s on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates. Plasmid 2013, 69, 127–137. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Lopez, R.; Machon, C.; Longshaw, C.M.; Martin, S.; Molin, S.; Zechner, E.L.; Espinosa, M.; Lanka, E.; de la Cruz, F. Unsaturated fatty acids are inhibitors of bacterial conjugation. Microbiology 2005, 151, 3517–3526. [Google Scholar] [CrossRef] [Green Version]
- Shaw, W.V. Chloramphenicol acetyltransferase: Enzymology and molecular biology. CRC Crit. Rev. Biochem. 1983, 14, 1–46. [Google Scholar] [CrossRef]
- Bischoff, K.M.; White, D.G.; McDermott, P.F.; Zhao, S.; Gaines, S.; Maurer, J.J.; Nisbet, D.J. Characterization of chloramphenicol resistance in beta-hemolytic Escherichia coli associated with diarrhea in neonatal swine. J. Clin. Microbiol. 2002, 40, 389–394. [Google Scholar] [CrossRef] [Green Version]
Gene | Genbank Number | Base Pairs | % Alignment |
---|---|---|---|
Aerolysin (aer) | HQ425626.1 | 1482 complete gene | 0 |
Flagellin (fla) | JN215209.1 | 459 partial gene | 0 |
JN215210.1 | 429 partial gene | 0 | |
Lipase (lip) | AB237183.1 | 2418 complete gene | 94.086 |
Hemolysin (hlyA) | U81555.1 | 2265 complete gene | 95.85 |
Cytonic enterotoxin (alt) | L77573.1 | 1371 | 0 |
Lateral flagella (lafK) | DQ650654.1 | 1377 complete gene | 0 |
Cytonic enterotoxin (ast) | AF419157.1 | 4623 complete gene | 96.19 |
Phospholipid-cholesterolacyltransferase (GCAT) | GQ856318.1 | 1155 complete gene | 98.614 |
ahpB (elastase) | AF193422 | 1929 complete gene | 0 |
ResFinder Database | ResFinder Gene Reference | % Identity | Protein ID | Protein Definition |
---|---|---|---|---|
aminoglycoside | aadA1_3_JQ414041 | 100.0 | AFI58053.1 | aminoglycoside 3′-adenyltransferase (Pseudomonas aeruginosa) |
aph(3′)-Ia_1_V00359 | 100.0 | CAA23656.1 | MULTISPECIES: aminoglycoside O-phosphotransferase APH (3′)-Ia (Bacteria) | |
aadA2_1_NC_010870 | 99.9 | WP_001206356.1 | MULTISPECIES: ANT (3′′)-Ia family aminoglycoside nucleotidyltransferase AadA2 (Bacteria) | |
ant(3′′)-Ia_1_X02340 | 99.8 | CAA26199.1 | put. AAD (3)(9) precursor (plasmid) (Escherichia coli) | |
aac(3)-IV_1_DQ241380 | 97.2 | ABB43029.1 | aminoglycoside acetyltransferase (Escherichia coli) | |
beta-lactam | ampH_2_HQ586946 | 98.2 | AEF33353.1 | adenylate kinase beta-lactamase (Aeromonas hydrophila) |
cphA1_7_X57102 a | 95.3 | CAA40386.1 | beta-lactamase (Aeromonas hydrophila) | |
cphA2_6_AHU60294 a | 95.3 | AHU60294.1 | citrate lyase subunit beta (Salmonella enterica subsp. Enteric serovar Enteritidis str. EC20121812) | |
macrolide | mph(A)_2_U36578 | 99.7 | AAB03644.1 | macrolide phosphotransferase K (Escherichia coli) |
phenicol | catB3_2_U13880 | 100.0 | AAA90938.1 | chloramphenicol acetyltransferase (plasmid) ((Enterobacter) aerogenes) |
sulfonamide | sul1_5_EU780013 | 99.9 | ACF06160.1 | dihydropteroate synthase (plasmid) (Klebsiella pneumoniae) |
tetracycline | tet(E)_3_CP000645 | 100.0 | ABO92308.1 | tetracycline resistance protein TetA(E) (plasmid) (Aeromonas salmonicida subsp. salmonicida A449) |
trimethoprim | dfrA12_8_AM040708 | 100.0 | CAJ13564.1 | dihydrofolate reductase (Escherichia coli) |
Unicycler Assembly | MetaSpades Assembly | |||
---|---|---|---|---|
MobileElementFinder Reference | Number of Alignments * | Maximum Alignment | Number of Alignments | Maximum Alignment |
MGIVchHai6|1|AXDR01000001 | 1 | 100.00 | 1 | 100.00 |
PGI1-PmPEL|1|KF856624 | 1 | 100.00 | 1 | 100.00 |
SGI1-PmGUE|1|JX121641 | 1 | 100.00 | 1 | 100.00 |
SGI1-PmVER|1|JX121640 | 1 | 100.00 | 1 | 100.00 |
SGI1-V|1|HQ888851 | 1 | 100.00 | 1 | 100.00 |
Tn1681|1|L36547.1 | 1 | 100.00 | 1 | 100.00 |
Tn2610|1|AB207867.1 | 1 | 100.00 | 1 | 100.00 |
Tn2670|1|AP000342.1 | 1 | 100.00 | 1 | 100.00 |
Tn4352|1|M20306.1 | 1 | 100.00 | 1 | 100.00 |
Tn6026|1|GQ150541 | 2 | 100.00 | 2 | 100.00 |
Tn6234|1|HG934082 | 1 | 100.00 | 1 | 100.00 |
Tn6284|1|KU254577 | 1 | 100.00 | 1 | 100.00 |
Tn6285|1|KX646543 | 1 | 100.00 | 1 | 100.00 |
TnAs3|1|CP000645 | 1 | 100.00 | 1 | 100.00 |
PGI2|1|MG201402 | 2 | 100.00 | 1 | 100.00 |
SGI1-Pm2CHAMA|1|MF372716 | 1 | 100.00 | ||
Tn5045|1|FN821089.1 | 1 | 100.00 | ||
Tn6027|1|HQ840942 | 1 | 100.00 | ||
Tn6060|1|GQ161847 | 1 | 100.00 | ||
Tn6112|1|HQ423158 | 1 | 100.00 | ||
Tn6162|1|JF826498 | 1 | 100.00 | ||
Tn6249|1|LK054503 | 1 | 100.00 | ||
ICEKkKWG1|1|LN869922 | 2 | 100.00 | ||
Tn21|1|AF071413.3 | 1 | 99.98 | 1 | 99.98 |
Tn6016|1|KC543497 | 1 | 99.97 | 1 | 99.97 |
IS5|1|J01735 | 1 | 99.75 | 1 | 97.63 |
ISAs34|1|CP000644 | 1 | 99.14 | ||
ICE(Tn4371)6067|1|CP000884 | 2 | 98.79 | 2 | 98.79 |
ISAhy1|1|CP000462 | 3 | 97.29 | 1 | 97.29 |
ICEPmiChn3|1|KY437727 | 1 | 97.08 | ||
ISAhy2|1|FM877486 | 1 | 95.08 | 1 | 95.08 |
ICEEcoUMN026-1|1|CU928163 | 1 | 99.34 | ||
Tn6179|1|KX011025 | 1 | 99.88 | ||
Tn6180|1|KX011025 | 1 | 99.88 | ||
Tn6279|1|KT317075 | 3 | 99.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poole, T.L.; Schlosser, W.D.; Anderson, R.C.; Norman, K.N.; Beier, R.C.; Nisbet, D.J. Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine. Microorganisms 2020, 8, 1648. https://doi.org/10.3390/microorganisms8111648
Poole TL, Schlosser WD, Anderson RC, Norman KN, Beier RC, Nisbet DJ. Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine. Microorganisms. 2020; 8(11):1648. https://doi.org/10.3390/microorganisms8111648
Chicago/Turabian StylePoole, Toni L., Wayne D. Schlosser, Robin C. Anderson, Keri N. Norman, Ross C. Beier, and David J. Nisbet. 2020. "Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine" Microorganisms 8, no. 11: 1648. https://doi.org/10.3390/microorganisms8111648
APA StylePoole, T. L., Schlosser, W. D., Anderson, R. C., Norman, K. N., Beier, R. C., & Nisbet, D. J. (2020). Whole-Genome Sequence of Aeromonas hydrophila CVM861 Isolated from Diarrhetic Neonatal Swine. Microorganisms, 8(11), 1648. https://doi.org/10.3390/microorganisms8111648