Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Used
2.2. Compost Microcosms
2.3. Growing Worms
2.4. Harvesting
2.5. Development Rate
2.6. Heat Resistance Assays
2.7. Development Rate Assays on Live Versus Dead Bacteria
2.8. Statistical Methods
3. Results
3.1. Naturally Associated C. elegans Microbes Accelerate Worm Development
3.2. Microbiota-Enhanced Developmental Rate Demonstrates a Trade-Off with Heat Stress Resistance
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montalvo-Katz, S.; Huang, H.; Appel, M.D.; Berg, M.; Shapira, M. Association with soil bacteria enhances p38-dependent infection resistance in Caenorhabditis elegans. Infect. Immun. 2013, 81, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Endt, K.; Stecher, B.; Chaffron, S.; Slack, E.; Tchitchek, N.; Benecke, A.; Van Maele, L.; Sirard, J.C.; Mueller, A.J.; Heikenwalder, M.; et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal salmonella diarrhea. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stecher, B.; Chaffron, S.; Kappeli, R.; Hapfelmeier, S.; Freedrich, S.; Weber, T.C.; Kirundi, J.; Suar, M.; McCoy, K.D.; Von Mering, C.; et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010, 6. [Google Scholar] [CrossRef]
- Thomason, C.A.; Mullen, N.; Belden, L.K.; May, M.; Hawley, D.M. Resident microbiome disruption with antibiotics enhances virulence of a colonizing pathogen. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Bakula, M. The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J. Invertebr. Pathol. 1969, 14, 365–374. [Google Scholar] [CrossRef]
- Shin, S.C.; Kim, S.H.; You, H.; Kim, B.; Kim, A.C.; Lee, K.A.; Yoon, J.H.; Ryu, J.H.; Lee, W.J. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 2011, 334, 670–674. [Google Scholar] [CrossRef] [Green Version]
- Dirksen, P.; Assié, A.; Zimmermann, J.; Zhang, F.; Tietje, A.-M.; Marsh, S.A.; Félix, M.-A.; Shapira, M.; Kaleta, C.; Schulenburg, H.; et al. CeMbio-The Caenorhabditis elegans microbiome resource. G3 Genes Genomes Genet. 2020, 10, 3025. [Google Scholar] [CrossRef]
- Han, B.; Sivaramakrishnan, P.; Lin, C.C.J.; Neve, I.A.A.; He, J.Q.; Tay, L.W.R.; Sowa, J.N.; Sizovs, A.; Du, G.W.; Wang, J.; et al. Microbial genetic composition tunes host longevity. Cell 2017, 169, 1249–1262. [Google Scholar] [CrossRef] [Green Version]
- Rosengaus, R.B.; Zecher, C.N.; Schultheis, K.F.; Brucker, R.M.; Bordenstein, S.R. Disruption of the termite gut microbiota and its prolonged consequences for fitness. Appl. Environ. Microbiol. 2011, 77, 4303–4312. [Google Scholar] [CrossRef] [Green Version]
- Stearns, S.C. Trade-offs in life-history evolution. Funct. Ecol. 1989, 3, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Bonsall, M.B.; Mangel, M. Life-history trade-offs and ecological dynamics in the evolution of longevity. Proc. R. Soc. B Biol. Sci. 2004, 271, 1143–1150. [Google Scholar] [CrossRef] [Green Version]
- Hekimi, S. How genetic analysis tests theories of animal aging. Nat. Genet. 2006, 38, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Partridge, L.; Gems, D. Beyond the evolutionary theory of ageing, from functional genomics to evo-gero. Trends Ecol. Evol. 2006, 21, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Berg, M.; Zhou, X.Y.; Shapira, M. Host-specific functional significance of Caenorhabditis gut commensals. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, M.; Stenuit, B.; Ho, J.; Wang, A.; Parke, C.; Knight, M.; Alvarez-Cohen, L.; Shapira, M. Assembly of the Caenorhabditis elegans gut microbiota from diverse soil microbial environments. ISME J. 2016, 10, 1998–2009. [Google Scholar] [CrossRef]
- Zhang, F.; Berg, M.; Dierking, K.; Felix, M.A.; Shapira, M.; Samuel, B.; Schulenburg, H. Caenorhabditis elegans as a model for microbiome research. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Dirksen, P.; Marsh, S.A.; Braker, I.; Heitland, N.; Wagner, S.; Nakad, R.; Mader, S.; Petersen, C.; Kowallik, V.; Rosenstiel, P.; et al. The native microbiome of the nematode Caenorhabditis elegans: Gateway to a new host-microbiome model. BMC Biol. 2016, 14. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.; Monnin, D.; Cho, J.; Nelson, L.; Crits-Christoph, A.; Shapira, M. TGFβ/BMP immune signaling affects abundance and function of C. elegans gut commensals. Nat. Commun. 2019, 10, 604. [Google Scholar] [CrossRef]
- Gray, J.C.; Cutter, A.D. Mainstreaming Caenorhabditis elegans in experimental evolution. Proc. R. Soc. B Biol. Sci. 2014, 281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Holdori, A.D.; Walhout, A.J.M. C. elegans and its bacterial diet as a model for systems-level understanding of host-microbiota interactions. Curr. Opin. Biotechnol. 2017, 46, 74–80. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans. WormBook 2006, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacNeil, L.T.; Watson, E.; Arda, H.E.; Zhu, L.J.; Walhout, A.J.M. Diet-Induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 2013, 153, 240–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samuel, B.S.; Rowedder, H.; Braendle, C.; Felix, M.A.; Ruvkun, G. Caenorhabditis elegans responses to bacteria from its natural habitats. Proc. Natl. Acad. Sci. USA 2016, 113, E3941–E3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barriere, A.; Felix, M.A. Isolation of C. elegans and related nematodes. WormBook 2014, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Twumasi-Boateng, K.; Shapira, M. Dissociation of immune responses from pathogen colonization supports pattern recognition in C. elegans. PLoS ONE 2012, 7, e35400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaitre, J.F.; Berger, V.; Bonenfant, C.; Douhard, M.; Gamelon, M.; Plard, F.; Gaillard, J.M. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 2015, 282. [Google Scholar] [CrossRef]
- Lithgow, G.J.; White, T.M.; Melov, S.; Johnson, T.E. Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc. Natl. Acad. Sci. USA 1995, 92, 7540–7544. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.E.; Cypser, J.; De Castro, E.; De Castro, S.; Henderson, S.; Murakami, S.; Rikke, B.; Tedesco, P.; Link, C. Gerontogenes mediate health and longevity in nematodes through increasing resistance to environmental toxins and stressors. Exp. Gerontol. 2000, 35, 687–694. [Google Scholar] [CrossRef]
- Labbadia, J.; Morimoto, R.I. Repression of the heat shock response is a programmed event at the onset of reproduction. Mol. Cell 2015, 59, 639–650. [Google Scholar] [CrossRef] [Green Version]
- Zevian, S.C.; Yanowitz, J.L. Methodological considerations for heat shock of the nematode Caenorhabditis elegans. Methods 2014, 68, 450–457. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, Y.; Choi, J. Effect of soil microbial feeding on gut microbiome and cadmium toxicity in Caenorhabditis elegans. Ecotoxicol. Environ. Saf. 2020, 187. [Google Scholar] [CrossRef] [PubMed]
- Smolentseva, O.; Gusarov, I.; Gautier, L.; Shamovsky, I.; DeFrancesco, A.S.; Losick, R.; Nudler, E. Mechanism of biofilm-mediated stress resistance and lifespan extension in C. elegans. Sci. Rep. 2017, 7, 7137. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.W.; Brettell, L.E.; Qiu, Z.G.; Singh, B.K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 2020, 25, 733–743. [Google Scholar] [CrossRef] [PubMed]
- Vanfleteren, J.R.; Braeckman, B.P. Mechanisms of life span determination in Caenorhabditis elegans. Neurobiol. Aging 1999, 20, 487–502. [Google Scholar] [CrossRef]
- Houthoofd, K.; Braeckman, B.P.; Johnson, T.E.; Vanfleteren, J.R. Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp. Gerontol. 2003, 38, 947–954. [Google Scholar] [CrossRef]
- Houthoofd, K.; Braeckman, B.P.; Lenaerts, I.; Brys, K.; De Vreese, A.; Van Eygen, S.; Vanfleteren, J.R. Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp. Gerontol. 2002, 37, 1371–1378. [Google Scholar] [CrossRef]
- Ashe, A.; Belicard, T.; Le Pen, J.; Sarkies, P.; Frezal, L.; Lehrbach, N.J.; Felix, M.A.; Miska, E.A. A deletion polymorphism in the Caenorhabditis elegans RIG-I homolog disables viral RNA dicing and antiviral immunity. Elife 2013, 2. [Google Scholar] [CrossRef]
- Coffman, S.R.; Lu, J.; Guo, X.; Zhong, J.; Jiang, H.; Broitman-Maduro, G.; Li, W.-X.; Lu, R.; Maduro, M.; Ding, S.-W. Caenorhabditis elegans RIG-I homolog mediates antiviral RNA interference downstream of dicer-dependent biogenesis of viral small interfering RNAs. mBio 2017, 8, e00264-00217. [Google Scholar] [CrossRef] [Green Version]
- Zugasti, O.; Bose, N.; Squiban, B.; Belougne, J.; Kurz, C.L.; Schroeder, F.C.; Pujol, N.; Ewbank, J.J. Activation of a G protein-coupled receptor by its endogenous ligand triggers the innate immune response of Caenorhabditis elegans. Nat. Immunol. 2014, 15, 833–838. [Google Scholar] [CrossRef] [Green Version]
- Emelianoff, V.; Chapuis, E.; Le Brun, N.; Chiral, M.; Moulia, C.; Ferdy, J.B. A survival-reproduction trade-off in entomopathogenic nematodes mediated by their bacterial symbionts. Evol. Int. J. Org. Evol. 2008, 62, 932–942. [Google Scholar] [CrossRef]
- Walters, A.W.; Hughes, R.C.; Call, T.B.; Walker, C.J.; Wilcox, H.; Petersen, S.C.; Rudman, S.M.; Newell, P.D.; Douglas, A.E.; Schmidt, P.S.; et al. The microbiota influences the Drosophila melanogaster life history strategy. Mol. Ecol. 2020, 29, 639–653. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slowinski, S.; Ramirez, I.; Narayan, V.; Somayaji, M.; Para, M.; Pi, S.; Jadeja, N.; Karimzadegan, S.; Pees, B.; Shapira, M. Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms 2020, 8, 1781. https://doi.org/10.3390/microorganisms8111781
Slowinski S, Ramirez I, Narayan V, Somayaji M, Para M, Pi S, Jadeja N, Karimzadegan S, Pees B, Shapira M. Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms. 2020; 8(11):1781. https://doi.org/10.3390/microorganisms8111781
Chicago/Turabian StyleSlowinski, Samuel, Isabella Ramirez, Vivek Narayan, Medha Somayaji, Maya Para, Sarah Pi, Niharika Jadeja, Siavash Karimzadegan, Barbara Pees, and Michael Shapira. 2020. "Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance" Microorganisms 8, no. 11: 1781. https://doi.org/10.3390/microorganisms8111781
APA StyleSlowinski, S., Ramirez, I., Narayan, V., Somayaji, M., Para, M., Pi, S., Jadeja, N., Karimzadegan, S., Pees, B., & Shapira, M. (2020). Interactions with a Complex Microbiota Mediate a Trade-Off between the Host Development Rate and Heat Stress Resistance. Microorganisms, 8(11), 1781. https://doi.org/10.3390/microorganisms8111781