Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling Strategy
2.2. Plant and Soil Sampling
2.3. Mycorrhizal Root Colonization
2.4. Rhizosphere and Endosphere Sample Preparation
2.5. DNA Extraction and 16S rRNA Gene Sequencing
2.6. Sequence Data Analysis
2.6.1. Diversity Analyses
2.6.2. Environmental Variables and Bacterial Communities
2.6.3. Taxonomic Composition and Endosphere Analyses
2.6.4. Putative Functional Profile
3. Results
3.1. Bacterial Community Composition
3.2. Relationship between Environmental Variables and Bacterial Composition
3.3. Identification of Taxa with Differential Abundance among Elevations
3.4. Relationship Between External Sources in Each Plant Ecotype and Identification of Common Taxa in Endosphere
3.5. Potential Functions in Soil, Rhizosphere and Endosphere
4. Discussion
4.1. Elevation Influences Soil Parameters, Which in Turn Strongly Modulate Soil Bacterial Communities
4.2. Plant–Microbial Interaction Changes with Flooding Frequency and Plant Phenotypes
4.3. Core Endosphere Composition and Proportion of Bacteria Exclusive to Each Ecotype
4.4. Differences in Microbial Functional Composition Revealed Potential Role in Plant Stress Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Friesen, M.L.; Porter, S.S.; Stark, S.C.; Von Wettberg, E.J.; Sachs, J.L.; Martinez-Romero, E. Microbially mediated plant functional traits. Annu. Rev. Ecol. 2011, 42, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–microbiome interactions: From community assembly to plant health. Nat. Rev. Microbiol. 2020, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hetrick, B.A.D. Mycorrhizas and root architecture. Experientia 1991, 47, 355–362. [Google Scholar] [CrossRef]
- Goh, C.H.; Veliz Vallejos, D.F.; Nicotra, A.B.; Mathesius, U. The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J. Chem. Ecol. 2013, 39, 826–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hawkes, C.V.; Bull, J.J.; Lau, J.A. Symbiosis and stress: How plant microbiomes affect host evolution. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190590. [Google Scholar] [CrossRef]
- Rolli, E.; Marasco, R.; Vigani, G.; Ettoumi, B.; Mapelli, F.; Deangelis, M.L.; Gandolfi, C.; Casati, E.; Previtali, F.; Gerbino, R.; et al. Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ. Microbiol. 2015, 17, 316–331. [Google Scholar] [CrossRef]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Herrera Paredes, S.; Lebeis, S.L. Giving back to the community: Microbial mechanisms of plant-soil interactions. Funct. Ecol. 2016, 30, 1043–1052. [Google Scholar] [CrossRef] [Green Version]
- Azarbad, H.; Tremblay, J.; Giard-Laliberté, C.; Bainard, L.D.; Yergeau, E. Four decades of soil water stress history together with host genotype constrain the response of the wheat microbiome to soil moisture. FEMS Microbiol. Ecol. 2020, 96, 98. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; Del Rio, T.G.; Tringe, S.G.; Dangl, J.L.; Mitchell-Olds, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 2016, 7, 1–15. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; Van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordenstein, S.R.; Theis, K.R. Host biology in light of the microbiome: Ten principles of holobionts and hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coats, V.C.; Rumpho, M.E. The rhizosphere microbiota of plant invaders: An overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 2014, 5, 368. [Google Scholar] [CrossRef] [PubMed]
- Leport, L.; Baudry, J.; Radureau, A.; Bouchereau, A. Sodium, potassium and nitrogenous osmolyte accumulation in relation to the adaptation to salinity of Elytrigia pycnantha, an invasive plant of the Mont Saint-Michel Bay. Cah. Biol. Mar. 2006, 47, 31–37. [Google Scholar]
- Minden, V.; Andratschke, S.; Spalke, J.; Timmermann, H.; Kleyer, M. Plant trait-environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspect. Plant Ecol. 2012, 14, 183–192. [Google Scholar] [CrossRef]
- Veldhuis, E.R.; Schrama, M.; Staal, M.; Elzenga, J.T.M. Plant stress-tolerance traits predict salt marsh vegetation patterning. Front. Mar. Sci. 2019, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pennings, S.C.; Grant, M.B.; Bertness, M.D. Plant zonation in low-latitude salt marshes: Disentangling the roles of flooding, salinity and competition. J. Ecol. 2005, 93, 159–167. [Google Scholar] [CrossRef]
- Bang, J.H.; Bae, M.J.; Lee, E.J. Plant distribution along an elevational gradient in a macrotidal salt marsh on the west coast of Korea. Aquat. Bot. 2018, 147, 52–60. [Google Scholar] [CrossRef]
- Olff, H.; De Leeuw, J.; Bakker, J.P.; Platerink, R.J.; van Wijnen, H.J. Vegetation succession and herbivory in a salt marsh: Changes induced by sea level rise and silt deposition along an elevational gradient. J. Ecol. 1997, 85, 799–814. [Google Scholar] [CrossRef] [Green Version]
- Kuijper, D.P.J.; Bakker, J.P. Top-down control of small herbivores on salt marsh vegetation along a productivity gradient. Ecology 2005, 86, 914–923. [Google Scholar] [CrossRef] [Green Version]
- Veeneklaas, R.M.; Dijkema, K.S.; Hecker, N.; Bakker, J.P. Spatio-temporal dynamics of the invasive plant species Elytrigia atherica on natural salt marshes. Appl. Veg. Sci. 2013. [Google Scholar] [CrossRef]
- Scheepens, J.F.; Veeneklaas, R.M.; Van De Zande, L.; Bakker, J.P. Clonal structure of Elytrigia atherica along different successional stages of a salt marsh. Mol. Ecol. 2007. [Google Scholar] [CrossRef] [PubMed]
- Bockelmann, A.C.; Wels, T.; Bakker, J.P. Seed origin determines the range expansion of the clonal grass Elymus athericus. Basic Appl. Ecol. 2011. [Google Scholar] [CrossRef]
- Bockelmann, A.-C.; Bakker, J.P.; Neuhaus, R.; Lage, J. The relation between vegetation zonation, elevation and inundation frequency in a Wadden Sea salt marsh. Aquat. Bot. 2002, 73, 211–221. [Google Scholar] [CrossRef]
- Kuijper, D.P.J.; Nijhoff, D.J.; Bakker, J.P. Herbivory and competition slow down invasion of a tall grass along a productivity gradient. Oecologia 2004, 141, 452–459. [Google Scholar] [CrossRef]
- Klironomos, J.N. Feedback with soil biota contributes to plants rarity and. Nature 2002, 417, 67–69. [Google Scholar] [CrossRef]
- Clay, K.; Holah, J. Fungal endophyte symbiosis and plant diversity in successional fields. Science 1999, 285, 1742–1744. [Google Scholar] [CrossRef]
- Rout, M.E.; Chrzanowski, T.H. The invasive Sorghum halepense harbors endophytic N2-fixing bacteria and alters soil biogeochemistry. Plant and Soil 2009, 315, 163–172. [Google Scholar] [CrossRef]
- Kowalski, K.P.; Bacon, C.; Bickford, W.; Braun, H.; Clay, K.; Leduc-Lapierre, M.; Lillard, E.; McCormick, M.K.; Nelson, E.; Torres, M.; et al. Advancing the science of microbial symbiosis to support invasive species management: A case study on Phragmites in the Great Lakes. Front. Microbiol. 2015, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Howison, R.A.; Olff, H.; Steever, R.; Smit, C. Large herbivores change the direction of interactions within plant communities along a salt marsh stress gradient. J. Veg. Sci. 2015, 26, 1159–1170. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 2013. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–161. [Google Scholar] [CrossRef]
- Abbott, L.K.; Robson, A.D.; De Boer, G. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrizhal fungus, Glomus fasciculatum. New Phytol. 1984, 97, 437–446. [Google Scholar] [CrossRef]
- Wang, M.; Yang, P.; Falcão Salles, J. Distribution of root-associated bacterial communities along a salt-marsh primary succession. Front. Plant Sci. 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eevers, N.; Gielen, M.; Sánchez-López, A.; Jaspers, S.; White, J.C.; Vangronsveld, J.; Weyens, N. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media. Microb. Biotechnol. 2015, 8, 707–715. [Google Scholar] [CrossRef]
- Walters, W.; Hyde, E.R.; Berg-Lyons, D.; Ackermann, G.; Humphrey, G.; Parada, A.; Gilbert, J.A.; Jansson, J.K.; Caporaso, J.G.; Fuhrman, J.A.; et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys. mSystems 2016, 1, e00009-15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caporaso, J.G.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; Huttley, G.A.; Kelley, S.T.; Knights, D.; Mcdonald, D.; Muegge, B.D.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Zech Xu, Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur rapidly resolves single-nucleotide community sequence patterns. mSystems 2017, 2, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bokulich, N.A.; Subramanian, S.; Faith, J.J.; Gevers, D.; Gordon, J.I.; Knight, R.; Mills, D.A.; Caporaso, J.G. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 2013, 10, 57–59. [Google Scholar] [CrossRef]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The Aligned Rank Transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the Conference on Human Factors in Computing Systems Proceedings; ACM Press: New York, NY, USA, 2011; pp. 143–146. [Google Scholar]
- Lenth, R.V. Estimated Marginal Means, aka Least-Squares Means. Emmeans 2020. [Google Scholar] [CrossRef]
- Oksanen, J.; Blanchet, G.; Friendly, M.; Kindt, R.; Lagendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.; Solymos, P.; et al. Vegan: Community Ecology, R package. Available online: https://cran.r-project.org/web/packages/vegan/vegan (accessed on 21 September 2019).
- Lozupone, C.; Lladser, M.E.; Knights, D.; Stombaugh, J.; Knight, R. UniFrac: An effective distance metric for microbial community comparison. ISME J. 2011, 5, 169–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Pinto, J.; Egozcue, J.J.; Pawlowsky-Glahn, V.; Paredes, R.; Noguera-Julian, M.; Calle, M.L. Balances: A new perspective for microbiome analysis. mSystems 2018, 3, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Clarke, K.R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 1993, 18, 117–143. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 178. [Google Scholar]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- Louca, S.; Parfrey, L.W.; Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 2016, 353, 1272–1277. [Google Scholar] [CrossRef]
- Cantarel, A.A.M.; Rouifed, S.; Simon, L.; Bourg, J.; Gervaix, J.; Blazère, L.; Poussineau, S.; des Châtelliers, C.C.; Piola, F. In nitrate-rich soil, fallopia x bohemica modifies functioning of N cycle compared to native monocultures. Diversity 2020, 12, 156. [Google Scholar] [CrossRef] [Green Version]
- van Wijnen, H.J.; Bakker, J.P.; de Vries, Y. Twenty years of salt marsh succession on a Dutch coastal barrier island. J. Coast. Conserv. 1997, 3, 9–18. [Google Scholar] [CrossRef]
- Hollister, E.B.; Engledow, A.S.; Hammett, A.J.M.; Provin, T.L.; Wilkinson, H.H.; Gentry, T.J. Shifts in microbial community structure along an ecological gradient of hypersaline soils and sediments. ISME J. 2010, 4, 829–838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benlloch, S.; López-López, A.; Casamayor, E.O.; Øvreås, L.; Goddard, V.; Daae, F.L.; Smerdon, G.; Massana, R.; Joint, I.; Thingstad, F.; et al. Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ. Microbiol. 2002, 4, 349–360. [Google Scholar] [CrossRef]
- Cao, Y.; Green, P.G.; Holden, P.A. Microbial community composition and denitrifying enzyme activities in salt marsh sediments. Appl. Environ. Microbiol. 2008, 74, 7585–7591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dini-Andreote, F.; De Cássia Pereira, E.; Silva, M.; Triadó-Margarit, X.; Casamayor, E.O.; Van Elsas, J.D.; Salles, J.F. Dynamics of bacterial community succession in a salt marsh chronosequence: Evidences for temporal niche partitioning. ISME J. 2014, 8, 1989–2001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schrama, M.; Berg, M.P.; Olff, H. Ecosystem assembly rules: The interplay of green and brown webs during salt marsh succession. Ecology 2012, 93, 2353–2364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valéry, L.; Bouchard, V.; Lefeuvre, J.C. Impact of the invasive native species Elymus athericus on carbon pools in a salt marsh. Wetlands 2004, 24, 268–276. [Google Scholar] [CrossRef]
- Minden, V.; Kleyer, M. Testing the effect-response framework: Key response and effect traits determining above-ground biomass of salt marshes. J. Veg. Sci. 2011, 22, 387–401. [Google Scholar] [CrossRef]
- Veen, G.F.; Snoek, B.L.; Bakx-Schotman, T.; Wardle, D.A.; Putten, W.H. Relationships between fungal community composition in decomposing leaf litter and home-field advantage effects. Funct. Ecol. 2019, 33, 1524–1535. [Google Scholar] [CrossRef] [Green Version]
- Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 2002, 16, 545–556. [Google Scholar] [CrossRef]
- Artursson, V.; Finlay, R.D.; Jansson, J.K. Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 2006, 8, 1–10. [Google Scholar] [CrossRef]
- Rodríguez-Caballero, G.; Caravaca, F.; Fernández-González, A.J.; Alguacil, M.M.; Fernández-López, M.; Roldán, A. Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci. Total Environ. 2017, 584–585, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Kolton, M.; Rolando, J.L.; Kostka, J.E. Elucidation of the rhizosphere microbiome linked to Spartina alterniflora phenotype in a salt marsh on Skidaway Island, Georgia, USA. FEMS Microbiol. Ecol. 2020, 96, 26. [Google Scholar] [CrossRef]
- Lin, L.; Liu, W.; Zhang, M.; Lin, X.; Zhang, Y.; Tian, Y. Different height forms of Spartina alterniflora might select their own rhizospheric bacterial communities in southern coast of China. Microb. Ecol. 2019, 77, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Zogg, G.P.; Travis, S.E.; Brazeau, D.A. Strong associations between plant genotypes and bacterial communities in a natural salt marsh. Ecol. Evol. 2018, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Georges, A.; Fouillet, P.; Pétillon, J. Changes in salt-marsh carabid assemblages after an invasion by the native grass Elymus athericus Kerguélen. Zookeys 2011, 100, 407–419. [Google Scholar] [CrossRef]
- Liao, C.; Luo, Y.; Jiang, L.; Zhou, X.; Wu, X.; Fang, C.; Chen, J.; Li, B. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 2007, 10, 1351–1361. [Google Scholar] [CrossRef]
- Compant, S.; Clément, C.; Sessitsch, A. Plant growth-promoting bacteria in the rhizo and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 2010, 42, 669–678. [Google Scholar] [CrossRef] [Green Version]
- Tamošiūnė, I.; Andriūnaitė, E.; Stanys, V.; Baniulis, D. Exploring diversity of bacterial endophyte communities using advanced sequencing technology. In Microbiome in Plant Health and Disease; Springer: Singapore, 2019; pp. 447–481. [Google Scholar]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef]
- Compant, S.; Van Der Heijden, M.G.A.; Sessitsch, A. Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 2010, 73, 197–214. [Google Scholar] [CrossRef]
- Naylor, D.; Coleman-Derr, D. Drought stress and root-associated bacterial communities. Front. Plant Sci. 2018, 8, 2223. [Google Scholar] [CrossRef]
- Van Wijnen, H.J.; Bakker, J.P. Nitrogen and phosphorus limitation in a coastal barrier salt marsh: The implications for vegetation succession. J. Ecol. 1999, 87, 265–272. [Google Scholar] [CrossRef]
- Nolte, S.; Wanner, A.; Stock, M.; Jensen, K. Elymus athericus encroachment in Wadden Sea salt marshes is driven by surface elevation change. Appl. Veg. Sci. 2019, 22, 454–464. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sessitsch, A.; Hardoim, P.; Döring, J.; Weilharter, A.; Krause, A.; Woyke, T.; Mitter, B.; Hauberg-Lotte, L.; Friedrich, F.; Rahalkar, M.; et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 2012, 25, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Llorente, I.D.; Pajuelo, E.; Navarro-Torre, S.; Mesa-Marín, J.; Caviedes, M.A. Bacterial endophytes from halophytes: How do they help plants to alleviate salt stress? In Saline Soil-based Agriculture by Halotolerant Microorganisms; Springer: Singapore, 2019; pp. 147–160. [Google Scholar]
- Mesa, J.; Mateos-Naranjo, E.; Caviedes, M.A.; Redondo-Gómez, S.; Pajuelo, E.; Rodríguez-Llorente, I.D. Endophytic cultivable bacteria of the metal bioaccumulator Spartina maritima improve plant growth but not metal uptake in polluted marshes soils. Front. Microbiol. 2015, 6, 1450. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.; Charles, T.C.; Glick, B.R. Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol. Biochem. 2014. [Google Scholar] [CrossRef]
- Harley, J.L.; Harley, E.L. A check-list of mycorrhiza in the British flora. New Phytol. 1987, 105, 1–102. [Google Scholar] [CrossRef]
- Brundrett, M. Mycorrhizas in natural ecosystems. In Advances in Ecological Research; Macfayden, A., Begon, M., Fitter, A., Eds.; Academic Press: London, UK, 1991; Volume 21, pp. 171–313. [Google Scholar]
- Miller, S.P. Arbuscular mycorrhizal colonization of semi-aquatic grasses along a wide hydrologic gradient. New Phytol. 2000, 145, 145–155. [Google Scholar] [CrossRef]
- Romero-Munar, A.; Baraza, E.; Gulías, J.; Cabot, C. Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Front. Plant Sci. 2019, 10, 843. [Google Scholar] [CrossRef] [Green Version]
- Rozema, J.; Arp, W.; van Diggelen, J.; van Esbroek, M.; Broekman, R.; Punte, H. Occurrence and ecological significante of vesicular mycorrhiza in the salt marsh environment. Acta Bot. Neerl. 1986, 35, 457–467. [Google Scholar] [CrossRef]
Site | Plot | Latitude | Longitude | Stage of Succession (Years) | Absolute Elevation m (AOD) | Flooding Frequency | Plant Species | |
---|---|---|---|---|---|---|---|---|
Dominant | Subdominant | |||||||
H1 | A | 53.4889 | 6.22336 | 78 | 1.722 | 0.019 | E. atherica | Atriplex prostata |
B | 53.489 | 6.22334 | 78 | 1.694 | 0.022 | |||
C | 53.4889 | 6.22328 | 78 | 1.693 | 0.022 | |||
H2 | A | 53.4944 | 6.26251 | 53 | 1.704 | 0.021 | E. atherica | Festuca rubra, Artemisa maritima |
B | 53.4944 | 6.26239 | 53 | 1.71 | 0.02 | |||
C | 53.4945 | 6.26234 | 53 | 1.708 | 0.02 | |||
H3 | A | 53.4947 | 6.27328 | 53 | 1.806 | 0.014 | E. atherica | F. rubra, A. maritima |
B | 53.4948 | 6.27344 | 53 | 1.887 | 0.011 | |||
C | 53.4948 | 6.27332 | 53 | 1.959 | 0.009 | |||
L1 | A | 53.4793 | 6.23653 | 78 | 1.373 | 0.072 | E. atherica | Atriplex portulacoides |
B | 53.4793 | 6.23655 | 78 | 1.404 | 0.064 | |||
C | 53.4792 | 6.23652 | 78 | 1.349 | 0.078 | |||
L2 | A | 53.4848 | 6.269 | 31 | 1.394 | 0.067 | E. atherica | A. maritima. Limonium vulgare |
B | 53.4848 | 6.26901 | 31 | 1.392 | 0.067 | |||
C | 53.4849 | 6.26917 | 31 | 1.352 | 0.078 | |||
L3 | A | 53.4884 | 6.27361 | 31 | 1.285 | 0.099 | E. atherica | A. marítima, A. portulacoides, L. vulgare |
B | 53.4883 | 6.27378 | 31 | 1.367 | 0.072 | |||
C | 53.4884 | 6.2737 | 31 | 1.358 | 0.075 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, E.G.; Baraza, E.; Smit, C.; Berg, M.P.; Falcão Salles, J. Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms 2020, 8, 1619. https://doi.org/10.3390/microorganisms8101619
Hernández EG, Baraza E, Smit C, Berg MP, Falcão Salles J. Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms. 2020; 8(10):1619. https://doi.org/10.3390/microorganisms8101619
Chicago/Turabian StyleHernández, Edisa García, Elena Baraza, Christian Smit, Matty P. Berg, and Joana Falcão Salles. 2020. "Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica" Microorganisms 8, no. 10: 1619. https://doi.org/10.3390/microorganisms8101619
APA StyleHernández, E. G., Baraza, E., Smit, C., Berg, M. P., & Falcão Salles, J. (2020). Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms, 8(10), 1619. https://doi.org/10.3390/microorganisms8101619