Application of Erythromycin and/or Raoultella sp. Strain MC3 Alters the Metabolic Activity of Soil Microbial Communities as Revealed by the Community Level Physiological Profiling Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Analyses
2.2. Analysis of the Data
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Devries, S.L.; Zhang, P. Antibiotics and the Terrestrial Nitrogen Cycle: A Review. Curr. Pollut. Rep. 2016, 2, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Chu, L. Leaching behavior of veterinary antibiotics in animal manure-applied soils. Sci. Total. Environ. 2017, 579, 466–473. [Google Scholar] [CrossRef] [PubMed]
- Grenni, P.; Ancona, V.; Caracciolo, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, W.; Ma, Q.; Wang, J.; Zhou, H.; Jiang, C. The combined effect of sulfadiazine and copper on soil microbial activity and community structure. Ecotoxicol. Environ. Saf. 2016, 134, 43–52. [Google Scholar] [CrossRef]
- Orlewska, K.; Piotrowska-Seget, Z.; Cycoń, M. Use of the PCR-DGGE Method for the Analysis of the Bacterial Community Structure in Soil Treated with the Cephalosporin Antibiotic Cefuroxime and/or Inoculated with a Multidrug-Resistant Pseudomonas putida Strain MC1. Front. Microbiol. 2018, 9, 1387. [Google Scholar] [CrossRef] [Green Version]
- Cui, H.; Wang, S.; Fu, J.; Zhou, Z.-Q.; Zhang, N.; Guo, L. Influence of ciprofloxacin on microbial community structure and function in soils. Biol. Fertil. Soils 2014, 50, 939–947. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Zhang, X.; Wang, J.; Gao, M. Effects of chlortetracycline on soil microbial communities: Comparisons of enzyme activities to the functional diversity via Biolog EcoPlatesTM. Eur. J. Soil Biol. 2015, 68, 69–76. [Google Scholar] [CrossRef]
- Cycoń, M.; Orlewska, K.; Markowicz, A.; Żmijowska, A.; Smoleń-Dzirba, J.; Bratosiewicz-Wąsik, J.; Wąsik, T.J.; Piotrowska-Seget, Z. Vancomycin and/or Multidrug-Resistant Citrobacter Freundii Altered the Metabolic Pattern of Soil Microbial Community. Front. Microbiol. 2018, 9, 1047. [Google Scholar] [CrossRef]
- On behalf of the ESAC Project Group; Adriaenssens, N.; Coenen, S.; Versporten, A.; Muller, A.; Minalu, G.; Faes, C.; Vankerckhoven, V.; Aerts, M.; Hens, N.; et al. European Surveillance of Antimicrobial Consumption (ESAC): Outpatient macrolide, lincosamide and streptogramin (MLS) use in Europe (1997–2009). J. Antimicrob. Chemother. 2011, 66, vi37–vi45. [Google Scholar] [CrossRef] [Green Version]
- Versporten, A.; Zarb, P.; Caniaux, I.; Gros, M.-F.; Drapier, N.; Miller, M.; Jarlier, V.; Nathwani, D.; Goossens, H.; Koraqi, A.; et al. Antimicrobial consumption and resistance in adult hospital inpatients in 53 countries: Results of an internet-based global point prevalence survey. Lancet Glob. Health 2018, 6, e619–e629. [Google Scholar] [CrossRef] [Green Version]
- Liang, J.-H.; Han, X. Structure-activity relationships and mechanism of action of macrolides derived from erythromycin as antibacterial agents. Curr. Top. Med. Chem. 2013, 13, 3131–3164. [Google Scholar] [CrossRef] [PubMed]
- Jelić, D.; Antolović, R. From Erythromycin to Azithromycin and New Potential Ribosome-Binding Antimicrobials. Antibiotics 2016, 5, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.; Dong, D.; Zhang, X.; Sun, C.; Wang, C.; Hua, X.; Zhang, L.; Guo, Z. Occurrence and ecological risk assessment of 22 emerging contaminants in the Jilin Songhua River (Northeast China). Environ. Sci. Pollut. Res. 2018, 25, 24003–24012. [Google Scholar] [CrossRef] [PubMed]
- Kafaei, R.; Papari, F.; Seyedabadi, M.; Sahebi, S.; Tahmasebi, R.; Ahmadi, M.; Sorial, G.; Asgari, G.; Ramavandi, B. Occurrence, distribution, and potential sources of antibiotics pollution in the water-sediment of the northern coastline of the Persian Gulf, Iran. Sci. Total. Environ. 2018, 627, 703–712. [Google Scholar] [CrossRef]
- Mirzaei, R.; Yunesian, M.; Nasseri, S.; Gholami, M.; Jalilzadeh, E.; Shoeibi, S.; Mesdaghinia, A. Occurrence and fate of most prescribed antibiotics in different water environments of Tehran, Iran. Sci. Total. Environ. 2018, 446–459. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, L.; Li, W.; Liu, J.; Cai, Y. Investigation of Fluoroquinolones, Sulfonamides and Macrolides in Long-Term Wastewater Irrigation Soil in Tianjin, China. Bull. Environ. Contam. Toxicol. 2012, 89, 857–861. [Google Scholar] [CrossRef]
- Bin Ho, Y.; Zakaria, M.P.; Latif, P.A.; Saari, N. Occurrence of veterinary antibiotics and progesterone in broiler manure and agricultural soil in Malaysia. Sci. Total. Environ. 2014, 261–267. [Google Scholar] [CrossRef]
- Pan, M.; Wong, C.K.C.; Chu, L.M. Distribution of Antibiotics in Wastewater-Irrigated Soils and Their Accumulation in Vegetable Crops in the Pearl River Delta, Southern China. J. Agric. Food Chem. 2014, 62, 11062–11069. [Google Scholar] [CrossRef]
- Gao, L.; Shi, Y.; Lihong, G.; Liu, J.; Cai, Y. Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai, China. Environ. Sci. Pollut. Res. 2015, 22, 11360–11371. [Google Scholar] [CrossRef]
- Schlüsener, M.P.; Bester, K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ. Pollut. 2006, 143, 565–571. [Google Scholar] [CrossRef]
- Topp, E.; Renaud, J.; Sumarah, M.W.; Sabourin, L. Reduced persistence of the macrolide antibiotics erythromycin, clarithromycin and azithromycin in agricultural soil following several years of exposure in the field. Sci. Total. Environ. 2016, 562, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Orlewska, K.; Piotrowska-Seget, Z.; Bratosiewicz-Wąsik, J.; Cycoń, M. Characterization of bacterial diversity in soil contaminated with the macrolide antibiotic erythromycin and/or inoculated with a multidrug-resistant Raoultella sp. strain using the PCR-DGGE approach. Appl. Soil Ecol. 2018, 126, 57–64. [Google Scholar] [CrossRef]
- Cycoń, M.; Piotrowska-Seget, Z. Biochemical and microbial soil functioning after application of the insecticide imidacloprid. J. Environ. Sci. 2015, 27, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Cycoń, M.; Borymski, S.; Orlewska, K.; Wąsik, T.J.; Piotrowska-Seget, Z. An Analysis of the Effects of Vancomycin and/or Vancomycin-Resistant Citrobacter freundii Exposure on the Microbial Community Structure in Soil. Front. Microbiol. 2016, 7, 1015. [Google Scholar] [CrossRef] [Green Version]
- Insam, H. A New Set of Substrates Proposed for Community Characterization in Environmental Samples. In Microbial Communities; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1997; pp. 259–260. [Google Scholar]
- Orlewska, K.; Markowicz, A.; Piotrowska-Seget, Z.; Smoleń-Dzirba, J.; Cycoń, M. Functional Diversity of Soil Microbial Communities in Response to the Application of Cefuroxime and/or Antibiotic-Resistant Pseudomonas putida Strain MC1. Sustainability 2018, 10, 3549. [Google Scholar] [CrossRef] [Green Version]
- Orwin, K.; Wardle, D. New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 2004, 36, 1907–1912. [Google Scholar] [CrossRef]
- Toth, J.D.; Feng, Y.; Dou, Z. Veterinary antibiotics at environmentally relevant concentrations inhibit soil iron reduction and nitrification. Soil Biol. Biochem. 2011, 43, 2470–2472. [Google Scholar] [CrossRef]
- Ma, T.; Pan, X.; Chen, L.; Liu, W.; Christie, P.; Luo, Y.; Wu, L. Effects of different concentrations and application frequencies of oxytetracycline on soil enzyme activities and microbial community diversity. Eur. J. Soil Biol. 2016, 76, 53–60. [Google Scholar] [CrossRef]
- Wang, J.; Lin, H.; Sun, W.; Xia, Y.; Ma, J.; Fu, J.; Zhang, Z.; Wu, H.; Qian, M. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application. J. Hazard. Mater. 2016, 304, 49–57. [Google Scholar] [CrossRef]
- Kong, W.-D.; Zhu, Y.; Fu, B.-J.; Marschner, P.; He, J.-Z. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community. Environ. Pollut. 2006, 143, 129–137. [Google Scholar] [CrossRef]
- Liu, W.; Pan, N.; Chen, W.; Jiao, W.; Wang, M. Effect of veterinary oxytetracycline on functional diversity of soil microbial community. Plant Soil Environ. 2012, 58, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Pino-Otín, M.R.; Muñiz, S.; Val, J.; Navarro, E. Effects of 18 pharmaceuticals on the physiological diversity of edaphic microorganisms. Sci. Total. Environ. 2017, 595, 441–450. [Google Scholar] [CrossRef] [PubMed]
- Semedo, M.; Song, B.; Sparrer, T.; Phillips, R.L. Antibiotic Effects on Microbial Communities Responsible for Denitrification and N2O Production in Grassland Soils. Front. Microbiol. 2018, 9, 2121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molaei, A.; Lakzian, A.; Haghnia, G.; Astaraei, A.; Rasouli-Sadaghiani, M.; Ceccherini, M.T.; Datta, R. Assessment of some cultural experimental methods to study the effects of antibiotics on microbial activities in a soil: An incubation study. PLoS ONE 2017, 12, e0180663. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Han, L.; Cui, Y.; Xue, Y.; Cai, L.; Yu, Y. Changes in soil microbial community structure and function associated with degradation and resistance of carbendazim and chlortetracycline during repeated treatments. Sci. Total. Environ. 2016, 572, 1203–1212. [Google Scholar] [CrossRef]
- Demoling, L.A.; Bååth, E.; Greve, G.; Wouterse, M.; Schmitt, H. Effects of sulfamethoxazole on soil microbial communities after adding substrate. Soil Biol. Biochem. 2009, 41, 840–848. [Google Scholar] [CrossRef]
- Liu, F.; Wu, J.; Ying, G.-G.; Luo, Z.; Feng, H. Changes in functional diversity of soil microbial community with addition of antibiotics sulfamethoxazole and chlortetracycline. Appl. Microbiol. Biotechnol. 2011, 95, 1615–1623. [Google Scholar] [CrossRef]
- Cycoń, M.; Żmijowska, A.; Piotrowska-Seget, Z. Enhancement of deltamethrin degradation by soil bioaugmentation with two different strains of Serratia marcescens. Int. J. Environ. Sci. Technol. 2014, 11, 1305–1316. [Google Scholar] [CrossRef] [Green Version]
- Hirth, N.; Topp, E.; Dörfler, U.; Stupperich, E.; Munch, J.C.; Schroll, R. An effective bioremediation approach for enhanced microbial degradation of the veterinary antibiotic sulfamethazine in an agricultural soil. Chem. Biol. Technol. Agric. 2016, 3, 29. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhou, Y.; Huang, Y.; Wu, L.; Liu, X.; Luo, Y. Residues and risks of veterinary antibiotics in protected vegetable soils following application of different manures. Chemosphere 2016, 152, 229–237. [Google Scholar] [CrossRef]
- Chen, S.; Chang, C.; Deng, Y.; An, S.; Dong, Y.H.; Zhou, J.; Hu, M.; Zhong, G.; Zhang, L.-H. Fenpropathrin Biodegradation Pathway inBacillussp. DG-02 and Its Potential for Bioremediation of Pyrethroid-Contaminated Soils. J. Agric. Food Chem. 2014, 62, 2147–2157. [Google Scholar] [CrossRef] [PubMed]
- Karpouzas, D.G.; Walker, A. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil. Soil Biol. Biochem. 2000, 32, 1753–1762. [Google Scholar] [CrossRef]
- Ding, G.-C.; Radl, V.; Schloter-Hai, B.; Jechalke, S.; Heuer, H.; Smalla, K.; Schloter, M. Dynamics of Soil Bacterial Communities in Response to Repeated Application of Manure Containing Sulfadiazine. PLoS ONE 2014, 9, e92958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chessa, L.; Pusino, A.; Garau, G.; Mangia, N.P.; Pinna, M.V. Soil microbial response to tetracycline in two different soils amended with cow manure. Environ. Sci. Pollut. Res. 2015, 23, 5807–5817. [Google Scholar] [CrossRef]
- Dunkle, J.A.; Xiong, L.; Mankin, A.S.; Cate, J.H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 2010, 107, 17152–17157. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Qin, K.; Zhao, N.; Noguera, D.R.; Qiu, W.; Zhao, Q.; Kong, X.; Zhang, W.; Kabutey, F.T. Transformation of erythromycin during secondary effluent soil aquifer recharging: Removal contribution and degradation path. J. Environ. Sci. 2017, 51, 173–180. [Google Scholar] [CrossRef]
- Baćmaga, M.; Kucharski, J.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with azoxystrobin. Environ. Monit. Assess. 2015, 187, 615. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef] [Green Version]
- Song, H.-S.; Renslow, R.S.; Fredrickson, J.K.; Lindemann, S.R. Integrating ecological and engineering concepts of resilience in microbial communities. Front. Microbiol. 2015, 6, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schäffer, A.; Amelung, W.; Hollert, H.; Kaestner, M.; Kandeler, E.; Kruse, J.; Miltner, A.; Ottermanns, R.; Pagel, H.; Peth, S.; et al. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research. Sci. Total Environ. 2016, 568, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, M.; Wilmes, P.; Schrader, S. Measuring soil sustainability via soil resilience. Sci. Total. Environ. 2018, 626, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
SV | AWCD | R | H | E | ||||
---|---|---|---|---|---|---|---|---|
VE | p | VE | p | VE | p | VE | p | |
S | <1 | 0.004 ** | <1 | 0.403 | 2 | <0.001 *** | 3 | <0.001 *** |
C | 11 | <0.001 *** | 2 | <0.001 *** | 5 | <0.001 *** | 8 | <0.001 *** |
T | 3 | <0.001 *** | 38 | <0.001 *** | 40 | <0.001 *** | 25 | <0.001 *** |
S × C | <1 | 0.020 * | <1 | 0.586 | <1 | 0.063 | <1 | 0.211 |
S × T | <1 | <0.001 *** | 3 | <0.001 *** | 1 | 0.001 ** | 4 | 0.005 ** |
C × T | 55 | <0.001 *** | 47 | <0.001 *** | 46 | <0.001 *** | 36 | <0.001 *** |
S × C × T | <1 | 0.866 | 2 | 0.029 * | 2 | 0.002 ** | 9 | <0.001 *** |
SV | Amines | Amino Acids | Carbohydrates | |||
VE | p | VE | p | VE | p | |
S | 70 | <0.001 *** | <1 | 0.084 | <1 | <0.001 *** |
C | <1 | <0.001 *** | 8 | <0.001 *** | 9 | <0.001 *** |
T | 2 | <0.001 *** | 41 | <0.001 *** | 53 | <0.001 *** |
S × C | 13 | <0.001 *** | <1 | <0.001 *** | <1 | 0.077 |
S × T | <1 | <0.001 *** | 2 | <0.001 *** | 1 | <0.001 *** |
C × T | <1 | <0.001 *** | 47 | <0.001 *** | 36 | <0.001 *** |
S × C × T | 14 | <0.001 *** | <1 | <0.001 *** | <1 | 0.006 ** |
SV | Carboxylic Acids | Miscellaneous | Polymers | |||
VE | p | VE | p | VE | p | |
S | <1 | 0.001 ** | <1 | 0.002 ** | <1 | 0.013 * |
C | 6 | <0.001 *** | 18 | <0.001 *** | 11 | <0.001 *** |
T | 44 | <0.001 *** | 9 | <0.001 *** | 26 | <0.001 *** |
S × C | <1 | 0.025 * | <1 | <0.001 *** | <1 | 0.001 ** |
S × T | <1 | <0.001 *** | <1 | 0.080 | 1 | <0.001 *** |
C × T | 47 | <0.001 *** | 72 | <0.001 *** | 58 | <0.001 *** |
S × C × T | 1 | <0.001 *** | <1 | <0.001 *** | 1 | 0.002 ** |
SV | CLPP Indices | Carbon Substrate Groups | ||||||
---|---|---|---|---|---|---|---|---|
PC 1 | PC 2 | PC 1 | PC 2 | |||||
VE | p | VE | p | VE | p | VE | p | |
S | 1 | <0.001 *** | 1 | 0.072 | <1 | 0.003 ** | <1 | <0.001 *** |
C | 8 | <0.001 *** | 4 | 0.005 ** | 11 | <0.001 *** | 2 | <0.001 *** |
T | 35 | <0.001 *** | 25 | <0.001 *** | 34 | <0.001 *** | 46 | <0.001 *** |
S × C | <1 | 0.268 | <1 | 0.456 | <1 | 0.045 * | <1 | <0.001 *** |
S × T | 1 | 0.003 ** | 7 | 0.001 ** | <1 | <0.001 *** | 4 | <0.001 *** |
C × T | 50 | <0.001 *** | 32 | <0.001 *** | 5 | <0.001 *** | 41 | <0.001 *** |
S × C × T | 1 | 0.005 ** | 10 | 0.002 ** | <1 | 0.446 | 4 | <0.001 *** |
Day | SV | CLPP Indices | Carbon Substrate Groups | ||||||
---|---|---|---|---|---|---|---|---|---|
PC 1 | PC 2 | PC 1 | PC 2 | ||||||
VE | p | VE | p | VE | p | VE | p | ||
1 | S | 8 | <0.001 *** | <1 | 0.758 | 2 | 0.032 * | <1 | 0.942 |
C | 86 | <0.001 *** | 10 | 0.379 | 94 | <0.001 *** | 45 | 0.002 ** | |
S × C | 3 | 0.014 * | 35 | 0.051 | <1 | 0.955 | 31 | 0.007 ** | |
15 | S | 5 | 0.009 ** | <1 | 0.849 | 3 | <0.001 *** | 40 | <0.001 *** |
C | 86 | <0.001 *** | 4 | 0.725 | 96 | <0.001 *** | 33 | <0.001 *** | |
S × C | 4 | 0.057 | 26 | 0.154 | <1 | 0.080 | 22 | <0.001 *** | |
30 | S | 11 | <0.001 *** | 27 | 0.007 ** | <1 | 0.500 | 7 | 0.033 * |
C | 81 | <0.001 *** | 39 | 0.007 ** | 98 | <0.001 *** | 33 | 0.001 ** | |
S × C | 3 | 0.066 | 3 | 0.569 | <1 | 0.194 | 47 | <0.001 *** | |
60 | S | <1 | 0.592 | 5 | 0.201 | <1 | 0.438 | 13 | 0.027 * |
C | 92 | <0.001 *** | <1 | 0.959 | 8 | <0.001 *** | 47 | 0.002 ** | |
S × C | <1 | 0.907 | 66 | <0.001 *** | 3 | 0.214 | 16 | 0.050 * | |
90 | S | <1 | 0.332 | 9 | 0.114 | <1 | 0.514 | 59 | <0.001 *** |
C | 93 | <0.001 *** | 46 | 0.010 * | 99 | <0.001 *** | 1 | 0.210 | |
S × C | 1 | 0.334 | 6 | 0.435 | <1 | 0.780 | 36 | <0.001 *** |
Parameter | Day | Treatment | |||||
---|---|---|---|---|---|---|---|
EM1 | EM10 | R | EM1+R | EM10+R | |||
AWCD | 1 | 0.650Bab | 0.237Cc | 0.617BCb | 0.889Aa | 0.399BCbc | 0.558B |
15 | 0.817ABa | 0.386BCb | 0.703ABa | 0.382Bb | 0.788Aa | 0.615B | |
30 | 0.688ABab | 0.774Aa | 0.438Cbc | 0.403Bc | 0.273Cc | 0.515B | |
60 | 0.925Aa | 0.770Aa | 0.907Aa | 0.859Aa | 0.670ABa | 0.826A | |
90 | 0.838ABa | 0.592ABb | 0.431Cb | 0.863Aa | 0.574ABb | 0.659B | |
Substrate richness (R) | 1 | 0.619Cb | 0.283Ec | 0.621Bb | 0.888Aa | 0.581Bb | 0.598B |
15 | 0.656Ca | 0.523Db | 0.689Ba | 0.527Bb | 0.297Dc | 0.538B | |
30 | 0.814Ba | 0.780Ba | 0.522Cb | 0.442Cc | 0.407Cc | 0.593B | |
60 | 0.933Aa | 0.641Cb | 0.493Cc | 0.552Bbc | 0.573Bb | 0.638B | |
90 | 0.892ABa | 0.962Aa | 0.947Aa | 0.892Aa | 0.771Ab | 0.893A | |
Shannon-Wiener index (H) | 1 | 0.687Ba | 0.426Cc | 0.671Cab | 0.722BCa | 0.581Db | 0.617B |
15 | 0.572Cbc | 0.487Cc | 0.563Dbc | 0.704Ca | 0.624CDab | 0.590B | |
30 | 0.929Aa | 0.903Aab | 0.771Bc | 0.816Bbc | 0.885Aab | 0.861A | |
60 | 0.935Aa | 0.917Aa | 0.691BCb | 0.752BCb | 0.688BCb | 0.797A | |
90 | 0.973Aa | 0.689Bb | 0.918Aa | 0.951Aa | 0.749Bb | 0.856A | |
Evenness (E) | 1 | 0.801Ba | 0.676Bb | 0.784BCab | 0.747Bab | 0.691Bab | 0.740B |
15 | 0.659Ca | 0.607Bab | 0.716Ca | 0.603Cab | 0.497Cb | 0.616C | |
30 | 0.889ABab | 0.769ABb | 0.928Aa | 0.938Aa | 0.906Aa | 0.886A | |
60 | 0.957Aa | 0.847Aab | 0.858ABab | 0.902Aab | 0.826Ab | 0.878A | |
90 | 0.938Aab | 0.717Bc | 0.908ABab | 0.964Aa | 0.824Abc | 0.870A |
Parameter | Day | Treatment | |||||
---|---|---|---|---|---|---|---|
EM1 | EM10 | R | EM1+R | EM10+R | |||
AWCD amines | 1 | 0.757Ba | 0.281Cc | 0.414Cb | 0.282Cc | 0.224Dc | 0.392B |
15 | 0.344Cb | 0.080Dc | 0.086Dc | 0.666Aa | 0.389Cb | 0.313B | |
30 | 0.893Aa | 0.408Bd | 0.614Bc | 0.542Bc | 0.734Ab | 0.638A | |
60 | 0.941Aa | 0.491Bb | 0.340Cc | 0.350Cc | 0.205Dd | 0.465B | |
90 | 0.891Aa | 0.876Aa | 0.854Aa | 0.543Bb | 0.519Bb | 0.736A | |
AWCD amino acids | 1 | 0.749Ba | 0.161Cb | −0.194Cc | −0.222Cc | 0.219Cb | 0.143C |
15 | 0.897Aa | 0.472Bb | 0.493Bb | 0.539Bb | 0.904Aa | 0.661B | |
30 | 0.932Aa | 0.565Bb | 0.530Bb | 0.551Bb | 0.324Bc | 0.580B | |
60 | 0.863Ab | 0.889Aab | 0.885Aab | 0.963Aa | 0.976Aa | 0.915A | |
90 | 0.886Ab | 0.984Aa | 0.928Aab | 0.956Aab | 0.925Aab | 0.936A | |
AWCD carbohydrates | 1 | 0.348Bb | 0.137Bc | −0.068Dd | −0.014Dcd | 0.738ABa | 0.228D |
15 | 0.957Aa | 0.263Bd | 0.440Cbc | 0.329Cc | 0.582Bb | 0.514C | |
30 | 0.945Aa | 0.978Aa | 0.484BCb | 0.444Cb | 0.416Cb | 0.653BC | |
60 | 0.879Aa | 0.945Aa | 0.617Bb | 0.625Bb | 0.599Bb | 0.733AB | |
90 | 0.907Aa | 0.893Aa | 0.853Aa | 0.950Aa | 0.864Aa | 0.893A | |
AWCD carboxylic acids | 1 | 0.512CDab | 0.057Cd | 0.128Ccd | 0.709Ba | 0.343Bbc | 0.350C |
15 | 0.596Cb | 0.333Bc | 0.596Bb | 0.640Bb | 0.930Aa | 0.619B | |
30 | 0.890Aa | 0.285BCb | −0.301Dc | −0.421Cc | −0.529Dc | −0.015C | |
60 | 0.306Db | 0.777Aa | −0.244Dc | −0.318Cc | −0.246Cc | 0.055C | |
90 | 0.901Aa | 0.950Aa | 0.950Aa | 0.952Aa | 0.909Aa | 0.933A | |
AWCD miscellaneous | 1 | 0.548Cb | 0.190Cc | 0.934ABa | 0.498Cb | 0.156Cc | 0.465AB |
15 | 0.604Cc | 0.358Bd | 0.961Aa | 0.834Ab | 0.662Ac | 0.684A | |
30 | 0.731Bb | 0.484Ac | 0.883ABa | 0.693Bb | 0.269Bd | 0.612AB | |
60 | 0.923Aa | 0.113Cc | 0.774Cb | 0.886Aa | 0.050Dc | 0.550AB | |
90 | 0.876Aa | −0.220Dc | 0.853BCa | 0.739Bb | −0.189Ec | 0.412B | |
AWCD polymers | 1 | 0.906Aab | 0.488Bd | 0.980Aa | 0.860Bb | 0.700Bc | 0.787AB |
15 | 0.942Aa | 0.433BCc | 0.875Bab | 0.821Bb | 0.266Cd | 0.668B | |
30 | 0.887Aa | 0.336Cc | 0.778Bb | 0.975Aa | 0.380Cc | 0.671B | |
60 | 0.935Aa | 0.881Aa | 0.960ABa | 0.913ABa | 0.917Aa | 0.921A | |
90 | 0.948Aa | 0.870Aa | 0.939ABa | 0.910ABa | 0.848Aa | 0.903A |
SV/Parameter | AWCD | R | H | E | Amines | |||||
VE | p | VE | p | VE | p | VE | p | VE | p | |
Tr | 58 | <0.01 ** | 50 | <0.01 ** | 73 | <0.001 *** | 13 | 0.019 * | 37 | <0.01 ** |
T | 16 | <0.01 ** | 19 | <0.01 ** | 3 | <0.001 *** | 5 | 0.306 | 15 | <0.01 ** |
Tr × T | 26 | <0.01 ** | 28 | <0.01 ** | 21 | <0.001 *** | 30 | 0.060 | 46 | <0.01 ** |
SV/Parameter | Amino acids | Carbohydrates | Carboxylic Acids | Miscellaneous | Polymers | |||||
VE | p | VE | p | VE | p | VE | p | VE | p | |
Tr | 36 | <0.01 ** | 26 | <0.01 ** | 60 | <0.01 ** | 47 | <0.001 *** | 51 | <0.01 ** |
T | 34 | <0.01 ** | 35 | <0.01 ** | 14 | <0.01 ** | 10 | <0.001 *** | 15 | <0.01 ** |
Tr × T | 30 | <0.01 ** | 37 | <0.01 ** | 24 | <0.01 ** | 36 | <0.001 *** | 33 | <0.01 ** |
Parameter | Treatment | |||||
---|---|---|---|---|---|---|
EM1 | EM10 | R | EM1+R | EM10+R | ||
AWCD | 0.294a | 0.338a | −0.325b | −0.148ab | 0.140ab | 0.060 |
Substrate richness (RS) | 0.702b | 0.950a | 0.841ab | 0.190d | 0.450c | 0.627 |
Shannon−Wiener index (H) | 0.881a | 0.391b | 0.649ab | 0.750a | 0.324b | 0.599 |
Evenness (E) | 0.614ab | 0.044c | 0.441ab | 0.791a | 0.291bc | 0.436 |
AWCD amines | 0.266ab | 0.673a | 0.506ab | 0.073b | 0.104ab | 0.324 |
AWCD amino acids | −0.486c | 0.841a | 0.654a | 0.777a | 0.323b | 0.422 |
AWCD carbohydrates | 0.457a | 0.565a | 0.607a | 0.849a | −0.350b | 0.426 |
AWCD carboxylic acids | 0.516b | 0.890a | 0.872a | 0.521b | 0.658ab | 0.691 |
AWCD miscellaneous | 0.776a | −0.087b | −0.192b | 0.602a | −0.020b | 0.216 |
AWCD polymers | 0.462a | 0.775a | −0.248b | 0.469a | 0.572a | 0.406 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cycoń, M.; Markowicz, A.; Wąsik, T.J.; Piotrowska-Seget, Z. Application of Erythromycin and/or Raoultella sp. Strain MC3 Alters the Metabolic Activity of Soil Microbial Communities as Revealed by the Community Level Physiological Profiling Approach. Microorganisms 2020, 8, 1860. https://doi.org/10.3390/microorganisms8121860
Cycoń M, Markowicz A, Wąsik TJ, Piotrowska-Seget Z. Application of Erythromycin and/or Raoultella sp. Strain MC3 Alters the Metabolic Activity of Soil Microbial Communities as Revealed by the Community Level Physiological Profiling Approach. Microorganisms. 2020; 8(12):1860. https://doi.org/10.3390/microorganisms8121860
Chicago/Turabian StyleCycoń, Mariusz, Anna Markowicz, Tomasz J. Wąsik, and Zofia Piotrowska-Seget. 2020. "Application of Erythromycin and/or Raoultella sp. Strain MC3 Alters the Metabolic Activity of Soil Microbial Communities as Revealed by the Community Level Physiological Profiling Approach" Microorganisms 8, no. 12: 1860. https://doi.org/10.3390/microorganisms8121860
APA StyleCycoń, M., Markowicz, A., Wąsik, T. J., & Piotrowska-Seget, Z. (2020). Application of Erythromycin and/or Raoultella sp. Strain MC3 Alters the Metabolic Activity of Soil Microbial Communities as Revealed by the Community Level Physiological Profiling Approach. Microorganisms, 8(12), 1860. https://doi.org/10.3390/microorganisms8121860