Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Submerged Fermentation of Fungal Strain
2.2. Biomass Separation, Extraction and Quantification of the Polyketide-Based Pigments
2.3. HPLC-DAD Analysis
2.4. UHPLC-HR-ESI-MS Analyses
3. Results
3.1. Alternative Extraction and Characterization of Monascus-Like Azaphilone Pigments from the Marine-Derived Talaromyces sp. 30570 Strain
3.2. Influence of the Nutrients Profile on the Production of Monascus-Like Azaphilone Red Pigments by the Marine-Derived Talaromyces sp. 30570 Strain
4. Discussion
4.1. Efficiency and Selectivity of the Alternative Pressurized Liquid Extraction (PLE) of Azaphilone Red Pigments from the Mycelial Cells of the Marine-Derived Talaromyces sp. 30570
4.2. Putative Metabolic Pathway for the Production of Derivatives of Nitrogen-Containing Monascus-Like Azaphilone Red Pigments in the Marine-Derived Talaromyces sp. 30570
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016, 79, 629–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2018, 35, 8–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dufossé, L.; Fouillaud, M.; Caro, Y.; Mapari, S.A.S.; Sutthiwong, N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr. Opin. Biotech. 2014, 26, 56–61. [Google Scholar] [CrossRef]
- Akilandeswari, P.; Pradeep, B.V. Exploration of industrially important pigments from soil fungi. Appl. Microbiol. Biotechnol. 2016, 100, 1631–1643. [Google Scholar] [CrossRef]
- Caro, Y.; Venkatachalam, M.; Lebeau, J.; Fouillaud, M.; Dufossé, L. Pigments and colorants from filamentous fungi. In Fungal Metabolites. Reference Series in Phytochemistry; Merillon, J.M., Ramawat, K.G., Eds.; Springer: Cham, Switzerland, 2017; pp. 499–568. [Google Scholar]
- Fouillaud, M.; Venkatachalam, M.; Girard-Valenciennes, E.; Caro, Y.; Dufossé, L. Anthraquinones and derivatives from marine-derived fungi: Structural diversity and selected biological activities. Mar. Drugs 2016, 14, 64. [Google Scholar] [CrossRef] [Green Version]
- Caro, Y.; Anamale, L.; Fouillaud, M.; Laurent, P.; Petit, T.; Dufossé, L. Natural hydroxyanthraquinoid pigments as potent food grade colorants: An overview. Nat. Prod. Bioprospect. 2012, 2, 174–193. [Google Scholar] [CrossRef]
- Arikan, E.B.; Canli, O.; Caro, Y.; Dufossé, L.; Dizge, N. Production of bio-based pigments from food processing industry by-products (apple, pomegranate, black carrot, red beet pulps) using Aspergillus carbonarius. J. Fungi 2020, 6, 240. [Google Scholar] [CrossRef] [PubMed]
- Mapari, S.A.S.; Thrane, U.; Meyer, A.S. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010, 28, 300–307. [Google Scholar] [CrossRef]
- Lagashetti, A.C.; Dufossé, L.; Singh, S.K.; Singh, P.N. Fungal pigments and their prospects in different industries. Microorganisms 2019, 7, 604. [Google Scholar] [CrossRef] [Green Version]
- Jannel, S.; Caro, Y.; Bermudes, M.; Petit, T. Novel insights into the biotechnological production of Haematococcus pluvialis-derived astaxanthin: Advances and key challenges to allow its industrial use as novel food ingredient. J. Mar. Sci. Eng. 2020, 8, 789. [Google Scholar] [CrossRef]
- Jůzlová, P.; Martínková, L.; Křen, V. Secondary metabolites of the fungus Monascus: A review. J. Ind. Microbiol. 1996, 16, 163–170. [Google Scholar] [CrossRef]
- Balakrishnan, B.; Karki, S.; Chiu, S.H.; Kim, H.J.; Suh, J.W.; Nam, B.; Yoon, Y.-M.; Chen, C.-C.; Kwon, H.-J. Genetic localization and in vivo characterization of a Monascus azaphilone pigment biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 2013, 97, 6337–6345. [Google Scholar] [CrossRef] [PubMed]
- Ogihara, J.; Kato, J.; Oishi, K.; Fujimoto, Y. PP-R, 7-(2-hydroxyethyl)-monascorubramine, a red pigment produced in the mycelia of Penicillium sp. AZ. J. Biosci. Bioeng. 2001, 91, 44–47. [Google Scholar] [CrossRef]
- Mapari, S.A.; Meyer, A.S.; Thrane, U.; Frisvad, J.C. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale. Microb. Cell Fact. 2009, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Frisvad, J.C.; Yilmaz, N.; Thrane, U.; Rasmussen, K.B.; Houbraken, J.; Samson, R.A. Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS ONE 2013, 8, e84102. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.C.; Lam, C.-W.; Tam, E.W.T.; Lee, K.-C.; Yung, K.K.Y.; Leung, C.K.F.; Sze, K.-H.; Lau, S.K.P.; Yuen, K.-Y. The biosynthetic pathway for a thousand-year-old natural food colorant and citrinin in Penicillium marneffei. Sci. Rep. 2014, 4, 6728. [Google Scholar] [CrossRef]
- Gomes, D.C.; Takahashi, J.A. Sequential fungal fermentation-biotransformation process to produce a red pigment from sclerotiorin. Food Chem. 2016, 210, 355–361. [Google Scholar] [CrossRef]
- Morales-Oyervides, L.; Ruiz-Sánchez, J.P.; Oliveira, J.C.; Sousa-Gallagher, M.J.; Méndez-Zavala, A.; Giuffrida, D.; Dufossé, L.; Montañez, J. Biotechnological approaches for the production of natural colorants by Talaromyces/Penicillium: A review. Biotechnol. Adv. 2020, 43, 107601. [Google Scholar] [CrossRef]
- Chen, W.; Chen, R.; Liu, Q.; He, Y.; He, K.; Ding, X.; Kang, L.; Guo, X.; Xie, N.; Zhou, Y.; et al. Orange, red, yellow: Biosynthesis of azaphilone pigments in Monascus fungi. Chem. Sci. 2017, 8, 4917–4925. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Feng, Y.; Molnár, I.; Chen, F. Nature and nurture: Confluence of pathway determinism with metabolic and chemical serendipity diversifies: Monascus azaphilone pigments. Nat. Prod. Rep. 2019, 36, 561–572. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, J.; Huang, Y.; Xin, Q.; Wang, Z. Diversifying of chemical structure of native Monascus pigments. Front. Microbiol. 2018, 9, 3143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, D.R.; Adhikari, N. An overview on common organic solvents and their toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green extraction of natural products: Concept and principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebeau, J.; Venkatachalam, M.; Fouillaud, M.; Petit, T.; Vinale, F.; Dufossé, L.; Caro, Y. Production and new extraction method of polyketide red pigments produced by ascomycetous fungi from terrestrial and marine habitats. J. Fungi 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Lebeau, J.; Petit, T.; Clerc, P.; Dufossé, L.; Caro, Y. Isolation of two novel purple naphthoquinone pigments concomitant with the bioactive red bikaverin and derivates thereof produced by Fusarium oxysporum. Biotechnol. Prog. 2019, 35, e2738. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.S.; Borges, L.L.; Paula, J.R.; Conceição, E.C. Impact of different extraction methods on the quality of Dipteryx alata extracts. Rev. Bras. Farmacogn. 2013, 23, 521–526. [Google Scholar] [CrossRef] [Green Version]
- Fouillaud, M.; Venkatachalam, M.; Llorente, M.; Magalon, H.; Cuet, P.; Dufossé, L. Biodiversity of pigmented fungi isolated from marine environment in La Réunion island, Indian Ocean: New resources for colored metabolites. J. Fungi 2017, 3, 36. [Google Scholar] [CrossRef]
- Klitgaard, A.; Iversen, A.; Andersen, M.R.; Larsen, T.O.; Frisvad, J.C.; Nielsen, K.F. Aggressive dereplication using UHPLC-DAD-QTOF: Screening extracts for up to 3000 fungal secondary metabolites. Anal. Bioanal. Chem. 2014, 406, 1933–1943. [Google Scholar] [CrossRef] [Green Version]
- Rasmussen, K.B. Talaromyces atroroseus: Genome Sequencing, Monascus Pigments and Azaphilone Gene Cluster Evolution. Ph.D. Thesis, Technical University of Danemark, Kongens Lyngby, Danemark, 2015. [Google Scholar]
- Izawa, S.; Harada, N.; Watanabe, T.; Kotokawa, N.; Yamamoto, A.; Hayatsu, H.; Arimoto-Kobayashi, S. Inhibitory effects of food-coloring agents derived from Monascus on the mutagenicity of heterocyclic amines. J. Agric. Food Chem. 1997, 45, 3980–3984. [Google Scholar] [CrossRef]
- Yuliana, A.; Singgih, M.; Julianti, E.; Blanc, P.J. Derivates of azaphilone Monascus pigments. Biocatal. Agric. Biotechnol. 2017, 9, 183–194. [Google Scholar] [CrossRef]
- Mukherjee, G.; Singh, S.K. Purification and characterization of a new red pigment from Monascus purpureus in submerged fermentation. Process. Biochem. 2011, 46, 188–192. [Google Scholar] [CrossRef]
- Venkatachalam, M.; Zelena, M.; Cacciola, F.; Ceslova, L.; Girard-Valenciennes, E.; Clerc, P.; Dugo, P.; Mondello, L.; Fouillaud, M.; Rotondo, A.; et al. Partial characterization of the pigments produced by the marine-derived fungus Talaromyces albobiverticillius 30548. Towards a new fungal red colorant for the food industry. J. Food Compos. Anal. 2018, 67, 38–47. [Google Scholar]
- Hajjaj, H.; Klaebe, A.; Loret, M.O.; Tzedakis, T.; Goma, G.; Blanc, P.J. Production and Identification of N-Glucosylrubropunctamine and N-Glucosylmonascorubramine from Monascus ruber and occurrence of electron donor-acceptor complexes in these red pigments. Appl. Environ. Microbiol. 1997, 63, 2671–2678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.; Kim, C.; Kim, K.; Shin, C.S. Color characteristics of Monascus pigments derived by fermentation with various amino acids. J. Agric. Food Chem. 2003, 51, 1302–1306. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Zjawiony, J.; Wortsman, J.; Gandy, M.N.; Li, J.; Zbytek, B.; Li, W.; Tuckey, R.C. Enzymatic metabolism of ergosterol by cytochrome P450scc to biologically active 17α,24-dihydroxyergosterol. Chem. Biol. 2005, 12, 931–939. [Google Scholar] [CrossRef] [Green Version]
- Dame, Z.T.; Silima, B.; Gryzenhout, M.; van Ree, T. Bioactive compounds from the endophytic fungus Fusarium proliferatum. Nat. Prod. Res. 2016, 30, 1301–1304. [Google Scholar] [CrossRef]
- Lebeau, J.; Petit, T.; Dufossé, L.; Caro, Y. Putative metabolic pathway for the bioproduction of bikaverin and intermediates thereof in the wild Fusarium oxysporum LCP531 strain. AMB Express 2019, 9, 186. [Google Scholar] [CrossRef]
- Ogihara, J.; Oishi, K. Effect of ammonium nitrate on the production of PP-V and monascorubrin homologues by Penicillium sp. AZ. J. Biosci. Bioeng. 2002, 93, 54–59. [Google Scholar] [CrossRef]
- Arai, T.; Umemura, S.; Ota, T.; Ogihara, J.; Kato, J.; Kasumi, T. Effects of inorganic nitrogen sources on the production of PP-V [(10Z)-12-carboxyl-monascorubramine] and the expression of the nitrate assimilation gene cluster by Penicillium sp. AZ, Biosci. Biotechnol. Biochem. 2012, 76, 120–124. [Google Scholar] [CrossRef] [Green Version]
- Padmavathi, T.; Prabhudessai, T. A solid liquid state culture method to stimulate Monascus pigments by intervention of different substrates. Int. Res. J. Biol. Sci. 2013, 2, 22–29. [Google Scholar]
- Liew, F.; Martin, M.E.; Tappel, R.C.; Heijstra, B.D.; Mihalcea, C.; Köpke, M. Gas Fermentation—A flexible platform for commercial scale production of low-carbon-fuels and chemicals from waste and renewable feedstocks. Front. Microbiol. 2016, 7, 694. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.C.; Sohn, J.; Voogt, J.; Nilsson, A.E.; Birkved, M.; Olsen, S.I. Insights from combining techno-economic and life cycle assessment—A case study of polyphenol extraction from red wine pomace. Resour. Conserv. Recycl. 2020, 100045. [Google Scholar] [CrossRef]
- Gao, J.-M.; Yang, S.-X.; Qin, J.-C. Azaphilones: Chemistry and biology. Chem. Rev. 2013, 113, 4755–4811. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Tao, H.; Chen, W.; Yang, B.; Zhou, X.; Luo, X.; Liu, Y. Recent advances in the chemistry and biology of azaphilones. RSC Adv. 2020, 10, 10197–10220. [Google Scholar] [CrossRef] [Green Version]
- Tolborg, G.; Ødum, A.S.R.; Isbrandt, T.; Larsen, T.O.; Workman, M. Unique processes yielding pure azaphilones in Talaromyces atroroseus. Appl. Microbiol. Biotechnol. 2020, 104, 603–613. [Google Scholar] [CrossRef]
- Isbrandt, T.; Tolborg, G.; Ødum, A.; Workman, M.; Larsen, T.O. Atrorosins: A new subgroup of Monascus pigments from Talaromyces atroroseus. Appl. Microbiol. Biotechnol. 2020, 104, 615–622. [Google Scholar] [CrossRef]
- Peterson, S.W.; Jurjevic, Z. The Talaromyces pinophilus species complex. Fungal Biol. 2019, 123, 745–762. [Google Scholar] [CrossRef]
No | Rt. (min) | UV-Vis λmax (nm) | Observed Peak HR-ESI MS (m/z) | Tentative Identification (Identified or Assumed Compounds) | Proposed Molecular Formula | Monoisotopic Mass in Da (Mass Error) (1) | Ref. |
---|---|---|---|---|---|---|---|
1 | 1.71 | 201, 216, 244, 276, 423, 514 | n.d. | Diglycoside derivative of a Monascus-like azaphilone red pigment (n.i.) | n.d. | n.d. | - |
2 | 28.52 | 192, 245, 274, 421, 515 | 488.1820 [M + CAN + Na]+ | PP-R [7-(2-hydroxyethyl)-monascorubramin] | C25H31NO5 | 425.22 (0.0380) | [14,15,16] |
3 | 29.60 | 193, 245, 274, 421, 518 | 416.1960 [M + H]+ | Glycyl-rubropunctatin | C23H27NO6 | 413.18 (2.0160) | [31,32,33] |
4 | 30.15 | 193, 245, 274, 426, 515 | 440.1936 [M + H]+ | N-GABA-rubropunctatin (GABA: γ-aminobutyric acid) | C25H29NO6 | 439.51 (0.3164) | [20] |
5 | 30.97 | 195, 245, 274, 424, 520 | 456.1543 [M + H]+ | N-threonyl-rubropunctamin (or acid form of PP-R) (presumed) | C25H29N07 | 455.20 (0.0457) | [25,30] |
6 | 32.66 | 193, 218, 250, 287, 424, 546 | 498.1665 [M + H]+ | 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V | C27H31N08 | 497.54 (0.3735) | [28,34] |
7 | 36.11 | 196, 247, 288, 422, 522 | 542.1598 [M + H]+ | N-glutaryl-monascorubraminic acid | C28H31N010 | 541.20 (0.038) | [30] |
8 | 38.04 | 193, 246, 273, 426, 521 | 484.1910 [M+H]+ | N-threonine-monascorubramin | C27H33N07 | 483.55 (0.0402) | [34] |
9 | 39.10 | 193, 216, 250, 277, 426, 532 | 484.5110 [M + H]+ 546.1556 [M + CAN + Na]+ | N-glutaryl-rubropunctamin | C26H29N08 | 483.51 (0.0010) | [15,34,35,36] |
10 | 43.95 | 193, 245, 272, 424, 519 | 381.1198 [M + H]+ | Monascorubramin | C23H27NO4 | 381.19 (1.0702) | [15,16] |
11 | 70.40 | 192, 248, 271, 282, 293, 434, 513 | n.d. | Derivative of a Monascus-like azaphilone red pigment (n.i.) | n.d. | n.d | - |
12 | 70.64 | 192, 248, 271, 282, 293, 434, 510 | n.d. | Derivative of a Monascus-like azaphilone red pigment (n.i.) | n.d. | n.d. | - |
13 | 69.78 | 192, 248, 271, 282, 293 | 393.2693 | Ergosterol (colorless compound) | C28H44O | 396.65 (0.3807) | [37,38] |
No | Rt. (min) | UV-Vis λmax (nm) (Bold: λmax in Visible) | Tentative Identification (Identified or Assumed Compounds) | Polyketide-Based Compounds Content (meqv.L−1) | |
---|---|---|---|---|---|
in PDB (1) | in DMD (1) | ||||
1 | 1.71 | 201, 216, 244, 276, 423, 514 | Diglycoside derivative of a Monascus-like azaphilone red pigment | 124.8 ± 5.0 | - |
2 | 28.52 | 192, 245, 274, 421, 515 | PP-R [7-(2-hydroxyethyl)-monascorubramin] | 6.7 ± 0.4 | - |
3 | 29.60 | 193, 245, 274, 421, 518 | Glycyl-rubropunctatin | 22.1 ± 1.3 | 7.3 ± 0.3 |
4 | 30.15 | 193, 245, 274, 426, 515 | N-GABA-rubropunctatin (GABA: γ-aminobutyric acid) | 8.0 ± 0.3 | 4.9 ± 0.4 |
5 | 30.97 | 195, 245, 274, 424, 520 | N-threonyl-rubropunctamin (or acid form of PP-R) | 83.4 ± 4.1 | 9.0 ± 0.8 |
6 | 32.66 | 193, 218, 250, 287, 424, 546 | 6-[(Z)-2-Carboxyvinyl]-N-GABA-PP-V | 33.5 ± 1.3 | - |
7 | 36.11 | 196, 247, 288, 422, 522 | N-glutaryl-monascorubraminic acid | 7.3 ± 0.4 | - |
8 | 38.04 | 193, 246, 273, 426, 521 | N-threonine-monascorubramin | 24.3 ± 0.6 | - |
9 | 39.10 | 193, 216, 250, 277, 426, 532 | N-glutaryl-rubropunctamin | 5.7 ± 0.2 | - |
10 | 43.95 | 193, 245, 272, 424, 519 | Monascorubramin | 19.6 ± 0.9 | - |
11 | 70.40 | 192, 248, 271, 282, 293, 434, 513 | Derivative of a Monascus-like azaphilone red pigment (n.i.) | 4.1 ± 0.2 | - |
12 | 70.64 | 192, 248, 271, 282, 293, 434, 510 | Derivative of a Monascus-like azaphilone red pigment (n.i.) | 4.2 ± 0.4 | - |
13 | 69.78 | 192, 248, 271, 282, 293 | Ergosterol (colorless compound) | 24.0 ± 1.0 | 73.8 ± 1.9 |
14 | 1.63 | 198, 260 | Colorless compound (n.i.) | - | 31.1 ± 1.2 |
15 | 2.01 | 196, 258 | Colorless compound (n.i.) | - | 6.1 ± 0.3 |
16 | 23.79 | 203, 256, 298 | Colorless compound (n.i.) | - | 6.3 ± 0.3 |
17 | 25.93 | 196, 264, 278, 479 | Yellow pigment (n.i.) | - | 5.2 ± 0.2 |
18 | 32.03 | 193, 252, 294, 428, 546 | Purple-red pigment (n.i.) | - | 5.0 ± 0.3 |
19 | 32.73 | 192, 220, 246, 289, 415, 546 | Purple-red pigment (n.i.) | - | 3.8 ± 0.3 |
20 | 36.30 | 193, 260, 274 | Colorless compound (n.i.) | - | 2.7 ± 0.2 |
21 | 38.57 | 192, 211, 243, 391 | Colorless compound (n.i.) | - | 1.5 ± 0.2 |
22 | 40.21 | 210, 292, 421 | Colorless compound (n.i.) | - | 0.4 ± 0.1 |
23 | 43.43 | 192, 280, 409, 431 | Yellow pigment (n.i.) | - | 0.4 ± 0.1 |
24 | 52.93 | 192, 248, 271, 282, 293, 414 | Yellow pigment (n.i.) | - | 17.4 ± 1.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lebeau, J.; Petit, T.; Fouillaud, M.; Dufossé, L.; Caro, Y. Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance. Microorganisms 2020, 8, 1920. https://doi.org/10.3390/microorganisms8121920
Lebeau J, Petit T, Fouillaud M, Dufossé L, Caro Y. Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance. Microorganisms. 2020; 8(12):1920. https://doi.org/10.3390/microorganisms8121920
Chicago/Turabian StyleLebeau, Juliana, Thomas Petit, Mireille Fouillaud, Laurent Dufossé, and Yanis Caro. 2020. "Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance" Microorganisms 8, no. 12: 1920. https://doi.org/10.3390/microorganisms8121920
APA StyleLebeau, J., Petit, T., Fouillaud, M., Dufossé, L., & Caro, Y. (2020). Alternative Extraction and Characterization of Nitrogen-Containing Azaphilone Red Pigments and Ergosterol Derivatives from the Marine-Derived Fungal Talaromyces sp. 30570 Strain with Industrial Relevance. Microorganisms, 8(12), 1920. https://doi.org/10.3390/microorganisms8121920