Improved Exopolymer Production by Chromohalobacter canadensis Cultures for Its Potential Cosmeceutical Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strain
2.2. Operation Conditions
2.3. Analytical Methods
2.4. In Vitro Bioactivity Test
3. Results
3.1. Effect of the Dilution Rate on EP Production
3.2. In Vitro Bioactivity Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Qillaguaman, J.; Guzman, H.; Van-Thuoc, D.; Hatti-Kaul, R. Synthesis and production of polyhydroxyalkanoates by halophiles: Current potential and future prospects. Appl. Microbiol. Biotechnol. 2010, 85, 1687–1696. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, Y.; Chen, G.Q. Halophiles as chassis for bioproduction. Adv. Biosyst. 2018, 2, 1800088. [Google Scholar] [CrossRef]
- Yue, H.; Ling, C.; Yang, T.; Chen, X.; Chen, Y.; Deng, H.; Wu, Q.; Chen, J.; Chen, G.Q. A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol. Biofuels 2014, 7, 108. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.Q.; Jiang, X.R. Next generation industrial biotechnology based on extremophilic bacteria. Curr. Opin. Biotechnol. 2018, 50, 94–100. [Google Scholar] [CrossRef]
- Krebs, J.E.; Vaishampayan, P.; Probst, A.J.; Tom, L.M.; Marteinsson, V.G.; Andersen, G.L.; Venkateswaran, K. Microbial community structures of novel Icelandic hot spring systems revealed by PhyloChip G3 analysis. Astrobiology 2014, 14, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Mitra, R.; Xu, T.; Xiang, H.; Han, J. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory. Microb. Cell Fact. 2020, 19, 86. [Google Scholar] [CrossRef]
- Oren, A. Industrial and environmental applications of halophilic microorganisms. Environ. Technol. 2010, 31, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.; Xue, Y.S.; Aibaidula, G.; Chen, G.Q. Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresour. Technol. 2011, 102, 8130–8136. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, S.; Singh, D. Microbial polyhydroxyalkanoates from extreme niches: Bioprospection status, opportunities and challenges. Int. J. Biol. Macromol. 2020, 147, 1255–1267. [Google Scholar] [CrossRef]
- Radchenkova, N.; Boyadzhieva, I.; Atanasova, N.; Poli, A.; Finore, I.; Di Donato, P.; Nicolaus, B.; Panchev, I.; Kuncheva, M.; Kambourova, M. Extracellular polymer substance synthesized by a halophilic bacterium Chromohalobacter canadensis 28. Appl. Microbiol. Biotechnol. 2018, 102, 4937–4949. [Google Scholar] [CrossRef]
- Radchenkova, N.; Boyadzhieva, I.; Hasköylü, M.E.; Atanasova, N.; Yıldız, S.Y.; Kuncheva, M.J.; Panchev, I.; Kisov, H.; Vassilev, S.; Oner, E.T.; et al. High bioreactor production and emulsifying activity of an unusual exopolymer by Chromohalobacter canadensis 28. Eng. Life Sci. 2020, 20, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Delbarre-Ladrat, C.; Sinquin, C.; Lebellenger, L.; Zykwinska, A.; Colliec-Jouault, S. Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front. Chem. 2014, 2, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mende, S.; Krzyzanowski, L.; Weber, J.; Jaros, D.; Rohm, H. Growth and exopolysaccharide yield of Lactobacillus delbrueckii ssp. bulgaricus DSM 20081 in batch and continuous bioreactor experiments at constant pH. J. Biosci. Bioeng. 2012, 113, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Radchenkova, N.; Panchev, I.; Vassilev, S.; Kuncheva, M.; Dobreva, S.; Kambourova, M. Continuous cultivation of a thermophilic bacterium Aeribacillus pallidus 418 for production of an exopolysaccharide applicable in cosmetic creams. J. Appl. Microbiol. 2015, 119, 1301–1309. [Google Scholar] [CrossRef]
- Mainka, T.; Mahler, N.; Herwig, C.; Pflügl, S. Soft sensor-based monitoring and efficient control strategies of biomass concentration for continuous cultures of Haloferax mediterranei and their application to an industrial production chain. Microorganisms 2019, 7, 648. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.I.; Martínez, B.; Guillén, R.; Jiménez-Díaz, R.; Rodríguez, A. Culture conditions determine the balance between two different exopolysaccharides produced by Lactobacillus pentosus LPS26. Appl. Environ. Microbiol. 2006, 72, 7495–7502. [Google Scholar] [CrossRef] [Green Version]
- Kambourova, M.; Toksoy Oner, E.; Poli, A. Exopolysaccharides from prokaryotic microorganisms—promising sources for white biotechnology processes. In Industrial Biorefineries and White Biotechnology; Pandey, A., Höfer, R., Taherzadeh, M., Nampoothiri, K.M., Larroche, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 523–554. [Google Scholar]
- Bakó, J.; Kerényi, F.; Hrubi, E.; Varga, I.; Daróczi, L.; Dienes, B.; Csernoch, L.; Gáll, J.; Hegedűs, C. Poly-γ-glutamic acid nanoparticles based visible light-curable hydrogel for biomedical application. J. Nanomater. 2016, 2016, 7350516. [Google Scholar] [CrossRef] [Green Version]
- Bajaj, I.; Singhal, R. Poly (glutamic acid) an emerging biopolymer of commercial interest. Bioresour. Technol. 2011, 102, 5551–5561. [Google Scholar] [CrossRef]
- Hezayen, F.F.; Rehm, B.H.; Tindall, B.J.; Steinbüchel, A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly (glutamic acid). Int. J. Syst. Evol. Microbiol. 2001, 51, 1133–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatterjee, P.M.; Tiwari, D.P.; Raval, R.; Dubey, A.K. Coherent aspects of multifaceted eco-friendly biopolymer-polyglutamic acid from the microbes. J. Pure Appl. Microbiol. 2019, 13, 741–756. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Hu, W.; Li, H.; Jing, Y.; Kang, H.; Jiang, Q.; Zhang, C. Preparation and characterization of poly (γ-glutamic acid) hydrogels as potential tissue engineering scaffolds. Chin. J. Polym. Sci. 2014, 32, 1507–1514. [Google Scholar] [CrossRef]
- Chan, W.P.; Kung, F.C.; Kuo, Y.L.; Yang, M.C.; Lai, W.F.T. Alginate/poly (γ-glutamic acid) base biocompatible gel for bone tissue engineering. Biomed. Res. Int. 2015, 2015, 185841. [Google Scholar] [CrossRef] [Green Version]
- Luo, Z.; Guo, Y.; Liu, J.; Qiu, H.; Zhao, M.; Zou, W.; Li, S. Microbial synthesis of poly-gamma-glutamic acid: Current progress, challenges, and future perspectives. Biotechnol. Biofuels 2016, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Ben-Zur, N.; Goldman, D.M. γ-Poly glutamic acid: A novel peptide for skin care. Cosmet. Toilet. 2007, 122, 65–74. [Google Scholar]
- Yamamoto, A.; Ohno, H.; Kuroyanagi, Y. Evaluation of epidermal growth factor-incorporating skin care product in culture experiment using human fibroblasts. Open J. Regen. Med. 2016, 5, 44–54. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yang, J.; Ding, C.; Huang, L.; Chen, L. A novel strategy to fabricate water-soluble collagen using poly (γ-glutamic acid)-derivatives as dual-functional modifier. React. Funct. Polym. 2018, 122, 131–139. [Google Scholar] [CrossRef]
- Tsao, C.T.; Chang, C.H.; Lin, Y.Y.; Wu, M.F.; Wang, J.L.; Han, J.L.; Hsieh, K.H. Antibacterial activity and biocompatibility of a chitosan–γ-poly (glutamic acid) polyelectrolyte complex hydrogel. Carbohydr. Res. 2010, 345, 1774–1780. [Google Scholar] [CrossRef]
- Hua, J.; Li, Z.; Xia, W.; Yang, N.; Gong, J.; Zhang, J. Preparation and properties of EDC/NHS mediated crosslinking poly (gamma-glutamic acid)/epsilon-polylysine hydrogels. Mater. Sci. Eng. 2016, 61, 879–892. [Google Scholar] [CrossRef]
- Uddin, Z.; Fang, T.Y.; Siao, J.Y.; Tseng, W.C. Wound healing attributes of polyelectrolyte multilayers prepared with multi-l-arginyl-poly-l-aspartate pairing with hyaluronic acid and γ-polyglutamic acid. Macromol. Biosci. 2020, 20, 2000132. [Google Scholar] [CrossRef] [PubMed]
- Sun, A.; He, X.; Li, L.; Li, T.; Liu, Q.; Zhou, X.; Ji, X.; Li, W.; Qian, Z. An injectable photopolymerized hydrogel with antimicrobial and biocompatible properties for infected skin regeneration. NPG Asia Mater. 2020, 12, 25. [Google Scholar] [CrossRef]
Cultivation Condition | Dilution Rate (D) | Fluid Rate (mL/h) | Biomass, X (mg/mL) | Lactose, S (mg/mL) | EP (mg/mL) | YEP/X (mg/g) | YEP/S (mg/g) | Productivity (µg/mL/h) |
---|---|---|---|---|---|---|---|---|
Batch | - | 2.9 | 7.2 | 2.34 | 806 | 0.34 | 48 | |
Continuous | 0.02 | 48 | 2.5 | 6.4 | 1.62 | 647 | 0.25 | 32.34 |
0.035 | 84 | 2.5 | 6.6 | 2.15 | 860 | 0.33 | 75.25 | |
0.05 | 120 | 2.5 | 6.1 | 1.58 | 633 | 0.24 | 79.15 | |
0.075 | 180 | 2.2 | 5.3 | 1.39 | 631 | 0.20 | 104.17 | |
0.1 | 240 | 0.5 | 3.5 | 0.27 | 550 | 0.04 | 27.5 |
Type of Cultivation | Dry Weight (μg/mL) | EP (μg/mL) | EP Content (%) |
---|---|---|---|
Batch (48 h) | 3.00 | 2.34 | 78 |
Continuous, D = 0.02 | 1.84 | 1.62 | 88 |
Continuous, D = 0.035 | 2.31 | 2.15 | 93 |
Continuous, D = 0.05 | 1.66 | 1.58 | 95 |
Continuous, D = 0.075 | 1.45 | 1.39 | 96 |
Continuous, D = 0.1 | 0.29 | 0.27 | 94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radchenkova, N.; Hasköylü, M.E.; Vassilev, S.; Yıldız, S.Y.; Boyadzhieva, I.; Oner, E.T.; Kambourova, M. Improved Exopolymer Production by Chromohalobacter canadensis Cultures for Its Potential Cosmeceutical Applications. Microorganisms 2020, 8, 1935. https://doi.org/10.3390/microorganisms8121935
Radchenkova N, Hasköylü ME, Vassilev S, Yıldız SY, Boyadzhieva I, Oner ET, Kambourova M. Improved Exopolymer Production by Chromohalobacter canadensis Cultures for Its Potential Cosmeceutical Applications. Microorganisms. 2020; 8(12):1935. https://doi.org/10.3390/microorganisms8121935
Chicago/Turabian StyleRadchenkova, Nadja, Merve Erginer Hasköylü, Spasen Vassilev, Songül Yaşar Yıldız, Ivanka Boyadzhieva, Ebru Toksoy Oner, and Margarita Kambourova. 2020. "Improved Exopolymer Production by Chromohalobacter canadensis Cultures for Its Potential Cosmeceutical Applications" Microorganisms 8, no. 12: 1935. https://doi.org/10.3390/microorganisms8121935
APA StyleRadchenkova, N., Hasköylü, M. E., Vassilev, S., Yıldız, S. Y., Boyadzhieva, I., Oner, E. T., & Kambourova, M. (2020). Improved Exopolymer Production by Chromohalobacter canadensis Cultures for Its Potential Cosmeceutical Applications. Microorganisms, 8(12), 1935. https://doi.org/10.3390/microorganisms8121935