Salmonella enterica in Invasive Lizard from Fernando de Noronha Archipelago: Serotyping, Antimicrobial Resistance and Molecular Epidemiology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Salmonella Isolation
2.3. Serotyping
2.4. Molecular Characterization
2.5. Antimicrobial Susceptibility Profiling
2.6. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corrente, M.; Totaro, M.; Martella, V.; Campolo, M.; Lorusso, A.; Ricci, M.; Buonavoglia, C. Reptile-associated Salmonellosis in Man, Italy. Emerg. Infect. Dis. 2006, 12, 358–359. [Google Scholar] [CrossRef] [PubMed]
- Fornazari, F.; Teixeira, C.R. Salmonelose em répteis: Aspectos epidemiológicos, clínicos e zoonóticos. Veterinária Zootec. 2009, 16, 19–25. [Google Scholar]
- Tomastikova, Z.; Romero, S.B.; Knotek, Z.; Karpiskova, R. Prevalence and characteristics of Salmonella species isolated from captive reptiles in the Czech Republic. Veterinární Med. 2017, 62, 456–469. [Google Scholar] [CrossRef] [Green Version]
- Warwick, C.; Lambiris, A.J.L.; Westwood, D.; Steedman, C. Reptile-Related Salmonellosis in Europe; SAGE Publications Sage UK: London, UK, 2001; Volume 94, pp. 124–126. [Google Scholar]
- Whiley, H.; Gardner, M.G.; Ross, K. A Review of Salmonella and Squamates (Lizards, Snakes and Amphisbians): Implications for Public Health. Pathogens 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciel, B.M.; Filho, R.C.A.; Nogueira, S.S.D.C.; Dias, J.C.T.; Rezende, R.P. High Prevalence of Salmonella in Tegu Lizards (Tupinambis merianae), and Susceptibility of the Serotypes to Antibiotics. Zoonoses Public Health 2009, 57, e26–e32. [Google Scholar] [CrossRef] [PubMed]
- Kikillus, K.H.; Gartrell, B.D.; Motion, E. Prevalence of Salmonella spp., and serovars isolated from captive exotic reptiles in New Zealand. N. Z. Veter. J. 2011, 59, 174–178. [Google Scholar] [CrossRef]
- Ribeiro, C. Fernando de Noronha Registra alta no Fluxo Turístico em 2016. Available online: http://www.turismo.gov.br/ultimas-noticias/7397-fernando-de-noronha-registra-alta-no-fluxo-turístico-em-2016.html (accessed on 15 April 2020).
- Marinho, A.C. Qual a População de Fernando de Noronha? 2016. Available online: http://g1.globo.com/pernambuco/blog/viver-noronha/post/qual-populacao-de-fernando-de-noronha.html (accessed on 15 April 2020).
- Santos, A.T. Fernando de Noronha, Ilha de Cenários Múltiplos, 1st ed.; RIO ed: Rio de Janeiro, Brazil, 1950; 143p. [Google Scholar]
- Oren, D.C. Resultados de uma nova expedição zoológica a Fernando de Noronha. Bol. Mus. Para. Emílio. Goeldi. Zool. 1984, 1, 19–44. [Google Scholar]
- Sazima, I.; Haddad, C.F.B. Repteis da Serra do Japi: Notas Sobre Historia Natural. In História Nat da Serra do Japi Ecol e Preserv uma área Florest no Sudeste do Bras; Morellato, L.P.C., Ed.; Editora da Unicamp/FAPESP: Campinas, Brazil, 1992; p. 321. [Google Scholar]
- Bovendorp, R.S.; Alvarez, A.D.; Galetti, M. Density of the tegu lizard (Tupinambis merianae) and its role as nest predator at Anchieta island, Brazil. Neotrop. Biol. Conserv. 2008, 3, 9–12. [Google Scholar]
- Winck, G.R.; Blanco, C.C.; Cechin, S.Z. Population Ecology of Tupinambis merianae (Squamata, Teiidae): Home-Range, Activity and Space Use. Animal Biology. 2011, 61, 493–510. [Google Scholar] [CrossRef]
- Klug, P.E.; Reed, R.N.; Mazzotti, F.J.; McEachern, M.A.; Vinci, J.J.; Craven, K.K.; Adams, A.A.Y. The influence of disturbed habitat on the spatial ecology of Argentine black and white tegu (Tupinambis merianae), a recent invader in the Everglades ecosystem (Florida, USA). Biol. Invasions. 2015, 17, 1785–1797. [Google Scholar] [CrossRef]
- Nóbrega Alves, R.R.; Filho, G.A.P.; Vieira, K.S.; Souto, W.M.S.; Mendonça, L.E.T.; Montenegro, P.; Almeida, W.D.O.; Vieira, W.L.S. A zoological catalogue of hunted reptiles in the semiarid region of Brazil. J. Ethnobiol. Ethnomedicine 2012, 8, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CITES. Appendices I, II and III of Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). 2017. Available online: https://www.cites.org/eng/app/appendices.php (accessed on 20 April 2020).
- Abrahão, C.R.; Russell, J.C.; Silva, J.C.R.; Ferreira, F.; Dias, R.A. Population Assessment of A Novel Island Invasive: Tegu (Salvator merianae) of Fernando de Noronha. In Proceedings of the International Conference on Island Invasives 2017, Dundee, UK, 14 July 2017; pp. 313–321. [Google Scholar]
- Andrade, D.V.; Sanders, C.; Milsom, W.K.; Abe, A.S. Overwintering in Tegu Lizards. In Life in the Cold: Evolution, Mechanisms, Adaptation, and Application, Twelfth International Hibernation Symposium; Barnes, B.M., Carey, H.V., Eds.; Biological Papers of the University of Alaska, number 27; University of Alaska: Fairbanks, AK, USA, 2004; pp. 339–348. [Google Scholar]
- De Souza, S.C.R.; De Carvalho, J.E.; Abe, A.S.; Bicudo, J.E.P.W.; Bianconcini, M.S.C. Seasonal metabolic depression, substrate utilization and changes in scaling patterns during the first year cycle of tegu lizards (Tupinambis merianae). J. Exp. Biol. 2004, 207, 307–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popoff, M.Y.; Le Minor, L. Antigenic Formulas of the Salmonella Serovars, WHO Collaborating Centre for Reference and Research on Salmonella; World Heal Organ: Geneva, Switzerland, 2001. [Google Scholar]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Dillen, P.M.W.-V.; Van Der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, G.G.; Oberst, R.D.; Hays, M.P.; McVey, S.; Chengappa, M.M. Detection of Salmonella serovars from clinical samples by enrichment broth cultivation-PCR procedure. J. Clin. Microbiol. 1994, 32, 1742–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLauchlin, J.; Ripabelli, G.; Brett, M.; Threlfall, E. Amplified fragment length polymorphism (AFLP) analysis of Clostridium perfringens for epidemiological typing. Int. J. Food Microbiol. 2000, 56, 21–28. [Google Scholar] [CrossRef]
- Lescat, M.; Poirel, L.; Nordmann, P. Rapid multiplex polymerase chain reaction for detection of mcr-1 to mcr-5 genes. Diagn. Microbiol. Infect. Dis. 2018, 92, 267–269. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.L. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI Suppl. VET08; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; Van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, A.; Tassios, P.; Dijkshoorn, L.; Haeggman, S.; Cookson, B.; Fry, N.; Fussing, V.; Green, J.; Feil, E.; Gerner-Smidt, P.; et al. Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin. Microbiol. Infect. 2007, 13, 1–46. [Google Scholar] [CrossRef]
- Hunter, P.R.; Gaston, M.A. Numerical index of the discriminatory ability of typing systems: An application of Simpson’s index of diversity. J. Clin. Microbiol. 1988, 26, 2465–2466. [Google Scholar] [CrossRef] [Green Version]
- Geue, L.; Löschner, U. Salmonella enterica in reptiles of German and Austrian origin. Veter Microbiol. 2002, 84, 79–91. [Google Scholar] [CrossRef]
- Corrente, M.; Madio, A.; Friedrich, K.; Greco, G.; Desario, C.; Tagliabue, S.; D’Incau, M.; Campolo, M.; Buonavoglia, C. Isolation of Salmonella strains from reptile faeces and comparison of different culture media. J. Appl. Microbiol. 2004, 96, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauwens, L.; Vercammen, F.; Bertrand, S.; Collard, J.-M.; De Ceuster, S. Isolation of Salmonella from environmental samples collected in the reptile department of Antwerp Zoo using different selective methods. J. Appl. Microbiol. 2006, 101, 284–289. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, K.; Nordentoft, S.; Hammer, A.S.; Lassen-Nielsen, A.-M. Serovars of Salmonella from captive reptiles. Zoonoses Public Health 2009, 56, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.Y.; Wong, S.P.; Dykes, G.A. Salmonella associated with captive and wild lizards in Malaysia. Herpetol. Notes 2014, 7, 145–147. [Google Scholar]
- Carvalho, A.D.M.; Júnior, A.K.P.; Andrade, M.A.; Jayme, V.D.S. Prevalência de Enterobacteriaceae em Tupinambis merianae (Squamata: Teiidae) de uma instalação em cativeiro no Brasil Central, com um perfil de resistência aos medicamentos antimicrobianos em Salmonella enterica. Phyllomedusa: J. Herpetol. 2012, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, M.A.; Shane, S.M. Salmonella in reptiles. Semin. Avian Exot. Pet Med. 2001, 10, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Franco, A.; Hendriksen, R.; Lorenzetti, S.; Onorati, R.; Gentile, G.; Dell’Omo, G.; Aarestrup, F.M.; Battisti, A. Characterization of Salmonella Occurring at high prevalence in a population of the land iguana Conolophus subcristatus in Galápagos Islands, Ecuador. PLoS ONE 2011, 6, e23147. [Google Scholar] [CrossRef] [Green Version]
- Bertelloni, F.; Chemaly, M.; Cerri, D.; Le Gall, F.; Ebani, V.V. Salmonella infection in healthy pet reptiles: Bacteriological isolation and study of some pathogenic characters. Acta Microbiol. Immunol. Hung. 2016, 63, 203–216. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.A.; Marvulo, M.F.; Mota, R.A.; Silva, J.C. A importância da ordem Ciconiiformes na cadeia epidemiológica de Salmonella spp. para a saúde pública e a conservação da diversidade biológica. Pesqui. Veterinária Bras. 2010, 30, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Silva, M.A.; Érika, F.; Santana, S.C.; Marvulo, M.F.V.; Barros, M.R.; Vilela, S.M.; Reis, E.M.; Mota, R.A.; Silva, J.C. Isolation of Salmonella spp. in cattle egrets (Bubulcus ibis) from Fernando de Noronha Archipelago, Brazil. Braz. J. Microbiol. 2018, 49, 559–563. [Google Scholar] [CrossRef]
- Pasmans, F.; Martel, A.; Boyen, F.; Vandekerchove, D.; Wybo, I.; Van Immerseel, F.; Heyndrickx, M.; Collard, J.M.; Ducatelle, R.; Haesebrouck, F. Characterization of Salmonella isolates from captive lizards. Vet Microbiol. 2005, 110, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-Y.; Chen, W.-C.; Chin, S.-C.; Lai, Y.-H.; Tung, K.-C.; Chiou, C.-S.; Hsu, Y.-M.; Chang, C.-C. Prevalence and antimicrobial susceptibility of Salmonellae isolates from reptiles in Taiwan. J. Veter Diagn. Investig. 2010, 22, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hossain, S.; Hossain, K.M.M.; Alam Sarker, M.; Hamid, S.A. Prevalence and antibiotic susceptibility of Salmonella from chicken eggs in Naogaon district of Bangladesh. J. Adv. Microbiol. 2019, 19, 1–6. [Google Scholar] [CrossRef]
- Gatto-Almeida, F.; Pichlmueller, F.; Micheletti, T.; Abrahão, C.R.; Mangini, P.R.; Russell, J.C. Using genetics to plan black rat (Rattus rattus) management in Fernando de Noronha archipelago, Brazil. Perspect. Ecol. Conserv. 2020, 18, 44–50. [Google Scholar] [CrossRef]
Serotype | Collect | Total | ||||
---|---|---|---|---|---|---|
C1 October/2014 | C2 February/2015 | C3 October/2015 | C4 February/2016 | C5 October/2016 | ||
Rubislaw | 4 (17.4) | 2 (25.0) | 4 (23.5) | 1 (3.3) | 2 (10.0) | 13 (13.3) |
NT | 0 | 1 (12.5) | 3 (17.6) | 6 (20.0) | 2 (10.0) | 12 (12.2) |
Javiana | 4 (17.4) | 0 | 2 (11.8) | 3 (10.0) | 1 (5.0) | 10 (10.2) |
Mbandaka | 3 (13.0) | 0 | 1 (5.9) | 3 (10.0) | 2 (10.0) | 9 (9.2) |
Panama | 2 (8.7) | 1 (12.5) | 0 | 4 (13.3) | 2 (10.0) | 9 (9.2) |
Muenchen | 1 (4.3) | 0 | 0 | 5 (16.7) | 3 (15.0) | 9 (9.2) |
Minnesota | 0 | 0 | 3 (17.6) | 3 (10.0) | 1 (5.0) | 7 (7.1) |
S. enterica subsp. enterica (rugose) | 2 (8.7) | 0 | 0 | 1 (3.3) | 2 (10.0) | 5 (5.1) |
Akuafo | 1 (4.3) | 0 | 0 | 2 (6.7) | 1 (5.0) | 4 (4.1) |
Saintpaul | 0 | 0 | 1 (5.9) | 1 (3.3) | 2 (10.0) | 4 (4.1) |
Montevideo | 0 | 0 | 2 (11.8) | 1 (3.3) | 0 | 3 (3.1) |
Ndolo | 1 (4.3) | 1 (12.5) | 0 | 0 | 1 (5.0) | 3 (3.1) |
Schwarzengrund | 1 (4.3) | 1 (12.5) | 0 | 0 | 0 | 2 (2.0) |
Agona | 1 (4.3) | 0 | 0 | 0 | 0 | 1 (1.0) |
Braenderup | 0 | 1 (12.5) | 0 | 0 | 0 | 1 (1.0) |
London | 0 | 1 (12.5) | 0 | 0 | 0 | 1 (1.0) |
Worthington | 1 (4.3) | 0 | 0 | 0 | 0 | 1 (1.0) |
S. enterica subsp. enterica (O: 4,5) | 0 | 0 | 0 | 0 | 1 (5.0) | 1 (1.0) |
S. enterica subsp. enterica (O:16) | 1 (4.3) | 0 | 0 | 0 | 0 | 1 (1.0) |
S. enterica subsp. enterica (O:3,10) | 1 (4.3) | 0 | 0 | 0 | 0 | 1 (1.0) |
S. enterica subsp. enterica (O:6,8) | 0 | 0 | 1 (5.9) | 0 | 0 | 1 (1.0) |
Total | 23 (100) | 8 (100) | 17 (100) | 30 (100) | 20 (100) | 98 (100) |
Animal | Data | Collect | ||||
---|---|---|---|---|---|---|
C1 October/2014 | C2 February/2015 | C3 October/2015 | C4 February/2016 | C5 October/2016 | ||
T4 | Site | L6 | L11 | |||
AFLP profile | A4 | Negative | ||||
T6 | Site | L4 | L11 | L4 | ||
AFLP profile | A4 | A27 | A16 | |||
T7 | Site | L4 | L11 | |||
AFLP profile | A30 | A1 | ||||
T23 | Site | L5 | L6 | |||
AFLP profile | Negative | A1 | ||||
T27 | Site | L4 | L4 | |||
AFLP profile | Negative | A13 | ||||
T37 | Site | L8 | L10 | |||
AFLP profile | A1 | A14 | ||||
T65 | Site | L11 | L11 | |||
AFLP profile | Negative | A1 | ||||
T67 | Site | L7 | L6 | |||
AFLP profile | A1 | A1 | ||||
T68 | Site | L4 | L4 | |||
AFLP profile | A16 | A16 | ||||
T69 | Site | L4 | L4 | |||
AFLP profile | Negative | A2 | ||||
T71 | Site | L8 | L7 | |||
AFLP profile | Negative | A1 | ||||
T74 | Site | L7 | L7 | |||
AFLP profile | A3 | A10 | ||||
T76 | Site | L7 | L508 | |||
AFLP profile | A16 | Negative | ||||
T79 | Site | L9 | L6 | L508 | ||
AFLP profile | Negative | A2 | A7 | |||
T81 | Site | L7 | L9 | L5 | ||
AFLP profile | A1 | A2 | Negative | |||
T83 | Site | L6 | L6 | |||
AFLP profile | A1 | A6 | ||||
T85 | Site | L11 | L11 | |||
AFLP profile | Negative | A16 | ||||
T87 | Site | L6 | L6 | |||
AFLP profile | A6 | Negative | ||||
T91 | Site | L6 | L6 | |||
AFLP profile | A2 | A6 | ||||
T92 | Site | L7 | L507 | |||
AFLP profile | Negative | A1 | ||||
T93 | Site | L6 | L508 | |||
AFLP profile | A16 | Negative | ||||
T97 | Site | L7 | L507 | |||
AFLP profile | Negative | A7 | ||||
T98 | Site | L4 | L4 | |||
AFLP profile | A22 | Negative | ||||
T111 | Site | L1 | L10 | |||
AFLP profile | Negative | A17 | ||||
T112 | Site | L7 | L10 | |||
AFLP profile | A16 | Negative | ||||
T114 | Site | L8 | L8 | |||
AFLP profile | A16 | Negative | ||||
T121 | Site | L8 | L508 | |||
AFLP profile | A2 | Negative |
Antimicrobial | Range (µg/mL) | S N (%) | I N (%) | R N (%) | MIC50 (µg/mL) | MIC90 (µg/mL) |
---|---|---|---|---|---|---|
Ceftiofur | 0.25–8 | 98 (100) | 0 | 0 | 0.5 | 1 |
Amoxicillin/Clavulanate | 1/0.5–32/64 | 97 (99.0) | 0 | 1 (1.0) | ≤1/0.5 | ≤1/0.5 |
Ampicillin | 1–64 | 97 (99.0) | 0 | 1 (1.0) | ≤1 | 2 |
Meropenem | 0.25–8 | 98 (100) | 0 | 0 | ≤0.25 | ≤0.25 |
Fosfomycin | 8–512 | 98 (100) | 0 | 0 | ≤8 | 16 |
Oxytetracycline | 2–32 | 98 (100) | 0 | 0 | ≤2 | ≤2 |
Chloramphenicol | 4–64 | 98 (100) | 0 | 0 | ≤8 | 8 |
Florfenicol | 0.5–8 | 77 (78.6) | 21 (21.4) | 0 | 4 | 8 |
Nalidixic Acid | 8–128 | 97 (99.0) | − | 1 (1.0) | ≤8 | ≤8 |
Ciprofloxacin | 0.06–8 | 95 (97.0) | 2 (2.0) | 1 (1.0) | ≤0.06 | ≤0.06 |
Marbofloxacin | 0.06–8 | 98 (100) | 0 | 0 | ≤0.06 | ≤0.06 |
Gentamicin | 0.5–32 | 98 (100) | 0 | 0 | ≤0.5 | 2 |
Neomycin | 4–16 | 98 (100) | − | 0 | ≤4 | ≤4 |
Azithromycin | 4–64 | 98 (100) | − | 0 | 8 | 16 |
Colistin | 1–16 | 85 (86.7) | − | 13 (13.3) | ≤1 | 4 |
Sulfamethoxazole | 256–1024 | 88 (89.8) | − | 10 (10.2) | ≤256 | >1024 |
Trimethoprim/Sulfamethoxazole | 2/18–4/76 | 98 (100) | 0 | 0 | ≤2/18 | ≤2/18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrahão, C.R.; Moreno, L.Z.; Silva, J.C.R.; Benites, N.R.; Matajira, C.E.C.; Ferreira, F.; Moreno, A.M.; Dias, R.A. Salmonella enterica in Invasive Lizard from Fernando de Noronha Archipelago: Serotyping, Antimicrobial Resistance and Molecular Epidemiology. Microorganisms 2020, 8, 2017. https://doi.org/10.3390/microorganisms8122017
Abrahão CR, Moreno LZ, Silva JCR, Benites NR, Matajira CEC, Ferreira F, Moreno AM, Dias RA. Salmonella enterica in Invasive Lizard from Fernando de Noronha Archipelago: Serotyping, Antimicrobial Resistance and Molecular Epidemiology. Microorganisms. 2020; 8(12):2017. https://doi.org/10.3390/microorganisms8122017
Chicago/Turabian StyleAbrahão, Carlos R., Luisa Z. Moreno, Jean C. R. Silva, Nilson R. Benites, Carlos E. C. Matajira, Fernando Ferreira, Andrea M. Moreno, and Ricardo A. Dias. 2020. "Salmonella enterica in Invasive Lizard from Fernando de Noronha Archipelago: Serotyping, Antimicrobial Resistance and Molecular Epidemiology" Microorganisms 8, no. 12: 2017. https://doi.org/10.3390/microorganisms8122017
APA StyleAbrahão, C. R., Moreno, L. Z., Silva, J. C. R., Benites, N. R., Matajira, C. E. C., Ferreira, F., Moreno, A. M., & Dias, R. A. (2020). Salmonella enterica in Invasive Lizard from Fernando de Noronha Archipelago: Serotyping, Antimicrobial Resistance and Molecular Epidemiology. Microorganisms, 8(12), 2017. https://doi.org/10.3390/microorganisms8122017