Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Staphylococcus epidermidis Strains and Growth Conditions
2.2. Next-Generation Sequencing
2.2.1. RNA Isolation and Quantification
2.2.2. Ion Torrent Library Preparation and Sequencing
2.3. Data Analysis
3. Results and Discussion
3.1. Response Mechanisms to DDAC of the DDAC-adapted S. epidermidis Strain, SE11Ad
3.2. Response Mechanisms to DDAC of the DDAC-tolerant S. epidermidis Strain, SE18To
3.3. L−cystine Transport and Arsenic Efflux Systems in DDAC−adapted and −tolerant S. epidermidis Strains
3.4. RNA−sequencing Results and Phenotypic Properties of These S. epidermidis Strains
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hellmark, B.; Söderquist, B.; Unemo, M.; Nilsdotter−Augustinsson, Å. Comparison of Staphylococcus epidermidis isolated from prosthetic joint infections and commensal isolates in regard to antibiotic susceptibility, agr type, biofilm production, and epidemiology. Int. J. Med. Microbiol. 2013, 303, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.; Brito, C.I.; Cataneli Pereira, V.; de Oliveira, A.; Camargo, C.H.; de Lourdes Ribeiro de Souza da Cunha, M. Reduced susceptibility to vancomycin and biofilm formation in methicillin−resistant Staphylococcus epidermidis isolated from blood cultures. Mem. Inst. Oswaldo Cruz. 2014, 109, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Balraadjsing, P.P.; de Jong, E.C.; van Wamel, W.J.B.; Zaat, S.A.J. Dendritic cells internalize Staphylococcus aureus more efficiently than Staphylococcus epidermidis, but do not differ in induction of antigen−specific T cell proliferation. Microorganisms 2020, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Multidrug−resistant Staphylococcus epidermidis. In Proceedings of the ECDC, Sweden, Stockholm, 8 November 2018. [Google Scholar]
- Xu, Z.; Misra, R.; Jamrozy, D.; Paterson, G.K.; Cutler, R.R.; Holmes, M.A.; Gharbia, S.; Mkrtchyan, H.V. Whole genome sequence and comparative genomics analysis of multi−drug resistant environmental Staphylococcus epidermidis ST59. Genes Genomes Genet. 2018, 8, 2225–2230. [Google Scholar] [CrossRef] [Green Version]
- Onyango, L.A.; Dunstan, R.H.; Roberts, T.K.; Macdonald, M.M.; Gottfries, J. Phenotypic variants of Staphylococci and their underlying population distributions following exposure to stress. PLoS ONE 2013, 8, e77614. [Google Scholar] [CrossRef] [Green Version]
- Slany, M.; Oppelt, J.; Cincarova, L. Formation of Staphylococcus aureus biofilm in the presence of sublethal concentrations of disinfectants studied via a transcriptomic analysis using transcriptome sequencing (RNA−seq). Appl. Environ. Microbiol. 2017, 83, e01643-17. [Google Scholar] [CrossRef] [Green Version]
- Mahnert, A.; Vaishampayan, P.; Probst, A.J.; Auerbach, A.; Moissl−Eichinger, C.; Venkateswaran, K.; Berg, G. Cleanroom maintenance significantly reduces abundance but not diversity of indoor microbiomes. PLoS ONE 2015, 10, e0134848. [Google Scholar] [CrossRef]
- Sandle, T.; Leavy, C.; Jindal, H.; Rhodes, R. Application of rapid microbiological methods for the risk assessment of controlled biopharmaceutical environments. J. Appl. Microbiol. 2014, 116, 1495–1505. [Google Scholar] [CrossRef] [Green Version]
- Jansen, A.C.; Boucher, C.E.; Coetsee, E.; Kock, J.L.F.; van Wyk, P.W.J.; Swart, H.C.; Bragg, R.R. The influence of didecyldimethylammonium chloride on the morphology and elemental composition of Staphylococcus aureus as determined by NanoSAM. Sci. Res. Essays 2013, 8, 152–160. [Google Scholar]
- Wessels, S.; Ingmer, H. Modes of action of three active substances: A review. Regul. Toxicol. Pharmacol. 2013, 67, 456–467. [Google Scholar] [CrossRef]
- Buffet−Bataillon, S.; Tattevin, P.; Maillard, J.−Y.; Bonnaure−Mallet, M.; Jolivet−Gougeon, A. Efflux pump induction by quaternary ammonium compounds (QAC) is a first step in the evolution of fluoroquinolone−resistance in bacteria. Future Microbiol. 2016, 11, 81–92. [Google Scholar]
- Morrison, K.R.; Allen, R.A.; Minbiole, K.P.C.; Wuest, W.M. More QACs, more questions: Recent advances in structure activity relationships and hurdles in understanding resistance mechanisms. Tetrahedron Lett. 2019, 60, 150935. [Google Scholar] [CrossRef]
- Smith, K.; Gemmell, C.G.; Hunter, I.S. The association between biocide tolerance and the presence or absence of qac genes among hospital−acquired and community−acquired MRSA isolates. J. Antimicrob. Chemother. 2008, 61, 78–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Capita, R.; Alonso−Calleja, C. Antibiotic−resistant bacteria: A challenge for the food industry. Crit. Rev. Food Sci. Nutr. 2013, 53, 11–48. [Google Scholar] [CrossRef] [PubMed]
- Jennings, M.C.; Minbiole, K.P.C.; Wuest, W.M. Quaternary ammonium compounds: An antimicrobial mainstay and platform for innovation to address bacterial resistance. ACS Infect. Dis. 2015, 1, 288–303. [Google Scholar] [CrossRef] [PubMed]
- Gadea, R.; Fernández Fuentes, M.Á.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Effects of exposure to quaternary−ammonium−based biocides on antimicrobial susceptibility and tolerance to physical stress in bacteria from organic foods. Food Microbiol. 2017, 63, 58–71. [Google Scholar] [CrossRef]
- Onyango, L.A.; Alreshidi, M.M. Adaptive metabolism in Staphylococci: Survival and persistence in environmental and clinical settings. J. Pathog. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ribič, U.; Polak, T.; Lušnic Polak, M.; Klančnik, A.; Jeršek, B. Adaptation response mechanisms of Staphylococcus epidermidis strains exposed to increasing concentrations of didecyldimethylammonium chloride. Microb. Drug Resist. 2020. ahead of print. [Google Scholar]
- Tian, X.; Zhang, L.; Feng, S.; Zhao, Z.; Wang, X.; Gao, H. Transcriptome analysis of apple leaves in response to powdery mildew (Podosphaera leucotricha) infection. Int. J. Mol. Sci. 2019, 20, 2326. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.C.; Alorabi, J.A.; Horsburgh, M.J. Comparative transcriptomics reveals discrete survival responses of S. aureus and S. epidermidis to sapienic acid. Front. Microbiol. 2017, 8, 33. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.; Jung, J.; Jeon, C.O.; Park, W. Comparative genomic and transcriptomic analyses of NaCl−tolerant Staphylococcus sp. OJ82 isolated from fermented seafood. Appl. Microbiol. Biotechnol. 2014, 98, 807–822. [Google Scholar] [CrossRef]
- Pourmand, M.R.; Clarke, S.R.; Schuman, R.F.; Mond, J.J.; Foster, S.J. Identification of antigenic components of Staphylococcus epidermidis expressed during human infection. Infect. Immun. 2006, 74, 4644–4654. [Google Scholar] [CrossRef] [Green Version]
- Longshaw, C.M.; Farrell, A.M.; Wright, J.D.; Holland, K.T. Identification of a second lipase gene, gehD, in Staphylococcus epidermidis; comparison of sequence with those of other staphylococcal lipases. Microbiology 2000, 146, 1419–1427. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.E.; Todd, D.A.; Schaeffer, C.R.; Paharik, A.E.; Van Dyke, M.J.; Büttner, H.; Dunman, P.M.; Rohde, H.; Cech, N.B.; Fey, P.D.; et al. Staphylococcus epidermidis agr quorum−sensing system: Signal identification, cross talk, and importance in colonization. J. Bacteriol. 2014, 196, 3482–3493. [Google Scholar] [CrossRef] [Green Version]
- Zucko, J.; Dunlap, W.C.; Shick, J.M.; Cullum, J.; Cercelet, F.; Amin, B.; Hammen, L.; Lau, T.; Williams, J.; Hranueli, D.; et al. Global genome analysis of the shikimic acid pathway reveals greater gene loss in host−associated than in free−living bacteria. BMC Genom. 2010, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Packer, J.M.; Irish, J.; Herbert, B.R.; Hill, C.; Padula, M.; Blair, S.E.; Carter, D.A.; Harry, E.J. Specific non−peroxide antibacterial effect of manuka honey on the Staphylococcus aureus proteome. Int. J. Antimicrob. Agents 2012, 40, 43–50. [Google Scholar] [CrossRef]
- Sivaranjani, M.; Leskinen, K.; Aravindraja, C.; Saavalainen, P.; Pandian, S.K.; Skurnik, M.; Ravi, A.V. Deciphering the antibacterial mode of action of alpha−mangostin on Staphylococcus epidermidis RP62A through an integrated transcriptomic and proteomic approach. Front. Microbiol. 2019, 10, 150. [Google Scholar] [CrossRef]
- De Carvalho, C.C.C.R.; Fernandes, P. Production of metabolites as bacterial responses to the marine environment. Mar. Drugs 2010, 8, 705–727. [Google Scholar] [CrossRef]
- Raymond−Bouchard, I.; Tremblay, J.; Altshuler, I.; Greer, C.W.; Whyte, L.G. Comparative transcriptomics of cold growth and adaptive features of a aury− and steno−psychrophile. Front. Microbiol. 2018, 9, 1565. [Google Scholar] [CrossRef]
- Heuston, S.; Begley, M.; Gahan, C.G.M.; Hill, C. Isoprenoid biosynthesis in bacterial pathogens. Microbiology 2012, 158, 1389–1401. [Google Scholar] [CrossRef]
- Anzaldi, L.L.; Skaar, E.P. Overcoming the heme paradox: Heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 2010, 78, 4977–4989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, S.; Huseby, D.L.; Brandis, G.; Hughes, D. Alternative evolutionary pathways for drug−resistant small colony variant mutants in Staphylococcus aureus. MBIO 2017, 8, e00358-17. [Google Scholar] [CrossRef] [Green Version]
- Reiß, S.; Pané−Farré, J.; Fuchs, S.; François, P.; Liebeke, M.; Schrenzel, J.; Lindequist, U.; Lalk, M.; Wolz, C.; Hecker, M.; et al. Global analysis of the Staphylococcus aureus response to mupirocin. Antimicrob. Agents Chemother. 2012, 56, 787–804. [Google Scholar] [CrossRef] [Green Version]
- Pando, J.M.; Pfeltz, R.F.; Cuaron, J.A.; Nagarajan, V.; Mishra, M.N.; Torres, N.J.; Elasri, M.O.; Wilkinson, B.J.; Gustafson, J.E. Ethanol−induces stress response of Staphylococcus aureus. Can. J. Microbiol. 2017, 63, 745–757. [Google Scholar] [CrossRef]
- Le, K.Y.; Otto, M. Quorum−sensing regulation in staphylococci−an overview. Front. Microbiol. 2015, 6, 1174. [Google Scholar] [CrossRef] [Green Version]
- Martí, M.; Pilar Trotonda, M.; Ángeles Tormo−Más, M.; Vergara−Irigaray, M.; Cheung, A.L.; Lasa, I.; Penadés, J.R. Extracellular proteases inhibit protein−dependent biofilm formation in Staphylococcus aureus. Microbes Infect. 2010, 12, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Loughran, A.J.; Atwood, D.N.; Anthony, A.C.; Harik, N.S.; Spencer, H.J.; Beenken, K.E.; Smeltzer, M.S. Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiologyopen 2014, 3, 897–909. [Google Scholar] [CrossRef] [Green Version]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef] [Green Version]
- Winstel, V.; Liang, C.; Sanchez−Carballo, P.; Steglich, M.; Munar, M.; Bröker, B.M.; Penadés, J.R.; Nübel, U.; holst, O.; Dandekar, T.; et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat. Commun. 2013, 4, 2345. [Google Scholar] [CrossRef]
- Vandecraen, J.; Chandler, M.; Aersten, A.; Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 2017, 43, 709–730. [Google Scholar] [CrossRef]
- Matic, I.; Taddei, F.; Radman, M. Survival versus maintenance of genetic stability: A conflict of priorities during stress. Res. Microbiol. 2004, 155, 337–341. [Google Scholar] [CrossRef]
- Tanaka, K.J.; Song, S.; Mason, K.; Pinkett, H.W. Selective substrate uptake: The role of ATP−binding cassette (ABC) importers in pathogenesis. Biochim. Biophys. Acta 2018, 1860, 868–877. [Google Scholar] [CrossRef]
- Gómez−Gómez, B.; Pérez−Corona, T.; Mozzi, F.; Pescuma, M.; Madrid, Y. Silac−based quantitative proteomic analysis of Lactobacillus reuteri CRL 1101 response to the presence of selenite and selenium nanoparticles. J. Proteom. 2019, 195, 53–65. [Google Scholar] [CrossRef]
- Wang, X.; Han, H.; Lv, Z.; Lin, Z.; Shang, Y.; Xu, T.; Wu, Y.; Zhang, Y.; Qu, D. PhoU2 but not PhoU1 as an important regulator of biofilm formation and tolerance to multiple stresses by participating in various fundamental metabolic processes in Staphylococcus epidermidis. J. Bacteriol. 2017, 199, e00219-17. [Google Scholar] [CrossRef] [Green Version]
- Overton, I.M.; Graham, S.; Gould, K.A.; Hinds, J.; Botting, C.H.; Shirran, S.; Barton, G.J.; Coote, P.J. Global network analysis of drug tolerance, mode of action and virulence in methicillin−resistant S. aureus. BMC Syst. Biol. 2011, 5, 68. [Google Scholar] [CrossRef] [Green Version]
- Krismer, B.; Liebeke, M.; Janek, D.; Nega, M.; Rautenberg, M.; Hornig, G.; Unger, C.; Weidenmaier, C.; Lalk, M.; Peschel, A. Nutrient limitation governs Staphylococcus aureus metabolism and niche adaptation in the human nose. PLoS ONE 2014, 10, e1003862. [Google Scholar] [CrossRef]
- Vermassen, A.; Leroy, S.; Talon, R.; Provot, C.; Popowska, M.; Desvaux, M. Cell wall hydrolases in bacteria: Insight on the diversity of cell wall amidases, glycosidases and peptidases toward peptidoglycan. Front. Microbiol. 2019, 10, 331. [Google Scholar] [CrossRef]
- Chaffin, D.O.; Taylor, D.; Skerrett, S.J.; Rubens, C.E. Changes in the Staphylococcus aureus transcriptome during early adaptation to the lung. PLoS ONE 2012, 7, e41329. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Rahwade, J.; Paknikar, K.M. Transcritpome analysis of silver nanoparticles treated Staphylococcus aureus reveals potential targets for biofilm formation. Colloids Surf. B Biointerface 2019, 175, 487–497. [Google Scholar] [CrossRef]
- Kim, M.; Hatt, J.K.; Weigand, M.R.; Krishnan, R.; Pavlostathis, S.G.; Konstantinidis, K.T. Genomic and transcriptomic insights into how bacteria withstands high concentrations of benzalkonium chloride biocides. Appl. Environ. Microbiol. 2018, 84, e00197. [Google Scholar] [CrossRef] [Green Version]
- Santos Costa, S.; Viveiros, M.; Pomba, C.; Couto, I. Active antimicrobial efflux in Staphylococcus epidermidis: Building up of resistance to fluoroquinolones and biocides in a major opportunistic pathogen. J. Antimicrob. Chemother. 2017, 73, 320–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben Fekih, I.; Zhang, C.; Ping Li, Y.; Zhao, Y.; Alwathnani, H.A.; Saquib, Q.; Rensing, C.; Cervantes, C. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 2018, 9, 2473. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.−C.; Fu, H.−L.; Lin, Y.−F.; Rosen, B.P. Pathways of arsenic uptake and efflux. Curr. Top. Membr. 2012, 69, 325–358. [Google Scholar]
- Fu, Z.; Ma, Y.; Chen, C.; Guo, Y.; Hu, F.; Liu, Y.; Xu, X.; Wang, M. Prevalence of Fosfomycin resistance and mutations in murA, glpT, and uhpT in methicillin−resistant Staphylococcus aureus strains isolated from blood and cerebrospinal fluid samples. Front. Microbiol. 2016, 6, 1544. [Google Scholar] [CrossRef]
- Xiong, L.; Teng, J.L.L.; Botelho, M.G.; Lo, R.C.; Lau, S.K.P.; Woo, P.C.Y. Arginine metabolism in bacterial pathogenesis and cancer therapy. Int. J. Mol. Sci. 2016, 17, 363. [Google Scholar] [CrossRef] [Green Version]
- Heath, T.K.; Lutz, M.R.; Reidl, C.T.; Guzman, E.R.; Herbert, C.A.; Nocek, B.P.; Holz, R.C.; Olsen, K.W.; Ballicora, M.A.; Becker, D.P. Practical spectrophotometric assay for the dapE−encoded N−succinyl−L,L−diaminopimelic acid desuccinylase, a potential antibiotic target. PLoS ONE 2018, 13, e0196010. [Google Scholar] [CrossRef] [Green Version]
- Ciustea, M.; Mootien, S.; Rosato, A.E.; Perez, O.; Cirillo, P.; Yeung, K.R.; Ledizet, M.; Cynamon, M.H.; Aristoff, P.A.; Koski, R.A.; et al. Thiadiazolidinones: A new class of alanine racemase inhibitors with antimicrobial activity against methicillin−resistant S. aureus. Biochem. Pharmacol. 2012, 83, 368–377. [Google Scholar] [CrossRef] [Green Version]
- Loskill, P.; Pereira, P.M.; Jung, P.; Bischoff, M.; Herrmann, M.; Pinho, M.G.; Jacobs, K. Reduction of the peptidoglycan crosslinking causes a decrease in stiffness of the Staphylococcus aureus cell envelope. Biophys. J. 2014, 107, 1082–1089. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.−G.; Yang, Y.−B.; Zhou, Y.−H.; Hao, m.−Q.; Ren, Y.−Z.; Wang, X.−T.; Chen, J.−Q.; Muhammad, I.; Wang, S.; Liu, D.; et al. Comparative proteomic analysis provides insight into the key proteins as possible targets involved in aspirin inhibiting biofilm formation in Staphylococcus xylosus. Front. Microbiol. 2017, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Patel, K.M.; Teran, D.; Zheng, S.; Kandale, A.; Garcia, M.; Lv, Y.; Schembri, M.A.; McGeary, R.P.; Schenk, G.; Guddat, L.W. Crystal structures of Staphylococcus aureus ketol−acid reductoisomerase in complex with two transition state analogues that have biocidal activity. Chem. Eur. J. 2017, 23, 18289–18295. [Google Scholar] [CrossRef]
- Troccaz, M.; Benattia, F.; Borchard, G.; Clark, A.J. Properties of recombinant Staphylococcus haemolyticus cystathionine ß−lyase (metC) and its potential role in the generation of volatile thiols in axillary malodor. Chem. Biodivers. 2008, 5, 2372–2385. [Google Scholar] [CrossRef]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Metabolomic and proteomic responses of Staphylococcus aureus to prolonged cold stress. J. Proteom. 2015, 121, 44–55. [Google Scholar] [CrossRef]
- Murphy, G.R.; Dunstan, R.H.; Macdonald, M.M.; Gottfries, J.; Roberts, T.K. Alterations in amino acid metabolism during growth by Staphylococcus aureus following exposure to H2O2− a multifactorial approach. Helyon 2018, 4, e00620. [Google Scholar] [CrossRef] [Green Version]
- Alreshidi, M.M.; Dunstan, R.H.; Macdonald, M.M.; Smith, N.D.; Gottfries, J.; Roberts, T.K. Amino acids and proteomic acclimation of Staphylococcus aureus when incubated in a defined minimal medium supplemented with 5% sodium chloride. Microbiologyopen 2019, 8, e772. [Google Scholar] [CrossRef] [Green Version]
- Mongodin, E.; Finan, J.; Climo, M.W.; Rosato, A.; Gill, S.; Archer, G.L. Microarray transcription analysis of clinical Staphylococcus aureus isolates resistant to vancomycin. J. Bacteriol. 2003, 185, 4638–4643. [Google Scholar] [CrossRef] [Green Version]
- Schelli, K.; Zhong, F.; Zhu, J. Comparative metabolomics revealing Staphylococcus aureus metabolic response to different antibiotics. Microb. Biotechnol. 2017, 10, 1764–1774. [Google Scholar] [CrossRef]
- Matsuo, M.; Hiramatsu, M.; Singh, M.; Sasaki, T.; Hishinuma, T.; Yamamoto, N.; Morimoto, Y.; Kirikae, T.; Hiramatsu, K. Genetic and transcriptomic analyses of ciprofloxacin−tolerant Staphylococcus aureus isolated by the replica plating tolerance isolation system (REPTIS). Antimicrob. Agents Chemother. 2019, 63, e02019-18. [Google Scholar]
- Kim, J.; Senadheera, D.B.; Lévesque, C.M.; Cvitkovich, D.G. TcyR regulated L−cystine uptake via the TcyABC transporter in Streptococcus mutans. FEMS Microbiol. Lett. 2012, 328, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Gill, S.R.; Fouts, D.E.; Archer, G.L.; Mongodin, E.F.; DeBoy, R.T.; Ravel, J.; Paulsen, I.T.; Kolonay, J.F.; Brinkac, L.; Beanan, M.; et al. Insights of evolution of virulence and resistance from the complete genome analysis of an early methicillin−resistant Staphylococcus aureus strain and a biofilm−producing methicillin−resistant Staphylococcus epidermidis strain. J. Bacteriol. 2005, 187, 2426–2438. [Google Scholar] [CrossRef] [Green Version]
- Schaedler, T.A.; Tong, Z.; van Veen, H.W. The multidrug transporter LmrP protein mediates selective calcium efflux. J. Biol. Chem. 2012, 287, 27682–27690. [Google Scholar] [CrossRef] [Green Version]
- Huet, A.A.; Raygada, J.L.; Mendiratta, K.; Seo, S.M.; Kaatz, G.W. Multidrug efflux pump overexpression in Staphylococcus aureus after single and multiple in vitro exposures to biocides and dyes. Microbiology 2008, 154, 3144–3153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos Costa, S.; Viveiros, M.; Amaral, L.; Couto, I. Multidrug efflux pumps in Staphylococcus aureus: An update. Open Microbiol. J. 2013, 7, 59–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wales, A.D.; Davies, R.H. Co−selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics 2015, 4, 567–604. [Google Scholar] [CrossRef] [Green Version]
- Hassan, K.A.; Skurray, R.A.; Brown, M.H. Active export proteins mediating drug resistance in Staphylococci. J. Mol. Microbiol. Biotechnol. 2007, 12, 180–196. [Google Scholar] [CrossRef]
- Jennings, M.C.; Forman, M.E.; Duggan, S.M.; Minbiole, K.P.C.; Wuest, W.M. Efflux pumps may not be the major drivers of QAC resistance in methicillin−resistant Staphylococcus aureus. Chembiochem 2017, 18, 1573–1577. [Google Scholar] [CrossRef]
- Somerville, G.A.; Prostor, R.A. At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol. Mol. Biol. Rev. 2009, 73, 233–248. [Google Scholar] [CrossRef] [Green Version]
- Chandrangsu, P.; Van Loi, V.; Antelmann, H.; Helmann, J.D. The role of bacillithiol in gram−positive Firmicutes. Antioxid. Redox Signal. 2018, 28, 445–462. [Google Scholar] [CrossRef] [Green Version]
- Pöther, D.−C.; Liebeke, M.; Hochgräfe, F.; Antelmann, H.; Becher, D.; Lalk, M.; Lindequist, U.; Borovok, I.; Cohen, G.; Aharonowitz, Y.; et al. Diamide triggers mainly S thiolation in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. J. Bacteriol. 2009, 191, 7520–7530. [Google Scholar]
- Soutourina, O.; Dubrac, S.; Poupel, O.; Msadek, T.; Martin−Verstraete, I. The pleiotropic CymR regulator of Staphylococcus aureus plays an important role in virulence and stress response. PLoS Pathog. 2010, 6, e1000894. [Google Scholar] [CrossRef] [Green Version]
- Liebeke, M.; Dörries, K.; Zühlke, D.; Bernhardt, J.; Fuchs, S.; Pané−Farré, J.; Engelmann, S.; Völker, U.; Bode, R.; Dandekar, T.; et al. A metabolomics and proteomics study of the adaptation of Staphylococcus aureus to glucose starvation. Mol. Biosyst. 2011, 7, 1241–1253. [Google Scholar] [CrossRef]
- Forbes, S.; Dobson, C.B.; Humphreys, G.J.; McBain, A.J. Transient and sustained bacterial adaptation following repeated sublethal exposure to microbicides and a novel human antimicrobial peptide. Antimicrob. Agents Chemother. 2014, 58, 5809–5817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. epidermidis | Condition | Library | |||
---|---|---|---|---|---|
Strain | N°. of Reads | Data Yield (bp) | Average Length (bp) | Mapped to Reference Genome (%) | |
SE11 | Control | 6,748,314 | 796,550,256 | 118.04 | 85.46 |
SE11Ad | Adapted | 6,939,698 | 1,284,519,656 | 185.01 | 96.02 |
SE18 | Control | 13,150,201 | 1,826,332,974 | 138.88 | 91.12 |
SE18To | Tolerant | 15,425,027 | 1,945,548,307 | 126.13 | 95.63 |
Gene Expression | KEGG Pathway | Gene ID | Gene | Fold Change | Product |
---|---|---|---|---|---|
Down- | Transporters | SE0405 | −767.0 | Lipoprotein; ABC transporter | |
regulation | SE0407 | −250.9 | ABC transporter ATP-binding protein | ||
SE0910 | −5.6 | Signal recognition particle | |||
Quorum sensing | SE1543 | −534.6 | V8 protease | ||
SE1636 | agrD | −391.5 | AgrD protein | ||
SE0484 | psm β1/β2 | −285.1 | Phenol soluble modulin β1/ β2 | ||
SE1638 | agrA | −81.3 | Accessory gene regulator A | ||
SE1637 | agrC | −77.0 | Accessory gene regulator C | ||
SE0910 | −5.6 | Signal recognition particle | |||
Metabolism and | SE0185 | gehD | −495.5 | Glycerol ester hydrolase | |
biosynthesis of | SE1599 | −26.1 | Chorismate mutase | ||
secondary | SE2288 | ipk | −21.7 | 4-Diphosphocytidyl-2C-methyl-D-erythritol kinase | |
metabolites | SE0857 | mraY | −15.1 | Phospho-N-acetylmuramoyl-pentapeptide transferase | |
SE2081 | −14.3 | Beta-subunit of L-serine dehydratase | |||
SE2311 | gltD | −14.1 | Glutamate synthase subunit β | ||
SE1345 | hemC | −12.8 | Porphobilinogen deaminase | ||
SE0349 | −11.9 | Phosphomethylpyrimidine kinase | |||
SE1199 | −11.1 | Dihydrolipoamide dehydrogenase | |||
SE0981 | miaA | −8.9 | tRNA d(2)-isopentenylpyrophosphate transferase | ||
SE0514 | nrdF | −8.8 | Ribonucleotide-diphosphate reductase subunit β | ||
SE1305 | −8.7 | Iron–sulphur cofactor synthesis protein-like protein | |||
SE0814 | −8.5 | Heme synthase | |||
SE1889 | murQ | −7.6 | N-acetylmuramic acid-6-phosphate etherase | ||
SE1596 | nadE | −7.1 | NAD synthetase | ||
SE1224 | −6.2 | Shikimate kinase | |||
SE1344 | −5.9 | Uroporphyrinogen III synthase | |||
SE1153 | −5.8 | 3-Phosphoshikimate 1-carboxyvinyltransferase | |||
Up- | Transporters and | SE1070 | pstS | 124.9 | Thioredoxin reductase |
regulation | efflux pump | SE1069 | pstC | 38.5 | Phosphate ABC transporter |
SE2321 | metI | 19.6 | ABC transporter permease | ||
SE0334 | 11.8 | Arsenic efflux pump protein | |||
SE1992 | tcyB | 10.5 | ABC transporter permease | ||
SE0681 | oppC | 8.1 | Oligopeptide transport system permease OppC | ||
SE1067 | pstB | 8.0 | Phosphate transporter ATP-binding protein | ||
SE2322 | metN | 5.4 | ABC transporter ATP-binding protein | ||
Two-component system | SE0164 | uhpT | 11.5 | Sugar phosphate antiporter | |
Metabolism and | SE0228 | arcC | 20.7 | Carbamate kinase | |
biosynthesis of | SE2175 | sat | 17.3 | Sulphate adenylyltransferase | |
secondary | SE2197 | 13.4 | Alkaline phosphatase | ||
metabolites | SE0319 | ispD | 9.0 | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase | |
SE1654 | 8.0 | Dihydroxy-acid dehydratase | |||
SE2174 | 7.1 | Adenylyl-sulphate kinase | |||
SE2333 | 7.0 | NADH dehydrogenase subunit 5 | |||
SE2323 | 6.5 | Cystathionine gamma-synthase | |||
Drug resistance | SE0681 | oppC | 8.1 | Oligopeptide transport system permease OppC |
Gene Expression | KEGG Pathway | Gene ID | Gene | Fold Change | Product |
---|---|---|---|---|---|
Down− | Metabolism and | SE2220 | dapE | −34.0 | Succinyl−diaminopimelate desuccinylase |
regulation | biosynthesis of | SE1079 | −16.9 | Alanine racemase | |
secondary | SE0181 | −16.3 | 8−Amino−7−oxononanoate synthase | ||
metabolites | SE2600 | −8.8 | Thiazole synthase | ||
SE0486 | −8.5 | 6−Pyruvoyl tetrahydrobiopterin synthase | |||
SE1657 | −8.0 | Ketol−acid reductoisomerase | |||
SE2380 | metC | −7.8 | Cystathionine beta−lyase | ||
SE0275 | hisA | −7.0 | Imidazole−4−carboxamide isomerase1−(5−phosphoribosyl)−5−[(5− phosphoribosylamino)methylideneamino] imidazole−4−carboxamide isomerase | ||
Transporters | SE2400 | −9.9 | vraD protein | ||
SE2255 | −7.7 | Transport system protein | |||
Up− | Transporters | SE1992 | tcyB | 16.0 | ABC transporter permease |
regulation | SE2248 | secY−2 | 11.8 | Accessory Sec system protein translocase subunit SecY2 | |
SE1242 | znuB | 6.8 | ABC transporter | ||
SE0871 | lspA | 5.2 | Lipoprotein signal peptidase | ||
Metabolism and | SE0274 | 8.0 | Imidazole glycerol phosphate synthase subunit HisH | ||
biosynthesis of | SE0510 | 8.0 | 7−Cyano−7−deazaguanine reductase | ||
secondary metabolites | SE0873 | 7.0 | Bifunctional pyrimidine regulatory protein PyrR uracil phosphoribosyltransferase | ||
Ribosome | SE1017 | rpmG2 | 5.3 | 50S ribosomal protein L33 2 | |
SE0913 | rpsP | 5.6 | 30S ribosomal protein S16 | ||
Drug resistance | SE1606 | 5.5 | Penicillinase repressor |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribič, U.; Jakše, J.; Toplak, N.; Koren, S.; Kovač, M.; Klančnik, A.; Jeršek, B. Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms 2020, 8, 344. https://doi.org/10.3390/microorganisms8030344
Ribič U, Jakše J, Toplak N, Koren S, Kovač M, Klančnik A, Jeršek B. Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms. 2020; 8(3):344. https://doi.org/10.3390/microorganisms8030344
Chicago/Turabian StyleRibič, Urška, Jernej Jakše, Nataša Toplak, Simon Koren, Minka Kovač, Anja Klančnik, and Barbara Jeršek. 2020. "Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride" Microorganisms 8, no. 3: 344. https://doi.org/10.3390/microorganisms8030344
APA StyleRibič, U., Jakše, J., Toplak, N., Koren, S., Kovač, M., Klančnik, A., & Jeršek, B. (2020). Transporters and Efflux Pumps Are the Main Mechanisms Involved in Staphylococcus epidermidis Adaptation and Tolerance to Didecyldimethylammonium Chloride. Microorganisms, 8(3), 344. https://doi.org/10.3390/microorganisms8030344