Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus Chinensis (Trin.) Tzvel
Abstract
:1. Introduction
2. Material and Methods
2.1. Material Preparation
2.2. Experimental Design and Treatments
2.3. Measurements of the Characteristics of Plant, AMF, and Soil
2.4. Statistical Analysis
3. Results
3.1. The Growth of L. chinensis
3.1.1. Ramet Number and Rhizome Length
3.1.2. Aboveground and Underground Biomass
3.2. Total Nitrogen Content of Shoots and Roots
3.3. AM Fungal Characteristics
3.3.1. Infection Rate
3.3.2. Spore Density
3.4. Soil Characteristics
3.5. The Correlation Between the Characteristics of L. chinensis and the Soil
4. Discussion
4.1. Effects of Root Exudates on Soil Properties and AMF
4.2. Effects of Root Exudates on L. chinensis
4.3. Inoculation Effects of AMF
4.4. Interaction Effects
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meng, B.P.; Ge, J.; Liang, T.G.; Yang, S.X.; Gao, J.L.; Feng, Q.S.; Cui, X.; Huang, X.D.; Xie, H.J. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data. Remote. Sens. 2017, 9, 372. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.M.; Zhao, Y.S. Grazing intensity monitoring in Northern China steppe: Integrating CENTURY model and MODIS data. Ecol. Indic. 2011, 11, 175–182. [Google Scholar] [CrossRef]
- Akiyama, T.; Kawamura, K. Grassland degradation in China: methods of monitoring, management and restoration. Grass Sci. 2007, 53, 1–17. [Google Scholar] [CrossRef]
- Khan, R.U.; Mehmood, S.; Khan, S.U. Toxic effect of common poisonous plants of district bannu, khyber pakhtunkhwa, pakistan. Pak. J. Pharm. Sci. 2018, 31, 57–67. [Google Scholar] [PubMed]
- Holechec, J. Do most livestock losses to poisonous plants result from “poor” range management? J. Range Manage. 2002, 55, 270–276. [Google Scholar] [CrossRef]
- Tokarnia, C.H.; Döbereineb, J.; Peixoto, P.V. Poisonous plants affecting livestock in Brazik. Toxicon 2002, 40, 1635–1660. [Google Scholar] [CrossRef]
- Jandová, K.; Klinerová, T.; Müllerová, J.; Pysěk, P.; Pergl, J.; Cajthaml, T.; Dostál, P. Long-term impact of Heracleum mantegazzianum invasion on soil chemical and biological characteristics. Soil Biol. Biochem. 2014, 68, 270–278. [Google Scholar] [CrossRef]
- Li, Y.Y.; Dong, S.K.; Liu, S.L.; Wang, X.X.; Wen, L.; Wu, Y. The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai-Tibetan Plateau. Plant Ecol. 2014, 215, 809–819. [Google Scholar] [CrossRef]
- Lu, H.; Wang, S.S.; Zhou, Q.W.; Zhao, Y.N.; Zhao, B.Y. Damage and control of major poisonous plants in the western grasslands of China—A review. Rangel. J. 2012, 34, 329. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Yue, J.P.; Sun, H. Identification of twelve novel polymorphic microsatellite loci in the severe weed, Stellera chamaejasme L. (Thymelaeaceae). J. Genet. 2015, 94 (Suppl. 2), 24–26. [Google Scholar] [CrossRef]
- Xing, F. Ecological Study on Poisonous Plants in Grassland; Academy of Sciences Press: Beijing, China, 2016. [Google Scholar]
- Zhou, S.Q.; Wang, H. Allelopathy of S. chamaejasme on Elymus dahuricus. Grassl. Turf. 2010, 30, 63–65. (In Chinese) [Google Scholar]
- Guo, H.R.; Cui, H.Y.; Jin, H.; Yan, Z.Q.; Ding, L.; Qin, B. Potential allelochemicals in root zone soils of Stellera chamaejasme L. and variations at different geographical growing sites. Plant Growth Regul. 2015, 77, 335–342. [Google Scholar] [CrossRef]
- Cao, C.Y.; Fu, Y.; Wang, W.X.; Gao, F.F. Inhibition influence of extraction liquids from Stellera chamaejasme root on seed germination. J. Northeast. Univ. 2007, 28, 29–32. (In Chinese) [Google Scholar]
- Tatematsu, H.; Kurokawa, M.; Aiwa, M.; Hirata, Y. Piscicidal constituents of Stellera chamaejasme L. Chem. Pharm. Bull. 1984, 32, 1612–1613. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.H.; Tanaka, T.; Sakamoto, T. Biflavanones, diterpenes and coumarins from the roots of Stellera chamaejasme L. Chem. Pharm. Bull. 2002, 50, 137–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Z.Q.; Guo, H.G.; Yang, J.Y.; Liu, Q.; Jin, H.; Xu, R.; Cui, H.Y.; Qin, B. Phytotoxic flavonoids from roots of Stellera chamaejasme L. (Thymelaeaceae). Phytochemistry 2014, 106, 61–68. [Google Scholar] [CrossRef]
- Harborne, J.B. Introduction to Ecological Biochemistry, 3rd ed.; Academic Press: London, UK, 1988. [Google Scholar]
- Leu, E. Polyphenolic allelochemicals from the aquatic angiosperm myriophyllum spicatum inhibit photosystem Ⅱ. Plant Physiol. 2002, 130, 2011–2018. [Google Scholar] [CrossRef] [Green Version]
- White, C.S. Monoterpenes: Their effects on ecosystem nutrient cycling. J. Chem. Ecol. 1994, 20, 1381–1406. [Google Scholar] [CrossRef]
- Cesco, S.; Neumann, G.; Tomasi, N.; Pinton, R.; Weisskopf, L. Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant Soil 2010, 329, 12–15. [Google Scholar] [CrossRef]
- Vandermeer, J. Interspecific competition: a new approach to the classical theory. Science 1975, 188, 2532–2555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldberg, D.E.; Barton, A.M. Patterns and consequences of interspecific competition in natural communities a review of field experiments with plants. Am. Nat. 1992, 139, 771–801. [Google Scholar] [CrossRef]
- Mckane, R.B.; Johnson, L.C.; Shaver, G.R.; Nadelhoffer, K.J.; Rastetter, E.B.; Fry, B. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 2002, 415, 68–71. [Google Scholar] [CrossRef] [PubMed]
- Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 2004, 19, 605–611. [Google Scholar] [CrossRef]
- Klironomos, J.; Zoble, M.; Tibbett, M.; Stock, W.D.; Rillig, M.C.; Parrent, J.L.; Moora, M.; Koch, A.M.; Facellli, J.M.; Dickie, I.A.; et al. Forces that structure plant communities: quantifying the importance of the mycorrhizal symbiosis. New. Phytol. 2011, 189, 3663–3670. [Google Scholar] [CrossRef] [PubMed]
- Li, X.L.; George, E.; Marschner, H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 1991, 136, 41–48. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Bardgett, R.D.; van Straalen, N.M. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Zhang, F.S.; Shen, J.B.; Feng, G. Rhizosphere Ecology: Processes & Management; China Agricultural University Press: Beijing, China, 2009. [Google Scholar]
- van der Heijden, M.G.A.; Martin, F.M.; Sanders, I.R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015, 205, 1406–1423. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Klironomos, J.N.; Ursic, M.; Moutoglis, P.; Streitwolf-Engel, R.; Thomas, B.; Wiemken, A.; Sander, I.R. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 1998, 396, 69–72. [Google Scholar] [CrossRef]
- Facelli, E.; Facelli, J.M.; Smith, S.E.; Mclaughlin, M.J. Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytol. 1999, 141, 535–547. [Google Scholar] [CrossRef]
- Scheublin, T.R.; van Logtestijn, R.S.P.; van der Heijden, M.G.A. Presence and identity of arbuscular mycorrhizal fungi influence competitive interactions between plant species. J. Ecol. 2007, 95, 631–638. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Horton, T.R. Socialism in soil? The importance mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 2009, 97, 1139–1150. [Google Scholar] [CrossRef]
- Ayres, R.L.; Gange, A.C.; Aplin, D.M. Interactions between arbuscular mycorrhizal fungi and intraspecific competition affect size, and size inequality, of Plantago lanceolata L. J. Ecol. 2010, 94, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Jansa, J.; Stadler, M. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 2011, 92, 1303–1313. [Google Scholar] [CrossRef] [Green Version]
- Mariotte, P.; Meugnier, C.; Johnson, D.; Thébault, A.; Spiegelberger, T.; Buttler, A. Arbuscular mycorrhizal fungi reduce the differences in competitiveness between dominant and subordinate plant species. Mycorrhiza 2013, 23, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, L.M.; Caçador, I.; Martins-Loução, M.A. Temporal and spatial variation of arbuscular mycorrhizas in salt marsh plants of the Tagus estuary (Portugal). Mycorrhiza 2001, 11, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.L.; Du, J.; Zhang, B.T.; Ba, L.; Hodgkinson, K.C. Grazing intensity and phenotypic plasticity in the clonal grass Leymus chinensis. Rangel. Ecol. Manag. 2017, 70, 740–747. [Google Scholar] [CrossRef]
- Bao, Y.Y.; Yan, W. Arbuscular mycorrhizae and their structural types on common plants in grasslands of mid-western Inner Mongolia. Biodivers. Sci. 2004, 12, 501–508. (In Chinese) [Google Scholar]
- He, W.; Detheridge, A.; Liu, Y.M.; Wang, L.; Wei, H.C.; Griffith, G.W.; Scullion, J.; Wei, Y.H. Variation in soil fungal composition associated with the invasion of Stellera chamaejasme L. in Qinghai–Tibet plateau grassland. Microorganisms 2019, 7, 587. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, A.; Chaudhuri, S. Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 2002, 12, 169–174. [Google Scholar] [CrossRef]
- Jandová, K.; Dostá, P.; Cajthaml, T.; Kameník, Z. Intraspecific variability in allelopathy of Heracleum mantegazzianum is linked to the metabolic profile of root exudates. Ann. Bot. 2015, 115, 821–831. [Google Scholar] [CrossRef] [Green Version]
- Broeckling, C.D.; Broz, A.K.; Bergelson, J.; Manter, D.K.; Vivanco, J.M. Root exudates regulate soil fungal comunity composition and diversity. Appl. Environ. Microbiol. 2008, 73, 738–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.J.; Meng, Z.J.; Dang, X.H.; Song, W.J.; Zhai, B. Allelopathic effects of Stellera chamaejasme on seed germination and seedling growth of alfalfa and two forage grasses. Acta Prataculturae Sinica 2019, 28, 130–138. (In Chinese) [Google Scholar]
- Bi, L.X.; Liao, R.S. Study on Allelopathic Effects of Aqueous Extracts from Stellera chamaejasme L. and Cynanchum komarovii. J. Anhui Agri. Sci. 2010, 38, 3294–3297. (In Chinese) [Google Scholar]
- Sudová, R. Different growth response of five co-existing stoloniferous plant species to inoculation with native arbuscular mycorrhizal fungi. Plant Ecol. 2009, 204, 135–143. [Google Scholar] [CrossRef]
- Gao, Y.; Xing, F.; Jin, Y.J.; Nie, D.D.; Wang, Y. Foraging responses of clonal plants to multi-patch environmental heterogeneity: spatial preference and temporal reversibility. Plant Soil 2012, 359, 137–147. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 5, 158–161. [Google Scholar] [CrossRef]
- Trouvelot, A.; Kough, J.L.; Gianiazzi-Pearson, V. Mesure du taux de mycorhization VA d’unsystème radiculaire. Recherche de methods d’estimation ayant une signification fonctionnelle. In Physiological and Genetical Aspects of Mycorrhizae, Gianiazzi-Pearson Vand Gianiazzi S; INRA Press: Paris, France, 1986; pp. 217–221. [Google Scholar]
- Wang, Y.S.; Zhang, S.B.; Zhang, M.Q. Resources and Germplasm Resources of Arbuscular Mycorrhizal Fungi in China; China Agricultural Publishing House: Beijing, China, 2012. [Google Scholar]
- Shi, Y.; Sheng, L.; Wang, Z.; Zhang, X.; He, N.; Yu, Q. Responses of soil enzyme activity and microbial community compositions to nitrogen addition in bulk and microaggregate soil in the temperate steppe of Inner Mongolia. Eurasian Soil Sci. 2016, 49, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Cesco, S.; Mimmo, T.; Tonon, G.; Tomasi, N.; Pinton, R.; Terzano, R.; Neumann, G.; Weisskopf, L.; Renella, G.; Landi, L.; et al. Plant-borne flavonoids released into the rhizosphere: impact on soil bio-activities related to plant nutrition. a review. Biol. Fertil. Soils 2012, 48, 123–149. [Google Scholar] [CrossRef]
- Sun, G.; Luo, P.; Wu, N.; Qiu, P.F.; Gao, Y.H.; Chen, H.; Shi, F.S. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biol. Biochem. 2009, 41, 86–91. [Google Scholar] [CrossRef]
- Shen, H.; Yan, X.L.; Zhao, M. Exudation of organic acids in common bean as related to mobilization of aluminum and ironbound phosphates. Environ. Exp. Bot. 2002, 48, 1–9. [Google Scholar] [CrossRef]
- Salam, A.K.; Helmke, P.A. The dependence of free ionic activities and total dissolved concentration of copper and cadmium in soil solution. Geoderma 1998, 83, 281–291. [Google Scholar] [CrossRef]
- Acosta-Martínez, V.; Zobeck, T.M.; Gill, T.E.; Kennedy, A.C. Enzyme activities and microbial community structure in semiarid agricultural soils. Biol. Fertil. Soils 2003, 38, 216–227. [Google Scholar] [CrossRef]
- Zhan, S.X.; Wang, Y.; Zhu, Z.C.; Li, W.H.; Bai, Y.F. Nitrogen enrichment alters plant n: p stoichiometry and intensifies phosphorus limitation in a steppe ecosystem. Environ. Exp. Bot. 2016, 134, 21–32. [Google Scholar] [CrossRef]
- Zhang, C.B.; Wang, J.; Qian, B.Y.; Li, W.H. Effects of the invader Solidago canadensis on soil properties. Appl Soil Ecol. 2009, 43, 163–169. [Google Scholar] [CrossRef]
- Staddon, W.J.; Trevors, J.T.; Duchesne, L.C. Soil microbial diversity and community structure across a climatic gradient in western Canada. Biodivers Conserv. 1998, 7, 1081–1092. [Google Scholar] [CrossRef]
- Kobayashi, K. Factors affecting phytotoxic activity of allelochemicals in soil. Weed Biol. Manag. 2004, 4, 1–7. [Google Scholar] [CrossRef]
- Turner, B.L.; Haygarth, P.M. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci. Total Environ. 2005, 344, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Gadkar, V.; David-Schwartz, R.; Nagahashi, G.; David, D.; Wininger, S.; Kapulnik, Y. Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro. FEMS Microbiol. Lett. 2003, 223, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Haichar, F.Z.; Marol, C.; Berge, O.; Rangel-Castro, J.I.; Prosser, J.I. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2008, 2, 1211–1230. [Google Scholar] [CrossRef]
- Yuan, Y.G.; Tang, J.J.; Leng, D.; Hu, S.J.; Yong Jean, W.H.; Chen, X. An invasive plant promotes its arbuscular mycorrhizal symbioses and competitiveness through its secondary metabolites: indirect evidence from activated carbon. PLoS ONE 2014, 9. [Google Scholar] [CrossRef]
- Muhammad, A.K.; Cheng, Z.H.; Xiao, X.M.; Khan, A.R.; Ahmed, S.S. Ultrastructural studies of the inhibition effect against phytophthora capsici of root exudates collected from two garlic cultivars along with their qualitative analysis. Crop Prot. 2011, 30, 1149–1155. [Google Scholar]
- Jin, H.; Geng, Y.; Yu, Z.; Tao, K.; Hou, T. Lead optimization and anti-plant pathogenic fungi activities of daphneolone analogues from Stellera chamaejasme L. Pestic. Biochem. Physiol. 2009, 93, 131–137. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Guo, R.; Song, P.; Guo, J.X.; Gao, Y.Z. Effects of warming and nitrogen deposition on the coupling mechanism between soil nitrogen and phosphorus in Songnen Meadow Steppe, northeastern China. Soil Biol. Biochem. 2013, 65, 96–104. [Google Scholar] [CrossRef]
- Sun, S.N.; Xing, F.; Zhao, H.; Gao, Y.; Bai, Z.; Dong, Y. Response of bacterial community to simulated nitrogen deposition in soils and a unique relationship between plant species and soil bacteria in the Songnen grassland in Northeastern China J. Soil. Sci. Plant. Nut. 2014, 14, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Ordoñez, J.C.; van Bodegom, P.M.; Witte, J.M.; Wright, I.J.; Reich, P.B.; Aerts, R. A global study of relationships between leaf traits, climate and soil measures of nutrient fertility. Global Ecol. Biogeogr. 2009, 18, 137–149. [Google Scholar] [CrossRef]
- Valentinuzzi, F.; Cesco, S.; Tomasi, N.; Mimmo, T. Influence of different trap solutions on the determination of root exudates in Lupinus albus L. Biol. Fertil. Soils. 2015, 51, 757–765. [Google Scholar] [CrossRef]
- Streitwolf-Engel, R.; Boller, T.; Wiemken, A.; Sanders, I.R. Clonal growth traits of two Prunella species are determined by cooccurring arbuscular mycorrhizal fungi from a calcareous grassland. J. Ecol. 1997, 85, 181–191. [Google Scholar] [CrossRef]
- Streiywolf-Engel, R.; van der Heijden, M.G.A.; Wiemken, A.; Sanders, I.R. The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 2001, 82, 2846–2859. [Google Scholar] [CrossRef]
- Sudová, R.; Vosátka, M. Effects of inoculation with native arbuscular mycorrhizal fungi on clonal growth of Potentilla reptans and Fragaria moschata (Rosaceae). Plant Soil 2008, 308, 55–67. [Google Scholar] [CrossRef]
- Hameed, A.; Dilfuza, E.; Abd-Allah, E.F.; Hashem, A.; Kumar, A.; Ahmad, P. Salinity stress and arbuscular mycorrhizal symbiosis in Plants. In Use of Microbes for the Alleviation of Soil Stresses; Springer Science & Business Media: New York, NY, USA, 2014; Volume 1, pp. 139–159. [Google Scholar]
- Ames, R.N.; Reid, C.P.P.; Porter, L.K.; Cambardella, C. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 1983, 95, 381–396. [Google Scholar] [CrossRef]
- Tian, C.; Kasiborski, B.; Koul, R.; Lammers, P.J.; Bücking, H.; Shachar-Hill, Y. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol. 2010, 153, 1175–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Tienda, J.; Testillano, P.S.; Balestrini, R.; Fiorilli, V.; Azcón-Aguilar, C.; Ferrol, N. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet. Biol. 2011, 48, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xu, M.; Liu, Y.; Zhang, F.; Hodge, A.; Feng, G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate- solubilizing bacterium. New Phytol. 2016, 210, 1022–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siciliano, S.D.; Palmer, A.S.; Winsley, T.; Lamb, E.; Bissett, A.; Brown, M.V.; Van Dors, J.; Ji, M.; Ferrari, C.; Grogan, P.; et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with communities. Soil Biol. Biochem. 2014, 78, 10–20. [Google Scholar] [CrossRef]
- Inderjit. Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 2005, 274, 227–236. [Google Scholar] [CrossRef]
- Barto, E.K.; Weidenhamer, J.D.; Cipollini, D.; Rillig, M.C. Fungal superhighways: do common mycorrhizal networks enhance below ground communication? Trends Plant Sci. 2012, 17, 633–637. [Google Scholar] [CrossRef] [Green Version]
- Achatz, M.; Rillig, M.C. Arbuscular mycorrhizal fungal hyphae enhance transport of the allelochemical juglone in the field. Soil Biol. Biochem. 2014, 78, 76–82. [Google Scholar] [CrossRef]
- Bertin, C.; Yang, X.H.; Weston, L.A. The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 2003, 256, 67–78. [Google Scholar] [CrossRef]
Treatment | L. chinensis Characteristics | AMF Characteristics | |||||||
---|---|---|---|---|---|---|---|---|---|
df | RN | RL | AB | UB | Shoot N | Root N | Infection Rate | Spore Density | |
SRE | 3 | 10.103 *** | 0.367 | 2.913 * | 0.236 | 3.897 * | 5.123 ** | 4.399 ** | 2.777 * |
AMF | 1 | 2.888 | 0.507 | 0.371 | 3.047 | 7.995 ** | 5.027 * | 847.979 *** | 279.477 *** |
SRE×AMF | 3 | 1.014 | 0.956 | 0.263 | 0.103 | 0.876 | 0.423 | 0.714 | 2.047 |
Treatment | Soil Chemical Characteristics | |||||||
---|---|---|---|---|---|---|---|---|
df | pH | EC | AN | TN | AP | TP | TC | |
SRE | 3 | 44.127 *** | 71.023 *** | 66.712 *** | 34.180 *** | 34.650 *** | 1.571 | 38.680 *** |
AMF | 1 | 2.744 | 2.751 | 2.066 | 4.749 * | 9.516 ** | 4.381 * | 5.592 ** |
SRE × AMF | 3 | 4.948 ** | 1.164 | 0.215 | 0.445 | 6.710 ** | 0.435 | 3.309 * |
Results | R2 | p | |
---|---|---|---|
Ramet number | 1.44 AP −7.937 pH −0.17 AN +0.071 EC +70.52 | 0.412 | 0.000 |
Aboveground biomass | 0.15 AP +2.319 | 0.065 | 0.041 |
Underground biomass | −0.004 SD +2.647 | 0.080 | 0.023 |
Shoot nitrogen content | 0.032 IR +0.022 AN +28.580 | 0.239 | 0.000 |
Root nitrogen content | 0.022 IR +0.034 AN +18.084 | 0.357 | 0.000 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, X.; Xing, F.; Chen, C.; Huang, G.; Gao, Y. Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus Chinensis (Trin.) Tzvel. Microorganisms 2020, 8, 364. https://doi.org/10.3390/microorganisms8030364
Zhu X, Li X, Xing F, Chen C, Huang G, Gao Y. Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus Chinensis (Trin.) Tzvel. Microorganisms. 2020; 8(3):364. https://doi.org/10.3390/microorganisms8030364
Chicago/Turabian StyleZhu, Xinrui, Xiaote Li, Fu Xing, Chen Chen, Guohui Huang, and Ying Gao. 2020. "Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus Chinensis (Trin.) Tzvel" Microorganisms 8, no. 3: 364. https://doi.org/10.3390/microorganisms8030364
APA StyleZhu, X., Li, X., Xing, F., Chen, C., Huang, G., & Gao, Y. (2020). Interaction Between Root Exudates of the Poisonous Plant Stellera chamaejasme L. and Arbuscular Mycorrhizal Fungi on the Growth of Leymus Chinensis (Trin.) Tzvel. Microorganisms, 8(3), 364. https://doi.org/10.3390/microorganisms8030364