Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolates
2.2. DNA Preparation
2.3. Genomes from Databases
2.4. Reference Genome Assembly
2.5. Sequence QC
2.6. Comparative Genomics
2.7. Pathway Comparison
3. Results and Discussion
3.1. Reductive Evolution and Genome Degradation
3.2. Genomic Lesions are Functionally Distinct
3.3. Anaerobic Respiration Intact in S. Paratyphi C
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, L.; Chiu, C. Salmonella: Clinical importance and evolution of nomenclature. Chang. Gung Med. J. 2007, 30, 210. [Google Scholar]
- Langridge, G.C.; Wain, J.; Nair, S. Invasive salmonellosis in humans. EcoSal Plus 2012, 5. [Google Scholar] [CrossRef] [PubMed]
- Grimont, P.A.; Weill, F.-X. Antigenic formulae of the Salmonella serovars. WHO Collab. Cent. Ref. Res. Salmonella 2007, 9, 1–166. [Google Scholar]
- Connor, T.R.; Owen, S.V.; Langridge, G.; Connell, S.; Nair, S.; Reuter, S.; Dallman, T.J.; Corander, J.; Tabing, K.C.; Le Hello, S.; et al. What’s in a name? Species-wide whole-genome sequencing resolves invasive and noninvasive lineages of salmonella enterica serotype paratyphi B. mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Health and Safety Executive: Advisory Committee on Dangerous Pathogens. The Approved List of Biological Agents; Health and Safety Executive: Advisory Committee on Dangerous Pathogens: London, UK, 2013.
- Uzzau, S.; Hovi, M.; Stocker, B.A. Application of ribotyping and IS200 fingerprinting to distinguish the five Salmonella serotype O6, 7:c:1, 5 groups: Choleraesuis sensu stricto, Choleraesuis var. Kunzendorf, Choleraesuis var. Decatur, Paratyphi C, and Typhisuis. Epidemiol. Infect. 1999, 123, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.-Q.; Feng, Y.; Wang, Y.; Zou, Q.-H.; Chen, F.; Guo, J.-T.; Peng, Y.-H.; Jin, Y.; Li, Y.-G.; Hu, S.-N. Salmonella paratyphi C: Genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS ONE 2009, 4. [Google Scholar] [CrossRef] [Green Version]
- Achtman, M.; Wain, J.; Weill, F.-X.; Nair, S.; Zhou, Z.; Sangal, V.; Krauland, M.G.; Hale, J.L.; Harbottle, H.; Uesbeck, A. Multilocus sequence typing as a replacement for serotyping in Salmonella enterica. PLoS Pathog. 2012, 8, e1002776. [Google Scholar] [CrossRef] [Green Version]
- Didelot, X.; Achtman, M.; Parkhill, J.; Thomson, N.R.; Falush, D. A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: Convergence or divergence by homologous recombination? Genome Res. 2007, 17, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Holt, K.E.; Thomson, N.R.; Wain, J.; Langridge, G.C.; Hasan, R.; Bhutta, Z.A.; Quail, M.A.; Norbertczak, H.; Walker, D.; Simmonds, M. Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi. BMC Genom. 2009, 10, 36. [Google Scholar] [CrossRef]
- Key, F.M.; Posth, C.; Esquivel-Gomez, L.R.; Hübler, R.; Spyrou, M.A.; Neumann, G.U.; Furtwängler, A.; Sabin, S.; Burri, M.; Wissgott, A. Emergence of human-adapted Salmonella enterica is linked to the Neolithization process. Nat. Ecol. Evol. 2020, 4, 324–333. [Google Scholar] [CrossRef]
- Maskey, A.P.; Day, J.N.; Tuan, P.Q.; Thwaites, G.E.; Campbell, J.I.; Zimmerman, M.; Farrar, J.J.; Basnyat, B. Salmonella enterica serovar Paratyphi A and S. enterica serovar Typhi cause indistinguishable clinical syndromes in Kathmandu, Nepal. Clin. Infect. Dis. 2006, 42, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Giglioli, G. Paratyphoid C an endemic disease of British Guiana: a clinical and pathological outline. B. paratyphosum C as a pyogenic organism. Proc. R. Soc. Med. 1929, 23, 165–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tenbroeck, C.; Li, C.; Yü, H. Studies on paratyphoid C bacilli isolated in China. J. Exp. Med. 1931, 53, 307–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglioli, G. Paratyphoid C, an endemic disease in British Guiana. Epidemiol. Infect. 1929, 29, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giglioli, G. Post-mortem and histo-pathological notes on twenty fatal cases of bact. Paratyphosum C infection in British Guiana. West Indian Med. J. 1958, 7, 29–38. [Google Scholar]
- Jacobs, M.; Koornhof, H.; Crisp, S.; Palmhert, H.; Fitzstephens, A. Enteric fever caused by Salmonella paratyphi C in South and South West Africa. S. Afr. Med. J. 1978, 54, 434–438. [Google Scholar]
- Chiu, C.-H.; Su, L.-H.; Chu, C. Salmonella enterica serotype Choleraesuis: Epidemiology, pathogenesis, clinical disease, and treatment. Clin. Microbiol. Rev. 2004, 17, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Langridge, G.C.; Fookes, M.; Connor, T.R.; Feltwell, T.; Feasey, N.; Parsons, B.N.; Seth-Smith, H.M.; Barquist, L.; Stedman, A.; Humphrey, T. Patterns of genome evolution that have accompanied host adaptation in Salmonella. Proc. Natl. Acad. Sci. USA 2015, 112, 863–868. [Google Scholar] [CrossRef] [Green Version]
- Harris, S.R.; Feil, E.J.; Holden, M.T.; Quail, M.A.; Nickerson, E.K.; Chantratita, N.; Gardete, S.; Tavares, A.; Day, N.; Lindsay, J.A. Evolution of MRSA during hospital transmission and intercontinental spread. Science 2010, 327, 469–474. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Z.; Alikhan, N.-F.; Mohamed, K.; Fan, Y.; Achtman, M.; Brown, D.; Chattaway, M.; Dallman, T.; Delahay, R.; Kornschober, C. The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 2020, 30, 138–152. [Google Scholar] [CrossRef] [Green Version]
- Holt, K.E.; Parkhill, J.; Mazzoni, C.J.; Roumagnac, P.; Weill, F.-X.; Goodhead, I.; Rance, R.; Baker, S.; Maskell, D.J.; Wain, J. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat. Genet. 2008, 40, 987. [Google Scholar] [CrossRef] [PubMed]
- Zerbino, D.R.; Birney, E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 2008, 18, 821–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staden, R.; Judge, D.P.; Bonfield, J.K. Managing sequencing projects in the GAP4 environment. In Introduction to Bioinformatics; Springer: Berlin/Heidelberg, Germany, 2003; pp. 327–344. [Google Scholar]
- Assefa, S.; Keane, T.M.; Otto, T.D.; Newbold, C.; Berriman, M. ABACAS: Algorithm-based automatic contiguation of assembled sequences. Bioinformatics 2009, 25, 1968–1969. [Google Scholar] [CrossRef] [PubMed]
- Otto, T.D.; Sanders, M.; Berriman, M.; Newbold, C. Iterative Correction of Reference Nucleotides (iCORN) using second generation sequencing technology. Bioinformatics 2010, 26, 1704–1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, T.D.; Dillon, G.P.; Degrave, W.S.; Berriman, M. RATT: Rapid annotation transfer tool. Nucleic Acids Res. 2011, 39, e57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Carver, T.J.; Rutherford, K.M.; Berriman, M.; Rajandream, M.-A.; Barrell, B.G.; Parkhill, J. ACT: The Artemis comparison tool. Bioinformatics 2005, 21, 3422–3423. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Mackey, A.J.; Stoeckert, C.J., Jr.; Roos, D.S. OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006, 34, D363–D368. [Google Scholar] [CrossRef]
- Kingsley, R.A.; Langridge, G.; Smith, S.E.; Makendi, C.; Fookes, M.; Wileman, T.M.; El Ghany, M.A.; Keith Turner, A.; Dyson, Z.A.; Sridhar, S. Functional analysis of Salmonella Typhi adaptation to survival in water. Environ. Microbiol. 2018, 20, 4079–4090. [Google Scholar] [CrossRef] [Green Version]
- Conway, J.R.; Lex, A.; Gehlenborg, N. UpSetR: An R package for the visualization of intersecting sets and their properties. Bioinformatics 2017, 33, 2938–2940. [Google Scholar] [CrossRef] [Green Version]
- Nuccio, S.-P.; Bäumler, A.J. Comparative analysis of Salmonella genomes identifies a metabolic network for escalating growth in the inflamed gut. MBio 2014, 5, e00929-14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Chien, K.-Y.; Chen, H.-L.; Chiu, C.-H. Pseudogene recoding revealed from proteomic analysis of Salmonella serovars. J. Proteome Res. 2012, 11, 171–1719. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, N.E.; Gardner, P.P.; Barquist, L. Machine learning identifies signatures of host adaptation in the bacterial pathogen Salmonella enterica. PLoS Genet. 2018, 14, e1007333. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Lundstrøm, I.; Tran-Dien, A.; Duchêne, S.; Alikhan, N.-F.; Sergeant, M.J.; Langridge, G.; Fotakis, A.K.; Nair, S.; Stenøien, H.K.; et al. Pan-genome analysis of ancient and modern Salmonella enterica demonstrates genomic stability of the invasive para C lineage for millennia. Curr. Biol. 2018, 28, 2420–2428.e2410. [Google Scholar] [CrossRef] [Green Version]
- Vågene, Å.J.; Herbig, A.; Campana, M.G.; García, N.M.R.; Warinner, C.; Sabin, S.; Spyrou, M.A.; Valtueña, A.A.; Huson, D.; Tuross, N.; et al. Salmonella enterica genomes from victims of a major sixteenth-century epidemic in Mexico. Nat. Ecol. Evol. 2018, 2, 520–528. [Google Scholar] [CrossRef]
- Lou, L.; Zhang, P.; Piao, R.; Wang, Y. Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network. Front. Cell Infect. Mi 2019, 9, 270. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, M.; Cormican, M. Whole genome sequencing provides insights into the genetic determinants of invasiveness in Salmonella Dublin. Epidemiol. Infect. 2016, 144, 2430–2439. [Google Scholar] [CrossRef] [Green Version]
- Winter, S.E.; Thiennimitr, P.; Winter, M.G.; Butler, B.P.; Huseby, D.L.; Crawford, R.W.; Russell, J.M.; Bevins, C.L.; Adams, L.G.; Tsolis, R.M. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 2010, 467, 426–429. [Google Scholar] [CrossRef]
Dulcitol | H2S | Mucate | |
---|---|---|---|
Paratyphi C | + | + | − |
Choleraesuis var. sensu stricto | − | − | − |
Choleraesuis var. Kunzendorf | − | + | − |
Choleraesuis var. Decatur | + | + | + |
Typhisuis * | − | − | − |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, S.; Fookes, M.; Corton, C.; Thomson, N.R.; Wain, J.; Langridge, G.C. Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs. Microorganisms 2020, 8, 657. https://doi.org/10.3390/microorganisms8050657
Nair S, Fookes M, Corton C, Thomson NR, Wain J, Langridge GC. Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs. Microorganisms. 2020; 8(5):657. https://doi.org/10.3390/microorganisms8050657
Chicago/Turabian StyleNair, Satheesh, Maria Fookes, Craig Corton, Nicholas R. Thomson, John Wain, and Gemma C. Langridge. 2020. "Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs" Microorganisms 8, no. 5: 657. https://doi.org/10.3390/microorganisms8050657
APA StyleNair, S., Fookes, M., Corton, C., Thomson, N. R., Wain, J., & Langridge, G. C. (2020). Genetic Markers in S. Paratyphi C Reveal Primary Adaptation to Pigs. Microorganisms, 8(5), 657. https://doi.org/10.3390/microorganisms8050657