Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation
Abstract
:1. Theoretical Background
2. Flooding and Desiccation
3. Observations in Accordance with Theory
4. Oxygen Sensitivity and Microbial Populations in the Soil Environment
5. Role of Soil Organic Carbon
6. Methane Oxidation
7. Conclusions
Funding
Conflicts of Interest
References
- Conrad, R. Microbial ecology of methanogens and methanotrophs. Adv. Agron. 2007, 96, 1–63. [Google Scholar]
- Oremland, R.S. Biogeochemistry of Methanogenic Bacteria; Zehnder, A.J.B., Ed.; Wiley: New York, NY, USA, 1988; pp. 641–705. [Google Scholar]
- Zinder, S.H. Methanogenesis: Ecology, Physiology, Biochemistry and Genetics; Ferry, J.G., Ed.; Chapman & Hall: New York, NY, USA, 1993; pp. 128–206. [Google Scholar]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Bridgham, S.D.; Cadillo-Quiroz, H.; Keller, J.K.; Zhuang, Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales [review]. Glob. Chang. Biol. 2013, 19, 1325–1346. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.; Chapman, S.; Artz, R.R.E. Microbial communities in natural and disturbed peatlands: A review. Soil Biol. Biochem. 2013, 57, 979–994. [Google Scholar] [CrossRef]
- Bartlett, K.B.; Harriss, R.C. Review and assessment of methane emissions from wetlands. Chemosphere 1993, 26, 261–320. [Google Scholar] [CrossRef]
- Borges, A.V.; Abril, G.; Bouillon, S. Carbon dynamics and CO2 and CH4 outgassing in the Mekong delta. Biogeosciences 2018, 15, 1093–1114. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research [review]. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef] [Green Version]
- Lerman, A. Geochemical Processes. In Water and Sediment Environments; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Zehnder, A.J.B.; Stumm, W. Biology of Anaerobic Microorganisms; Zehnder, A.J.B., Ed.; Wiley: New York, NY, USA, 1988; pp. 1–38. [Google Scholar]
- Amend, J.P.; Shock, E.L. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria [Review]. Fems Microbiol. Rev. 2001, 25, 175–243. [Google Scholar] [CrossRef]
- Conrad, R. Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogenic soils and sediments [review]. Fems Microbiol. Ecol. 1999, 28, 193–202. [Google Scholar] [CrossRef]
- Conrad, R. Importance of hydrogenotrophic, aceticlastic, and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: A mini review. Pedosphere 2020, 30, 25–39. [Google Scholar] [CrossRef]
- Zehnder, A.J.B. Water Pollution Microbiology; Mitchell, R., Ed.; Wiley: New York, NY, USA, 1978; pp. 349–376. [Google Scholar]
- Schink, B.; Stams, A.J.M. The Prokaryotes: Prokaryotic Communities and Ecophysiology; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin, Germany, 2013; pp. 471–493. [Google Scholar]
- Kimura, M.; Asakawa, S. Handbook of Soil Sciences-Properties and Processes; Huang, P.M., Li, Y., Summer, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 2632–2640. [Google Scholar]
- Wilson, J.M.; Griffin, D.M. Water potential and the respiration of microrganisms in the soil. Soil Biol. Biochem. 1975, 7, 199–204. [Google Scholar] [CrossRef]
- Atlas, R.M.; Bartha, R. Microbial Ecology: Fundamentals and Applications; Pearson Education India: New Delhi, India, 1998. [Google Scholar]
- Lennon, J.T.; Jones, S.E. Microbial seed banks: The ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 2011, 9, 119–130. [Google Scholar] [CrossRef] [PubMed]
- Button, D.K. Kinetics of nutrient-limited transport and microbial growth. Microbiol. Rev. 1985, 49, 270–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, J.A. Determining microbial kinetic parameters using nonlinear regression analysis. Adv. Microb. Ecol. 1985, 8, 61–114. [Google Scholar]
- Lovley, D.R. Minimum threshold for hydrogen metabolism in methanogenic bacteria. Appl. Env. Microbiol. 1985, 49, 1530–1531. [Google Scholar] [CrossRef] [Green Version]
- Jetten, M.S.M.; Stams, A.J.M.; Zehnder, A.J.B. Acetate threshold and acetate activating enzymes in methanogenic bacteria. Fems Microbiol. Ecol. 1990, 73, 339–344. [Google Scholar] [CrossRef]
- Robinson, J.A.; Tiedje, J.M. Competition between sulfate-reducing and methanogenic bacteria for H2 under resting growing conditions. Arch. Microbiol. 1984, 137, 26–32. [Google Scholar] [CrossRef]
- Cord-Ruwisch, R.; Seitz, H.J.; Conrad, R. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 1988, 149, 350–357. [Google Scholar] [CrossRef]
- Lovley, D.R.; Goodwin, S. Hydrogen concentrations as an indicator of the predominant terminal electron-accepting reactions in aquatic sediments. Geochim. Cosmochim. Acta 1988, 52, 2993–3003. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R.; Wetter, B. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 1990, 155, 94–98. [Google Scholar] [CrossRef]
- Thauer, R.K.; Kaster, A.K.; Seedorf, H.; Buckel, W.; Hedderich, R. Methanogenic archaea: Ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 2008, 6, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Jetten, M.S.M.; Stams, A.J.M.; Zehnder, A.J.B. Methanogenesis from acetate-A comparison of the acetate metabolism in Methanothrix soehngenii and Methanosarcina spp. Fems Microbiol. Rev. 1992, 88, 181–197. [Google Scholar] [CrossRef]
- Fey, A.; Conrad, R. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Appl. Env. Microbiol. 2000, 66, 4790–4797. [Google Scholar] [CrossRef] [Green Version]
- Lueders, T.; Friedrich, M.W. Effects of amendment with ferrihydrite and gypsum on the structure and activity of methanogenic populations in rice field soil. Appl. Env. Microbiol. 2002, 68, 2484–2494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koebsch, F.; Winkel, M.; Liebner, S.; Liu, B.; Westphal, J.; Schmiedinger, I.; Spitzy, A.; Gehre, M.; Jurasinski, G.; Köhler, S. Sulfate deprivation triggers high methane production in a disturbed and rewetted coastal peatland. Biogeosciences 2019, 16, 1937–1953. [Google Scholar] [CrossRef] [Green Version]
- Aulakh, M.S.; Wassmann, R.; Rennenberg, H. Methane emissions from rice fields-Quantification, mechanisms, role of management, and mitigation options. Adv. Agron. 2001, 70, 193–260. [Google Scholar]
- Timisina, J.; Jat, M.L.; Majumdar, K. Rice-maize systems of South Asia: Current status, future prospects and research priorities for nutrient management [review]. Plant Soil 2010, 335, 65–68. [Google Scholar] [CrossRef]
- Sioli, H. The Amazon; Sioli, H., Ed.; Dr. W. Junk Publ.: Dordrecht, The Netherlands, 1984; pp. 127–165. [Google Scholar]
- Bartlett, K.B.; Crill, P.M.; Bonassi, J.A.; Richey, J.E.; Harriss, R.C. Methane flux from the Amazon River floodplain: Emissions during rising water. J. Geophys. Res. 1990, 95, 16773–16788. [Google Scholar] [CrossRef]
- Bastviken, D.; Tranvik, L.J.; Downing, J.A.; Crill, P.M.; Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 2011, 331, 50. [Google Scholar] [CrossRef] [Green Version]
- Angel, R.; Claus, P.; Conrad, R. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions. Isme J. 2012, 6, 847–862. [Google Scholar] [CrossRef] [Green Version]
- Ponnamperuma, F.N. The chemistry of submerged soils. Adv. Agron. 1972, 24, 29–96. [Google Scholar]
- Reddy, K.R.; Patrick, W.H. Effect of alternate aerobic and anaerobic conditions on redox potential, organic matter decomposition and nitrogen loss in a flooded soil. Soil Biol. Biochem. 1975, 7, 87–94. [Google Scholar] [CrossRef]
- Yao, H.; Conrad, R.; Wassmann, R.; Neue, H.U. Effect of soil characteristics on sequential reduction and methane production in sixteen rice paddy soils from China, the Philippines, and Italy. Biogeochemistry 1999, 47, 269–295. [Google Scholar] [CrossRef]
- Yao, H.; Conrad, R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy. Soil Biol. Biochem. 1999, 31, 463–473. [Google Scholar] [CrossRef]
- Ratering, S.; Conrad, R. Effects of short-term drainage and aeration on the production of methane in submerged rice soil. Glob. Chang. Biol. 1998, 4, 397–407. [Google Scholar] [CrossRef]
- Sigren, L.K.; Lewis, S.T.; Fisher, F.M.; Sass, R.L. Effects of field drainage on soil parameters related to methane production and emission from rice paddies. Glob. Biogeochem. Cycles 1997, 11, 151–162. [Google Scholar] [CrossRef]
- Achtnich, C.; Bak, F.; Conrad, R. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol. Fertil. Soils 1995, 19, 65–72. [Google Scholar] [CrossRef]
- Klüber, H.D.; Conrad, R. Effects of nitrate, nitrite, NO and N2O on methanogenesis and other redox processes in anoxic rice field soil. Fems Microbiol. Ecol. 1998, 25, 301–318. [Google Scholar] [CrossRef]
- Glissmann, K.; Conrad, R. Saccharolytic activity and its role as a limiting step in methane formation during the anaerobic degradation of rice straw in rice paddy soil. Biol. Fertil. Soils 2002, 35, 62–67. [Google Scholar] [CrossRef]
- Lüdemann, H.; Arth, I.; Liesack, W. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Env. Microbiol. 2000, 66, 754–762. [Google Scholar] [CrossRef] [Green Version]
- Noll, M.; Matthies, D.; Frenzel, P.; Derakshani, M.; Liesack, W. Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Env. Microbiol. 2005, 7, 382–395. [Google Scholar] [CrossRef]
- Shrestha, P.M.; Kube, M.; Reinhardt, R.; Liesack, W. Transcriptional activity of paddy soil bacterial communities. Env. Microbiol. 2009, 11, 960–970. [Google Scholar] [CrossRef] [PubMed]
- Chin, K.J.; Conrad, R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. Fems Microbiol. Ecol. 1995, 18, 85–102. [Google Scholar] [CrossRef]
- Glissmann, K.; Conrad, R. Fermentation pattern of methanogenic degradation of rice straw in anoxic paddy soil. Fems Microbiol. Ecol. 2000, 31, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Penning, H.; Conrad, R. Quantification of carbon flow from stable isotope fractionation in rice field soils with different organic matter content. Org. Geochem. 2007, 38, 2058–2069. [Google Scholar] [CrossRef]
- Ma, K.; Conrad, R.; Lu, Y. Responses of methanogen mcrA genes and their transcripts to an alternate dry/wet cycle of paddy field soil. Appl. Env. Microbiol. 2012, 78, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Conrad, R.; Lu, Y. Transcriptional response of methanogen mcrA genes to oxygen exposure of rice field soil. Env. Microbiol. Rep. 2011, 3, 320–328. [Google Scholar] [CrossRef]
- Abdallah, R.Z.; Wegner, C.E.; Liesack, W. Community transcriptomics reveals drainage effects on paddy soil microbiome accross all three domains if life. Soil Biol. Biochem. 2019, 132, 131–142. [Google Scholar] [CrossRef]
- Watanabe, T.; Kimura, M.; Asakawa, S. Distinct members of a stable methanogenic archaeal community transcribe mcrA genes under flooded and drained conditions in Japanese paddy field soil. Soil Biol. Biochem. 2009, 41, 276–285. [Google Scholar] [CrossRef]
- Kiener, A.; Leisinger, T. Oxygen sensitivity of methanogenic bacteria. Syst. Appl. Microbiol. 1983, 4, 305–312. [Google Scholar] [CrossRef]
- Fetzer, S.; Bak, F.; Conrad, R. Sensitivity of methanogenic bacteria from paddy soil to oxygen and desiccation. Fems Microbiol. Ecol. 1993, 12, 107–115. [Google Scholar] [CrossRef]
- Peters, V.; Conrad, R. Sequential reduction processes and initiation of CH4 production upon flooding of oxic upland soils. Soil Biol. Biochem. 1996, 28, 371–382. [Google Scholar] [CrossRef]
- Angel, R.; Matthies, D.; Conrad, R. Activation of methanogenesis in arid biological soil crusts despite the presence of oxygen. PLoS ONE 2011, 6, e20453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, V.; Conrad, R. Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Env. Microbiol. 1995, 61, 1673–1676. [Google Scholar] [CrossRef] [Green Version]
- Leadbetter, J.R.; Breznak, J.A. Physiological ecology of Methanobrevibacter cuticularis sp nov and Methanobrevibacter curvatus sp nov, isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Env. Microbiol. 1996, 62, 3620–3631. [Google Scholar] [CrossRef] [Green Version]
- Tholen, A.; Pester, M.; Brune, A. Simultaneous methanogenesis and oxygen reduction by Methanobrevibacter cuticularis at low oxygen fluxes. Fems Microbiol. Ecol. 2007, 62, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Wang, G.; Lee, C.G.; Murase, J.; Asakawa, S.; Kimura, M. Assimilation of glucose-derived carbon into methanogenic archaea in soil under unflooded condition. Appl. Soil Ecol. 2011, 48, 201–209. [Google Scholar] [CrossRef]
- Lee, C.G.; Watanabe, T.; Murase, J.; Asakawa, S.; Kimura, M. Growth of methanogens in an oxic soil microcosm: Elucidation by a DNA-SIP experiment using 13C-labeled dried rice callus. Appl. Soil Ecol. 2012, 58, 37–44. [Google Scholar] [CrossRef]
- Lyu, Z.; Lu, Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. Isme J. 2018, 12, 411–423. [Google Scholar] [CrossRef] [Green Version]
- Conrad, R.; Ji, Y.; Noll, M.; Klose, M.; Claus, P.; Enrich-Prast, A. Response of the methanogenic microbial communities in Amazonian oxbow lake sediments to desiccation stress. Env. Microbiol. 2014, 16, 1682–1694. [Google Scholar] [CrossRef]
- Ji, Y.; Angel, R.; Klose, M.; Claus, P.; Marotta, H.; Pinho, L.; Enrich-Prast, A.; Conrad, R. Structure and function of methanogenic microbial communities in sediments of Amazonian lakes with different water types. Env. Microbiol. 2016, 18, 5082–5100. [Google Scholar] [CrossRef] [PubMed]
- Reim, A.; Hernandez, M.; Klose, M.; Chidthaisong, A.; Yuttiham, M.; Conrad, R. Response of methanogenic microbial communities to desiccation stress in flooded and rain-fed paddy soil from Thailand. Front. Microbiol. 2017, 8, 785. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, M.; Conrad, R.; Klose, M.; Ma, K.; Lu, Y.H. Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang plain, NE China. Soil Biol. Biochem. 2017, 105, 81–91. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, M.; Klose, M.; Claus, P.; Bastviken, D.; Marotta, H.; Figueiredo, V.; Enrich-Prast, A.; Conrad, R. Structure, function and resilience to desiccation of methanogenic microbial communities in temporarily inundated soils of the Amazon rainforest (Cunia Reserve, Rondonia). Env. Microbiol. 2019, 21, 1702–1717. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Fernandez Scavino, A.; Klose, M.; Claus, P.; Conrad, R. Functional and structural responses of methanogenic microbial comunities in Uruguayan soils to intermittent drainage. Soil Biol. Biochem. 2015, 89, 238–247. [Google Scholar] [CrossRef]
- Fernandez Scavino, A.; Ji, Y.; Pump, J.; Klose, M.; Claus, P.; Conrad, R. Structure and function of the methanogenic microbial communities in Uruguayan soils shifted between pasture and irrigated rice fields. Env. Microbiol. 2013, 15, 2588–2602. [Google Scholar] [CrossRef]
- Breidenbach, B.; Blaser, M.B.; Klose, M.; Conrad, R. Crop rotation of flooded rice with upland maize impacts the resident and active methanogenic microbial community. Env. Microbiol. 2016, 18, 2868–2885. [Google Scholar] [CrossRef]
- Angel, R.; Conrad, R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Env. Microbiol. 2013, 15, 2799–2815. [Google Scholar] [CrossRef]
- Liu, D.; Nishida, M.; Takahashi, T.; Asakawa, S. Transcription of mcrA gene decreases upon prolonged non-flooding period in a methanogenic archaeal community of a paddy-upland rotational field soil. Microb. Ecol. 2018, 75, 751–760. [Google Scholar] [CrossRef]
- Atere, C.T.; Ge, T.; Zhu, Z.; Tong, C.; Jones, D.L.; Shibistova, O.; Guggenberger, G.; Wu, J. Rice rhizodeposition and carbon stabilisation in paddy soil are regulated via drying-rewetting cycles and nitrogen fertilisation. Biol. Fertil. Soils 2017, 53, 407–417. [Google Scholar] [CrossRef]
- Degens, E.T.; Mopper, K. Early diagenesis of organic matter in marine salts. Soil Sci. 1975, 119, 65–72. [Google Scholar] [CrossRef]
- Billen, G. Sediment Microbiology; Nedwell, D.B., Brown, C.M., Eds.; Academic Press: New York, NY, USA, 1982; pp. 15–52. [Google Scholar]
- Fey, A.; Conrad, R. Effect of temperature on the rate limiting step in the methanogenic degradation pathway in rice field soil. Soil Biol. Biochem. 2003, 35, 1–8. [Google Scholar] [CrossRef]
- Vavilin, V.; Rytov, S.; Conrad, R. Modeling methane formation in sediments of tropical lakes, focusing on syntrophic acetate oxidation: Dynamics and static isotope equations. Ecol. Modeling 2017, 363, 81–95. [Google Scholar] [CrossRef]
- Conrad, R.; Klose, M.; Enrich-Prast, A. Acetate turnover and methanogenic pathways in Amazonian lake sediments. Biogeosciences 2020, 17, 1063–1069. [Google Scholar] [CrossRef]
- Coates, J.D.; Ellis, D.J.; Blunt-Harris, E.L.; Gaw, C.V.; Roden, E.E.; Lovley, D.R. Recovery of humic-reducing bacteria from a diversity of environments. Appl. Env. Microbiol. 1998, 64, 1504–1509. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.K.; Weisenhorn, P.B.; Megonigal, J.P. Humic acids as electron acceptors in wetland decomposition. Soil Biol. Biochem. 2009, 41, 1518–1522. [Google Scholar] [CrossRef]
- Klüpfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, 195–200. [Google Scholar] [CrossRef]
- Heitmann, T.; Goldhammer, T.; Beer, J.; Blodau, C. Electron transfer of dissolved organic matter and its potential significance for anaerobic respiration in a northern bog. Glob. Chang. Biol. 2007, 13, 1771–1785. [Google Scholar] [CrossRef]
- Gao, C.; Sander, M.; Agethen, S.; Knorr, K.H. Electron accepting capacity of dissolved and particulate organic matter control CO2 and CH4 formation in peat soils. Geochim. Cosmochim. Acta 2019, 245, 266–277. [Google Scholar] [CrossRef]
- Lovley, D.R. Happy together: Microbial communities that hook up to swap electrons [review]. Isme J. 2017, 11, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Kellerman, A.M.; Kothawala, D.N.; Dittmar, T.; Tranvik, L.J. Persistence of dissolved organic matter in lakes related to its molecular characteristics. Nat. Geosci. 2015, 8, 454–457. [Google Scholar] [CrossRef]
- Lau, M.P.; Sander, M.; Gelbrecht, J.; Hupfer, M. Solid phases as important electron acceptors in freshwater organic sediments. Biogeochemistry 2015, 123, 49–61. [Google Scholar] [CrossRef]
- Medeiros, P.M.; Seidel, M.; Niggemann, J.; Spencer, R.G.M.; Hernes, P.J.; Yager, P.L.; Miller, W.L.; Dittmar, T.; Hansell, D.A. A novel molecular approach for tracing terrigenous dissolved organic matter into the deep ocean. Glob. Biogeochem. Cycles 2016, 30, 689–699. [Google Scholar] [CrossRef]
- Mostovaya, A.; Hawkes, J.A.; Koehler, B.; Dittmar, T.; Tranvik, L.J. Emergence of the activity continuum of organic matter from kinetics of a multitude of individual molecular constituents. Env. Sci. Technol. 2017, 51, 11571–11579. [Google Scholar] [CrossRef]
- Valle, J.; Gonsior, M.; Harir, M.; Enrich-Prast, A.; Schmitt-Kopplin, P.; Conrad, R.; Hertkorn, N. Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Res. 2018, 129, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Hodgkins, S.B.; Tfaily, M.M.; McCalley, C.K.; Logan, T.A.; Crill, P.M.; Saleska, S.R.; Rich, V.I.; Chanton, J.P. Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production. Proc. Natl. Acad. Sci. USA 2014, 111, 5819–5824. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, F.; Elvert, M.; Koch, B.P.; Witt, M.; Hinrichs, K.U. Molecular characterization of dissolved organic matter in pore water of continental shelf sediments. Geochim. Cosmochim. Acta 2009, 73, 3337–3358. [Google Scholar] [CrossRef]
- Seidel, M.; Beck, M.; Riedel, T.; Waska, H.; Suryaputra, I.; Schnetger, B.; Niggemann, J.; Simon, M.; Dittmar, T. Biogeochemistry of dissolved organic matter in an anoxic intertidal creek bank. Geochim. Cosmochim. Acta 2014, 140, 418–434. [Google Scholar] [CrossRef]
- Harriss, R.C.; Sebacher, D.I. Methane flux in the Great Dismal Swamp. Nature 1982, 297, 673–674. [Google Scholar] [CrossRef]
- Melling, L.; Hatano, R.; Goh, K.J. Methane fluxes from three ecosystems in tropical peatland of Sarawak, Malaysia. Soil Biol. Biochem. 2005, 37, 1445–1453. [Google Scholar] [CrossRef]
- Kelley, C.A.; Martens, C.S.; Ussler, W. Methane dynamics across a tidally flooded riverbank margin. Limnol. Oceanogr. 1995, 40, 1112–1129. [Google Scholar] [CrossRef]
- Kolb, S.; Horn, M.A. Microbial CH4 and N2O consumption in acidic wetlands [review]. Front. Microbiol. 2012, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Bender, M.; Conrad, R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem. 1995, 27, 1517–1527. [Google Scholar] [CrossRef]
- Henckel, T.; Conrad, R. Characterization of microbial NO production, N2O production and CH4 oxidation initiated by aeration of anoxic rice field soil. Biogeochemistry 1998, 40, 17–36. [Google Scholar] [CrossRef]
- DeniervanderGon, H.A.C.; VanBreemen, N.; Neue, H.U.; Lantin, R.S.; Aduna, J.B.; Alberto, M.C.R.; Wassmann, R. Release of entrapped methane from wetland rice fields upon soil drying. Glob. Biogeochem. Cycles 1996, 10, 1–7. [Google Scholar] [CrossRef]
- Abao, J.; Bronson, K.F.; Wassmann, R.; Singh, U. Simultaneous records of methane and nitrous oxide emissions in rice-based cropping systems under rainfed conditions. Nutr. Cycl. Agroecosyst. 2000, 58, 131–139. [Google Scholar] [CrossRef]
- Weller, S.; Kraus, D.; Ayag, K.R.; Wassmann, R.; Alberto, M.; Butterbach-Bahl, K.; Kiese, R. Methane and nitrous oxide emissions from rice and maize production in diversified rice cropping systems. Nutr. Cycl. Agroecosyst. 2015, 101, 37–53. [Google Scholar] [CrossRef]
- Jäckel, U.; Schnell, S.; Conrad, R. Effect of moisture, texture and aggregate size of paddy soil on production and consumption of CH4. Soil Biol. Biochem. 2001, 33, 965–971. [Google Scholar] [CrossRef]
- Cai, Y.F.; Zheng, Y.; Bodelier, P.L.E.; Conrad, R.; Jia, Z.J. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat. Commun. 2016, 7, 11728. [Google Scholar] [CrossRef] [Green Version]
- Striegl, R.G.; McConnaughey, T.A.; Thorstenson, D.C.; Weeks, E.P.; Woodward, J.C. Consumption of atmospheric methane by desert soils. Nature 1992, 357, 145–147. [Google Scholar] [CrossRef]
- Angel, R.; Conrad, R. In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils. Env. Microbiol. 2009, 11, 2598–2610. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Z.; Shao, N.; Akinyemi, T.; Whitman, W.B. Methanogenesis [review]. Curr. Biol. 2018, 28, R719–R736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Permanent Wet | Seasonal Flooding | Seasonal Flooding | Rotation | Mostly Dry | Permanent Dry | |
---|---|---|---|---|---|---|
lake sediments | Amazon floodplain | paddy rice | rice—upland crop | upland soil | desert soil crusts | |
Methanogen numbers after flooding | = | = | = | = | ↑ | ↑ |
Methanogen taxa stimulated by desiccation | M’sarcinaceae M’cellaceae | M´sarcinaceae M´cellaceae | M´sarcinaceae M´cellaceae M´bacteriales | M´sarcinaceae M´bacteriales or unchanged | M´sarcinaceae M´cellaceae M´bacteriales | M´sarcinaceae M´cellaceae |
Firmicutes after desiccation and reflooding | ↑ | ↑ | ↑ = | ↑ = | ↑ | ↑ |
CH4 production after desiccation and reflooding | ↑ | = | ↑↓ | ↓ | ↓ | |
Hydrogenotrophic methanogenesis (%) | >50 | >50 | <33 | <33 | >50 | >50 |
References | [69,70] | [73] | [71,72,76] | [74,75,76] | [39,72,73,74] | [62,77] |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conrad, R. Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms 2020, 8, 881. https://doi.org/10.3390/microorganisms8060881
Conrad R. Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms. 2020; 8(6):881. https://doi.org/10.3390/microorganisms8060881
Chicago/Turabian StyleConrad, Ralf. 2020. "Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation" Microorganisms 8, no. 6: 881. https://doi.org/10.3390/microorganisms8060881
APA StyleConrad, R. (2020). Methane Production in Soil Environments—Anaerobic Biogeochemistry and Microbial Life between Flooding and Desiccation. Microorganisms, 8(6), 881. https://doi.org/10.3390/microorganisms8060881