Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growth Conditions
2.2. Genome Sequencing, Annotation, and Analysis
2.3. Mutagenesis of isoA
2.4. Complementation of isoA Mutants
2.5. Expression of iso Metabolic Genes in the Absence of Isoprene Monooxygenase
2.6. Differential Expression of iso Metabolic Genes under Different Growth Conditions
2.7. Oxidation of Alkenes by Variovorax sp. WS11 Grown under Different Conditions
2.8. Inhibition of IsoMO and sMMO Activity by Alkynes
2.9. Heterologous Expression of Isoprene Monooxygenase
2.10. Accession Number
3. Results and Discussion
3.1. Isolation of Variovorax sp. WS11 from Willow Soil
3.2. Genome sequencing and Analysis
3.2.1. The Genome of Variovorax sp. WS11 Encodes Multiple Putative Oxygenase Gene Clusters
3.2.2. The iso Metabolic Gene Cluster of Variovorax sp. WS11 is Distinct from that of Rhodococcus sp. AD45
3.3. Functional Confirmation and Substrate-Induced Transcription of iso Metabolic Genes
3.4. Differential Expression of a Broad-Range SDIMO Active with Branched Hydrocarbons
3.5. Inhibition by Alkynes Indicates that IsoMO is a Distinct SDIMO
3.5.1. Inhibition of IsoMO Correlates with Increasing Alkyne Chain Length
3.5.2. IsoMO is Distinct from the Well-Characterised sMMO
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature Version 2.1 (MEGAN2.1): An Extended and Updated Framework for Modeling Biogenic Emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Atkinson, R.; Arey, J. Atmospheric Degradation of Volatile Organic Compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef] [PubMed]
- Carlton, A.G.; Wiedinmyer, C.; Kroll, J.H. A Review of Aecondary Organic Aerosol (SOA) Formation from Isoprene. Atmos. Chem. Phys. 2009, 9, 4987–5005. [Google Scholar] [CrossRef] [Green Version]
- Fiore, A.M.; Naik, V.; Spracklen, D.V.; Steiner, A.; Unger, N.; Prather, M.; Bergmann, D.; Cameron-Smith, P.J.; Cionni, I.; Collins, W.J.; et al. Global Air Quality and Climate. Chem. Soc. Rev. 2012, 41, 6663–6683. [Google Scholar] [CrossRef] [Green Version]
- Trainer, M.; Williams, E.; Parrish, D.; Buhr, M.; Allwine, E.; Westberg, H.; Fehsenfeld, F. Models and Observations of the Impact of Natural Hydrocarbons on Rural Ozone. Nature 1987, 329, 705–707. [Google Scholar] [CrossRef]
- Silver, G.M.; Fall, R. Enzymatic Synthesis of Isoprene from Dimethylallyl Diphosphate in Aspen Leaf Extracts. Plant Physiol. 1991, 97, 1588–1591. [Google Scholar] [CrossRef] [Green Version]
- Silver, G.M.; Fall, R. Characterization of Aspen Isoprene Synthase, an Enzyme Responsible for Leaf Isoprene Emission to the Atmosphere. J. Biol. Chem. 1995, 22, 13010–13016. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, T.D.; Yeh, S. Isoprene Emission from Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 407–436. [Google Scholar] [CrossRef]
- Vickers, C.E.; Gershenzon, J.; Lerdau, M.T.; Loreto, F. A Unified Mechanism of Action for Volatile Isoprenoids in Plant Abiotic Stress. Nat. Chem. Biol. 2009, 5, 283–291. [Google Scholar] [CrossRef]
- Vickers, C.E.; Possell, M.; Cojocariu, C.I.; Velikova, V.B.; Laothawornkitkul, J.; Ryan, A.; Mullineaux, P.M.; Hewitt, C.N. Isoprene Synthesis Protects Transgenic Tobacco Plants from Oxidative Stress. Plant Cell Environ. 2009, 32, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Weraduwage, S.M.; Lantz, A.T.; Sanchez, L.M.; Weise, S.E. Isoprene Acts as a Signaling Molecule in Gene Networks Important for Stress Responses and Plant Growth. Plant Physiol. 2019, 180, 124–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantz, A.T.; Allman, J.; Sharkey, T.D. Isoprene: New Insights into the Control of Emission and Mediation of Stress Tolerance by Gene Expression. Plant. Cell Environ. 2019, 42, 2808–2826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, C.M.; Sharkey, T.D. Exogenous Isoprene Modulates Gene Expression in Unstressed Arabidopsis thaliana Plants. Plant Cell Environ. 2016, 39, 1251–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonsang, B.; Polle, C.; Lambert, G. Evidence for Marine Production of Isoprene. Geophys. Res. Lett. 1992, 19, 1129–1132. [Google Scholar] [CrossRef]
- Dani, K.G.S.; Silva, A.M.; Michelozzi, M.; Peluso, G.; Torzillo, G.; Loreto, F. Relationship between Isoprene Emission and Photosynthesis in Diatoms, and Its Implications for Global Marine Isoprene Estimates. Mar. Chem. 2017, 189, 17–24. [Google Scholar] [CrossRef]
- Shaw, S.L.; Gantt, B.; Meskhidze, N. Production and Emissions of Marine Isoprene and Monoterpenes: A Review. Adv. Meteorol. 2010, 2010, 1–24. [Google Scholar] [CrossRef]
- Alvarez, L.A.; Exton, D.A.; Timmis, K.N.; Suggett, D.J.; McGenity, T.J. Characterization of Marine Isoprene-Degrading Communities. Environ. Microbiol. 2009, 11, 3280–3291. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Yavitt, J.B. Microbial Consumption of Atmospheric Isoprene in a Temperate Forest Soil. Appl. Environ. Microbiol. 1998, 64, 172–177. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, C.; Yavitt, J. Consumption of Atmospheric Isoprene in Soil. Geophys. Res. Lett. 1997, 24, 2379–2382. [Google Scholar] [CrossRef] [Green Version]
- Van Ginkel, C.G.; De Jong, E.; Tilanus, J.W.R.; De Bont, J.A.M. Microbial Oxidation of Isoprene, a Biogenic Foliage Volatile and of 1,3-Butadiene, an Anthropogenic Gas. FEMS Microbiol. Lett. 1987, 45, 275–279. [Google Scholar] [CrossRef]
- Ewers, J.; Freier-schriider, D.; Knackmuss, H. Selection of Trichloroethene (TCE) Degrading Bacteria That Resist Inactivation by TCE. Arch. Microbiol. 1990, 154, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Van Hylckama Vlieg, J.E.; Kingma, J.; van den Wijngaard, A.J.; Janssen, D.B. A Glutathione S-Transferase with Activity towards Cis-1, 2-Dichloroepoxyethane is Involved in Isoprene Utilization by Rhodococcus sp. Strain AD45. Appl. Environ. Microbiol. 1998, 64, 2800–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hylckama Vlieg, J.E.; Kingma, J.; Kruizinga, W.; Janssen, D.B. Purification of a Glutathione S-Transferase and a Glutathione Conjugate-Specific Dehydrogenase Involved in Isoprene Metabolism in Rhodococcus sp. Strain AD45. J. Bacteriol. 1999, 181, 2094–2101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Hylckama Vlieg, J.E.T.; Leemhuis, H.; Jeffrey, H.; Spelberg, L.; Janssen, D.B. Characterization of the Gene Cluster Involved in Isoprene Metabolism in Characterization of the Gene Cluster Involved in Isoprene Metabolism in Rhodococcus sp. Strain AD45. J. Bacteriol. 2000, 187, 1956–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, J.R.; Ensign, S.A. Carboxylation of Epoxides to β-Keto Acids in Cell Extracts of Xanthobacter Strain Py2. J. Bacteriol. 1996, 178, 1469–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khawand, M.; Crombie, A.T.; Johnston, A.; Vavlline, D.V.; McAuliffe, J.C.; Latone, J.A.; Primak, Y.A.; Lee, S.K.; Whited, G.M.; McGenity, T.J.; et al. Isolation of Isoprene Degrading Bacteria from Soils, Development of isoA Gene Probes and Identification of the Active Isoprene-Degrading Soil Community Using DNA-Stable Isotope Probing. Environ. Microbiol. 2016, 18, 2743–2753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrión, O.; Larke-mejía, N.L.; Gibson, L.; Farhan, M.; Haque, U.; Ramiro-garcía, J.; Mcgenity, T.J.; Murrell, J.C. Gene Probing Reveals the Widespread Distribution, Diversity and Abundance of Isoprene-Degrading Bacteria in the Environment. Microbiome 2018, 6, 1–11. [Google Scholar] [CrossRef]
- Crombie, A.T.; Larke-mejia, N.L.; Emery, H.; Dawson, R.; Pratscher, J.; Murphy, G.P. Poplar Phyllosphere Harbors Disparate Isoprene- Degrading Bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, 13081–13086. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.; Crombie, A.T.; El Khawand, M.; Sims, L.; Whited, G.M.; McGenity, T.J.; Colin Murrell, J. Identification and Characterisation of Isoprene-Degrading Bacteria in an Estuarine Environment. Environ. Microbiol. 2017, 19, 3526–3537. [Google Scholar] [CrossRef] [Green Version]
- Larke-Mejía, N.L.; Crombie, A.T.; Pratscher, J.; Mcgenity, T.J.; Murrell, J.C. Novel Isoprene-Degrading Proteobacteria from Soil and Leaves Identified by Cultivation and Metagenomics Analysis of Stable Isotope Probing Experiments. Front. Microbiol. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, N.; Dubey, S.K. Molecular Characterization and Kinetics of Isoprene Degrading Bacteria. Bioresour. Technol. 2019, 278, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Srivastva, N.; Singh, A.; Bhardwaj, Y.; Dubey, S.K. Biotechnological Potential for Degradation of Isoprene: A Review. Crit. Rev. Biotechnol. 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Willems, A.; De ley, J.; Gillis, M.; Kersters, K. Comamonadaceae, a New Family Encompassing the Acidovorans rRNA Complex, Including Variovorax paradoxus Gen. Nov., Comb. Nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Bacteriol. 1991, 41, 445–450. [Google Scholar] [CrossRef] [Green Version]
- Brandt, U.; Hiessl, S.; Schuldes, J.; Thürmer, A.; Wübbeler, J.H.; Daniel, R.; Steinbüchel, A. Genome-Guided Insights into the Versatile Metabolic Capabilities of the Mercaptosuccinate-Utilizing β-Proteobacterium Variovorax paradoxus Strain B4. Environ. Microbiol. 2014, 16, 3370–3386. [Google Scholar] [CrossRef] [PubMed]
- Breugelmans, P.; Barken, K.B.; Tolker-nielsen, T.; Hofkens, J.; Dejonghe, W.; Springael, D. Architecture and Spatial Organization in a Triple-Species Bacterial Biofilm Synergistically Degrading the Phenylurea Herbicide Linuron. FEMS Microbiol. Ecol. 2008, 64, 271–282. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Choi, H.; Lee, S.; Orwin, P.M.; Kim, J.; Laroe, S.L.; Kim, T.; Neil, J.O.; Leadbetter, J.R.; Lee, S.Y.; et al. Complete Genome Sequence of the Metabolically Versatile Plant Growth-Promoting Endophyte Variovorax paradoxus S110. J. Bacteriol. 2011, 193, 1183–1190. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.L.; Hazen, T.C.; Simmons, B.A.; Deangelis, K.M. Enzyme Activities of Aerobic Lignocellulolytic Bacteria Isolated from Wet Tropical Forest Soils. Syst. Appl. Microbiol. 2014, 37, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Lee, C.S.; Hugunin, K.M.; Maute, C.J.; Dysko, R.C. Bacteria from Drinking Water Supply and Their Fate in Gastrointestinal Tracts of Germ-Free Mice: A Phylogenetic Comparison Study. Water Res. 2010, 44, 5050–5058. [Google Scholar] [CrossRef]
- Suyama, T.; Hosoya, H.; Tokiwa, Y. Bacterial Isolates Degrading Aliphatic Polycarbonates. FEMS Microbiol. Lett. 1998, 161, 255–261. [Google Scholar] [CrossRef]
- Futamata, H.; Harayama, S.; Watanabe, K. Group-Specific Monitoring of Phenol Hydroxylase Genes for a Functional Assessment of Phenol-Stimulated Trichloroethylene Bioremediation. Appl. Environ. Microbiol. 2001, 67, 4671–4677. [Google Scholar] [CrossRef] [Green Version]
- Futamata, H.; Nagano, Y.; Watanabe, K.; Hiraishi, A. Unique Kinetic Properties of Phenol-Degrading Variovorax Strains Responsible for Efficient Trichloroethylene Degradation in a Chemostat Enrichment Culture. Appl. Environ. Microbiol. 2005, 71, 904–911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satola, B.; Wübbeler, J.H.; Steinbüchel, A. Metabolic Characteristics of the Species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 2013, 97, 541–560. [Google Scholar] [CrossRef] [PubMed]
- Dorn, E.; Hellwig, I.V.; Reineke, W.; Knackmuss, H.-J. Isolation and Characterization of a 3-Chlorobenzoate Degrading Pseudomonad. Arch. Microbiol. 1974, 99, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Kanagawa, T.; Dazai, M.; Fukuoka, S. Degradation of O,O-Dimethyl Phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas. Agric. Biol. Chem. 1982, 46, 2571–2578. [Google Scholar]
- Crombie, A.T.; Khawand, M.E.; Rhodius, V.A.; Fengler, K.A.; Miller, M.C.; Whited, G.M.; McGenity, T.J.; Murrell, J.C. Regulation of Plasmid-Encoded Isoprene Metabolism in Rhodococcus, a Representative of an Important Link in the Global Isoprene Cycle. Environ. Microbiol. 2015, 17, 3314–3329. [Google Scholar] [CrossRef] [Green Version]
- Vallenet, D.; Calteau, A.; Dubois, M.; Amours, P.; Bazin, A.; Burlot, L.; Bussell, X.; Gautreau, G.; Langlois, J.; Roche, D.; et al. MicroScope: An Integrated Platform for the Annotation and Exploration of Microbial Gene Functions through Genomic, Pangenomic and Metabolic Comparative Analysis. Nucleic Acids Res. 2019, 1, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.; Gish, W.; Miller, W.; Myers, E.; Lipman, D. Basic Local Alignment Search Tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Carver, T.; Harris, S.R.; Berriman, M.; Parkhill, J.; Mcquillan, J.A. Artemis: An Integrated Platform for Visualization and Analysis of High-Throughput Sequence-Based Experimental Data. Bioinformatics 2012, 28, 464–469. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, A.; Tauch, A.; Jsger, W.; Kalinowski, J.; Thierbachb, G.; Piihler, A. Small Mobilizable Multi-Purpose Cloning Vectors Derived from the Escherichia coli Plasmids pK18 and pK19: Selection of Defined Deletions in the Chromosome of Corynebacterium glutamicum. Gene 1994, 145, 69–73. [Google Scholar] [CrossRef]
- Dennis, J.J.; Zylstra, G.J. Plasposons: Modular Self-Cloning Minitransposon Derivatives for Rapid Genetic Analysis of Gram-Negative Bacterial Genomes. Appl. Environ. Microbiol. 1998, 64, 2710–2715. [Google Scholar] [CrossRef] [Green Version]
- Pehl, M.; Jamieson, W.D.; Kong, K.; Forbester, J.; Fredendall, R.; Gregory, G.; Mcfarland, J.; Healy, J.; Orwin, P. Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS. PLoS ONE 2012, 7, e31832. [Google Scholar] [CrossRef] [PubMed]
- Kovach, M.E.; Elzer, P.H.; Hill, D.S.; Robertson, G.T.; Farris, M.A.; Roop, R.M.; Peterson, K.M. Four New Derivatives of the Broad-Host-Range Cloning Vector PBBR1MCS, Carrying Different Antibiotic-Resistance Cassettes. Gene 1995, 166, 175–176. [Google Scholar] [CrossRef]
- Gilbert, B.; McDonald, I.R.; Finch, R.; Stafford, G.P.; Nielsen, A.K.; Murrell, J.C. Molecular Analysis of the Pmo (Particulate Methane Monooxygenase) Operons from Two Type II Methanotrophs. Appl. Environ. Microbiol. 2000, 66, 966–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Clark, L.; Wolf, R.; Granger, D.; Taylor, Z. Continuous Recording of Blood Oxygen Tensions by Polarography. J. Appl. Physiol. 1953, 6, 189–193. [Google Scholar] [CrossRef] [PubMed]
- Green, M.J.; Hill, H.A.O. Chemistry of Dioxygen. Methods Enzymol. 1984, 105, 3–22. [Google Scholar]
- Sander, R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.K.; Gerdes, K.; Degn, H.; Murrel, J.C. Regulation of Bacterial Methane Oxidation: Transcription of the Soluble Methane Mono-Oxygenase Operon of Methylococcus capsulatus (Bath) Is Repressed by Copper Ions. Microbiology 1996, 142, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Brusseau, G.A.; Tsien, H.; Hanson, R.S.; Wackett, L.P. Optimization of Trichloroethylene Oxidation by Methanotrophs and the Use of a Colorimetric Assay to Detect Soluble Methane Monooxygenase Activity. Biodegradation 1990, 1, 19–29. [Google Scholar] [CrossRef]
- Colby, B.J.; Stirling, D.I.; Dalton, H. The Soluble Methane Mono-Oxygenase of Methylococcus capsulatus (Bath). Biochem. J. 1977, 165, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, N.; Tamura, T. Isolation and Characterization of a Rolling-Circle-Type Plasmid from Rhodococcus erythropolis and Application of the Plasmid to Multiple-Recombinant-Protein Expression. Appl. Environ. Microbiol. 2004, 70, 5557–5568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A Greedy Algorithm for Aligning DNA Sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Satsuma, K. Mineralisation of the Herbicide Linuron by Variovorax sp. Strain RA8 Isolated from Japanese River Sediment Using an Ecosystem Model (Microcosm). Pest Manag. Sci. 2010, 66, 847–852. [Google Scholar] [PubMed]
- Aziz, R.K.; Bartels, D.; Best, A.A.; Dejongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid Annotations Using Subsystems Technology. BMC Genomics 2008, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of Microbial Genomes Using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, 206–214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olson, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A Modular and Extensible Implementation of the RAST Algorithm for Annotating Batches of Genomes. Sci. Rep. 2015, 5, 1–6. [Google Scholar] [CrossRef] [Green Version]
- De Marco, P.; Moradas-ferreira, P.; Higgins, T.P.; Donald, I.A.N.M.C.; Kenna, E.M.; Murrell, J.C. Molecular Analysis of a Novel Methanesulfonic Acid Monooxygenase from the Methylotroph Methylosulfonomonas methylovora. J. Bacteriol. 1999, 181, 2244–2251. [Google Scholar] [CrossRef] [Green Version]
- Jamshad, M.; Marco, P.D.; Pacheco, C.C.; Hanczar, T.; Murrell, J.C. Identification, Mutagenesis, and Transcriptional Analysis of the Methanesulfonate Transport Operon of Methylosulfonomonas methylovora. Appl. Environ. Microbiol. 2006, 72, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Eichhorn, E.; Van Der Ploeg, J.R.; Kertesz, M.A.; Leisinger, T. Characterization of α-Ketoglutarate-Dependent Taurine Dioxygenase from Escherichia coli. J. Biol. Chem. 1997, 272, 23031–23036. [Google Scholar] [CrossRef] [Green Version]
- Zhou, N.; Fuenmayor, S.L.; Williams, P.A. Nag Genes of Ralstonia (Formerly Pseudomonas) sp. Strain U2 Encoding Enzymes for Gentisate Catabolism. J. Bacteriol. 2001, 183, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Izmalkova, T.Y.; Sazonova, O.; Nagornih, M.; Sokolov, S.L.; Kosheleva, I.A.; Boronin, A. The Organization of Naphthalene Degradation Genes in Pseudomonas putida. Res. Microbiol. 2013, 164, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Lienkamp, A.; Heine, T.; Tischler, D. Glutathione: A Powerful but Rate Cofactor among Actinobacteria. Adv. Appl. Microbiol. 2020, in press. [Google Scholar]
- Heine, T.; Zimmerling, J.; Ballmann, A.; Kleeberg, S.B.; Rückert, C.; Busche, T.; Winkler, A.; Kalinowski, J.; Poetsch, A.; Scholtissek, A.; et al. On the Enigma of Glutathione-Dependent Styrene Degradation in Gordonia rubripertincta CWB2. Appl. Environ. Microbiol. 2018, 84, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, T.; Newton, G.L.; Fahey, R.C.; Rawat, M. Unusual Production of Glutathione in Actinobacteria. Arch. Microbiol. 2009, 191, 89–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moonen, J.H.; Kamerbeek, N.M.; Westphal, A.H.; Boeren, S.A.; Janssen, D.B.; Fraaije, M.W.; van Berkel, W.J.H. Elucidation of the 4-Hydroxyacetophenone Catabolic Pathway in Pseudomonas fluorescens ACB. J. Bacteriol. 2008, 190, 5190–5198. [Google Scholar] [CrossRef] [Green Version]
- Maceachran, D.P.; Sinskey, A.J. The Rhodococcus opacus TadD Protein Mediates Triacylglycerol Metabolism by Regulating Intracellular NAD(P)H Pools. Microb. Cell Fact. 2013, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evoution 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Dalton, H.; Whittenbury, R. The Acetylene Reduction Technique as an Assay for Nitrogenase Activity in the Methane Oxidizing Bacterium Methylococcus capsulatus Strain Bath. Arch. Microbiol. 1976, 109, 147–151. [Google Scholar] [CrossRef]
- Prior, S.D.; Dalton, H. Acetylene as a Suicide Substrate and Active Site Probe for Methane Monooxygenase from Methylococcus capsulatus (Bath). FEMS Microbiol. Lett. 1985, 29, 105–109. [Google Scholar] [CrossRef]
- Crombie, A.T. Metabolism of Methane and Propane and the Role of the Glyoxylate Bypass Enzymes in Methylocella Silvestris BL2. Ph.D. Thesis, University of Warwick, Coventry, UK, 2011. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawson, R.A.; Larke-Mejía, N.L.; Crombie, A.T.; Ul Haque, M.F.; Murrell, J.C. Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11. Microorganisms 2020, 8, 349. https://doi.org/10.3390/microorganisms8030349
Dawson RA, Larke-Mejía NL, Crombie AT, Ul Haque MF, Murrell JC. Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11. Microorganisms. 2020; 8(3):349. https://doi.org/10.3390/microorganisms8030349
Chicago/Turabian StyleDawson, Robin A., Nasmille L. Larke-Mejía, Andrew T. Crombie, Muhammad Farhan Ul Haque, and J. Colin Murrell. 2020. "Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11" Microorganisms 8, no. 3: 349. https://doi.org/10.3390/microorganisms8030349
APA StyleDawson, R. A., Larke-Mejía, N. L., Crombie, A. T., Ul Haque, M. F., & Murrell, J. C. (2020). Isoprene Oxidation by the Gram-Negative Model bacterium Variovorax sp. WS11. Microorganisms, 8(3), 349. https://doi.org/10.3390/microorganisms8030349