Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains
2.2. Media and Growth Conditions
2.3. Experimental Design
2.4. Preparation of Yeast Biomass for the Glucan and Lipid Analysis
2.5. Analysis of Glucans by Yeast and Mushroom β-Glucan Assay
2.6. Total Lipid Content and Analysis of Fatty Acid Profile
2.7. Total Lipid Content and Analysis of Fatty Acid Profile
2.8. Data Analysis
3. Results
3.1. Growth, Total Glucan and β-Glucan Content in Basidiomycetes Yeast
3.2. Coproduction of Lipids and β-Glucans in Basidiomycetes Yeast
3.3. Coproduction of Lipids and β-Glucans in Basidiomycetes Yeast
3.4. Total Cellular Biochemical Profiling by FTIR Spectroscopy
3.5. Impact of Extracellular Osmolarity on Lipid and β-Glucans Coproduction
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nair, A.S.; Al-Bahry, S.; Nallusamy, S. Co-production of microbial lipids and biosurfactant from waste office paper hydrolysate using a novel strain Bacillus velezensis ASN1. Biomass Convers. Biorefin. 2019, 10, 383–391. [Google Scholar] [CrossRef]
- Tiukova, I.A.; Brandenburg, J.; Blomqvist, J.; Sampels, S.; Mikkelsen, N.; Skaugen, M.; Arntzen, M.; Nielsen, J.; Sandgren, M.; Kerkhoven, E.J. Proteome analysis of xylose metabolism in Rhodotorula toruloides during lipid production. Biotechnol. Biofuels. 2019, 12, 137. [Google Scholar] [CrossRef] [Green Version]
- Braunwald, T.; Schwemmlein, L.; Graeff-Hönninger, S.; French, W.T.; Hernandez, R.; Holmes, W.E.; Claupein, W. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis. Appl. Microbiol. 2013, 97, 6581–6588. [Google Scholar] [CrossRef] [PubMed]
- Johnson, V.W.; Singh, M.; Yadav, N.K. Influence of growth conditions on the accumulation of ergosterol by Rhodotorula glutinis. World J. Microb. Biot. 1994, 10, 114–115. [Google Scholar] [CrossRef]
- Valasques, G.L.; O. de Lima, F.; Boffo, E.F.; Santos, J.D.G.; da Silva, B.C.; de Assis, S.A. Extraction optimization and antinociceptive activity of (1⟶3)-β-d-glucan from Rhodotorula mucilaginosa: An overview. Carbohydr. Polym. 2014, 105, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Szotkowski, M.; Byrtusova, D.; Haronikova, A.; Vysoka, M.; Rapta, M.; Shapaval, V.; Marova, I. Study of metabolic adaptation of red yeast to waste animal fat substrate. Microorganisms 2019, 7, 578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elfeky, N.; Elmahmoudy, M.; Zhang, Y.; Guo, J.L.; Bao, Y. Lipid and carotenoid production by Rhodotorula glutinis with a combined cultivation mode of nitrogen, sulfur, and aluminium stress. Appl. Sci. 2019, 9, 2444. [Google Scholar] [CrossRef] [Green Version]
- Saini, R.K.; Keum, Y.S. Carotenoids extraction methods: A review of recent developments. Food chemistry. 2017, 240, 90–103. [Google Scholar] [CrossRef]
- Global Beta Glucan Market. Available online: https://www.bccresearch.com/partners/verified-market-research/global-beta-glucan-market.html (accessed on 3 February 2020).
- Aimanianda, V.C.; Clavaud, C.; Simenel, C.; Fontaine, T.; Delepierre, M.; Latgé, J.P. Cell Wall β-(1,6)-Glucan of Saccharomyces cerevisiae. J. Biol. 2009, 284, 13401–13412. [Google Scholar]
- Thammakiti, S.; Suphantharika, M.; Phaesuwan, T.; Verduyn, C. Preparation of spent brewer’s yeast beta-glucans for potential applications in the food industry. Int. J. Food Sci. Tech. 2004, 39, 1. [Google Scholar] [CrossRef]
- Piotrowska, A.; Waszkiewicz-Robak, B.; Swiderski, F. Possibility of beta-glucan from spent brewer’s yeast addition to yoghurts. Pol. J. Food Nutr. Sci. 2009, 59, 299–302. [Google Scholar]
- Mata-Goméz, L.C.; Montañez, J.C.; Méndez-Zavala, A.; Aguilar, C.N. Biotechnological production of carotenoids by yeasts: An overview. Microb Cell Fact. 2014, 13, 12. [Google Scholar] [CrossRef] [Green Version]
- Santamauro, F.; Whiffin, F.M.; Scott, R.J.; Chuck, C.J. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources. Biotechnol. Biofuels. 2014, 7, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosa, G.; Zimmermann, B.; Kohler, A.; Ekeberg, D.; Afseth, N.K.; Mounier, J.; Shapaval, V. High-throughput screening of Mucoromycota fungi for production of low- and high-value lipids: Structure and potential prebiotic activity. Biotechnol. Biofuels. 2018, 11, 66. [Google Scholar] [CrossRef] [PubMed]
- Dzurendova, S.; Zimmermann, B.; Kohler, A.; Tafintseva, V.; Slany, O.; Certik, M.; Shapaval, O. Microcultivation and and FTIR spectroscopy-based screening revealed a nutrient-induced co-production of high-value metabolites in oleaginous Mucoromycota fungi. PLoS ONE 2020. Accepted. [Google Scholar] [CrossRef] [PubMed]
- Kohler, A.; Böcker, U.; Shapaval, V.; Forsmark, A.; Andersson, M.; Warringer, J.; Martens, H.; Omholt, S.W.; Blomberg, A. High-throughput biochemical fingerprints of Saccharomyces cerevisiae by Fourier transform infrared spectroscopy. PLoS ONE 2015, 10, 2. [Google Scholar] [CrossRef] [Green Version]
- Shapaval, V.; Brandenburg, J.; Blomqvist, J.; Tafintseva, V.; Passoth, V.; Sandgren, M.; Kohler, A. Biochemical profiling, prediction of total lipid content and fatty acid profile in oleaginous yeasts by FTIR spectroscopy. Biotechnol Biofuels. 2019, 12, 140. [Google Scholar] [CrossRef] [Green Version]
- Shapaval, V.; Møretrø, T.; Suso, H.P.; Åsli, A.E.; Schmitt, J.; Lilehaug, D.; Martens, H.; Boecker, U.; Hohler, A. A high-throughput microcultivation protocol for FTIR spectroscopic characterization and identification of fungi. J. Biophotonics. 2010, 3, 512–521. [Google Scholar] [CrossRef]
- Shapaval, V.; Schmitt, J.; Møretrø, T.; Suso, H.P.; Åsli, A.E.; Belarbi, A.; Kohler, A. FTIR spectroscopic characterization of differently cultivated food related yeasts. Analyst 2012, 138, 4129–4138. [Google Scholar] [CrossRef]
- Shapaval, V.; Schmitt, J.; Møretrø, T.; Suso, H.P.; Skaar, I.; Åsli, A.E.; Lilehaug, D.; Kohler, A. Characterization of food spoilage fungi by FTIR. J. Appl Microbiol. 2013, 114, 788–796. [Google Scholar] [CrossRef]
- Kosa, G.; Kohler, A.; Tafintseva, V.; Zimmermann, B.; Forfang, K.; Afseth, N.K.; Tzimorotas, D.; Vuoristo, K.S.; Horn, S.J.; Mounier, J.; et al. Microtiter plate cultivation of oleaginous fungi and monitoring of lipogenesis by high-throughput FTIR spectroscopy. Microb Cell Fact. 2017, 16, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosa, G.; Vuoristo, K.S.; Horn, S.J.; Zimmermann, B.; Afseth, N.K.; Kohler, A.; Shapaval, V. Assessment of the scalability of a microtiter plate system for screening of oleaginous microorganisms: An overview. Applm Microbiol. 2018, 102, 4915–4925. [Google Scholar] [CrossRef] [Green Version]
- Sari, M.; Prange, A.; Lelley, J.I.; Hambitzer, R. Screening of beta-glucan contents in commercially cultivated and wild growing mushrooms: An overview. Food Chem. 2017, 216, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Gründemann, C.; Garcia-Kaufer, M.; Sauer, B.; Scheer, R.; Merdivan, S.; Bettin, P.; Huber, R.; Lindequist, U. Comparative chemical and biological investigations of β-glucan-containing products from shiitake mushrooms: An overview. J. Funct. 2015, 18, 692–702. [Google Scholar] [CrossRef]
- Synytsya, A.; Míčková, K.; Synytsya, A.; Jablonský, I.; Spěváček, J.; Erban, V.; Kovaříková, E.; Čopíková, J. Glucans from fruit bodies of cultivated mushrooms Pleurotus ostreatus and Pleurotus eryngii: Structure and potential prebiotic activity. Carbohydr. Polym. 2009, 76, 548–556. [Google Scholar] [CrossRef]
- Zimmermann, B.; Kohler, A. Optimizing Savitzky-Golay parameters for improving spectral resolution and quantification in infrarwd spectroscopy. Appl Spectrosc. 2013, 67, 892–902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afseth, N.K.; Kohler, A. Extended multiplicative signal correction in vibrational spectroscopy, a tutorial. Chemom. Intell. Lab. Syst. 2012, 117, 13–21. [Google Scholar] [CrossRef]
- Kohler, A.; Kirschner, C.; Oust, A.; Martens, H. Extended multiplicative signal correction as a tool for separation and characterization of physical and chemical information in fourier transform infrared microscopy images of Cryo-section of beef loin. Appl Spectrosc. 2005, 59, 707–716. [Google Scholar] [CrossRef]
- Demšar, J.; Curk, T. Orange: Data Mining Toolbox in Python. J. Mach. Learn. Res. 2013, 14, 2349–2353. [Google Scholar]
- Toplak, M.; Birarda, G.; Read, S.; Sandt, C.; Rosendahl, S.M.; Vaccari, L.; Demšar, J.; Borondics, F. Infrared Orange: Connecting Hyperspectral Data with Machine Learning. Synchrotron Radiat. News. 2017, 30, 40–45. [Google Scholar] [CrossRef]
- Guillén, D.M.; Cabo, N. Relationships between the Composition of Edible Oils and Lard and the Ratio of the Absorbance of Specific Bands of Their Fourier Transform Infrared Spectra. Role of Some Bands of the Fingerprint Region. J. Agric. Food Chem. 1998, 46, 1788–1793. [Google Scholar] [CrossRef]
- Hong, K.; Sun, S.; Tian, W.; Chen, G.Q.; Huang, W. A rapid method for detecting bacterial polyhydroxyalkanoates in intact cells by Fourier transform infrared spectroscopy. Appl. Microbiol. 1999, 51, 523–526. [Google Scholar] [CrossRef]
- Jackson, M.; Mantsch, H.H. The Use and Misuse of FTIR Spectroscopy in the Determination of Protein Structure. Crit. Rev. Biochem. Mol. 2008, 30, 95–120. [Google Scholar] [CrossRef] [PubMed]
- Mayers, R.A. Encyclopedia of Analytical Chemistry; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Sima, P.; Vannucci, L.; Vetvicka, V.; Pradhan, B.B.; Chatterjee, S.; Nilsson, L.; Wang, W. Β-glucans and cholesterol (Review). Int. J. Mol. Med. 2018, 41, 1799–1808. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Herrera, J.; Ortiz-Castellanos, L. Cell wall glucans of fungi. A review. Cell Surface. 2019, 5, 100022. [Google Scholar] [CrossRef]
- Cescut, J.; Fillaudeau, L.; Molina-Jouve, C.; Uribelarrea, J.L. Carbon accumulation in Rhodotorula glutinis induced by nitrogen limitation: Connecting Hyperspectral Data with Machine Learning. Biotechnol. Biofuels. 2014, 7, 164. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Jawed, A.; Paul, D.; Bandyopadhyay, K.K.; Kumari, A.; Haque, S. Concomitant Production of Lipids and Carotenoids in Rhodosporidium toruloides under Osmotic Stress Using Response Surface Methodology. Front. Microbiol. 2016, 7, 1686. [Google Scholar] [CrossRef]
- Kot, A.M.; Błażejak, S.; Kieliszek, M.; Gientka, I.; Bryś, J.; Reczek, L.; Pobiega, K. Effect of exogenous stress factors on the biosynthesis of carotenoids and lipids by Rhodotorula yeast strains in media containing agro-industrial waste. World J. Microb Biot. 2019, 35, 157. [Google Scholar] [CrossRef] [Green Version]
- Narumeon, M.; Romanee, S.; Cheunjit, P.; Xiao, H.; McLandsborough, L.A.; Pawadee, M. Influence on Additives on Saccharomyces cerevisiae β-glucan production. Int Food Res. J. 2013, 20, 1953–1959. [Google Scholar]
- Varelas, V.; Sotiropoulou, E.; Karambini, X.; Liouni, M.; Nerantzis, E. Impact of Glucose Concentration and NaCl Osmotic Stress on Yeast Cell Wall β-d-Glucan Formation during Anaerobic Fermentation Process. Fermentation. 2017, 3, 44. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.H.; Kang, S.W.; Lee, J.H.; Chang, H.I.; Yun, C.W.; Paik, H.D.; Kang, C.W.; Kim, S.W. High cell density fermentation of Saccharomyces cerevisiae JUL3 in fed-batch culture for the production of β-Glucan. J. Ind Eng Chem. 2007, 13, 153–158. [Google Scholar]
- Aguilar-Uscanga, B.; Francois, J.M. A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol. 2003, 37, 268–274. [Google Scholar] [CrossRef] [PubMed]
- Bzducha-Wróbel, A.; Kieliszek, M.; Błażejak, S. Chemical composition of the cell wall of probiotic and brewer’s yeast in responce to cultivate medium with glycerol as a carbon source. Eur. Food Res. Technol. 2013, 237, 489–499. [Google Scholar]
- Kim, K.S.; Yun, S.H. Production of soluble β-glucan from the cell wall of Saccharomyces cerevisiae. Enzyme Microb Tech. 2006, 39, 496–500. [Google Scholar] [CrossRef]
- Klis, F.M.; Mol, P.; Hellingwerf, K.; Brul, S. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 2002, 26, 239–256. [Google Scholar] [CrossRef] [PubMed]
- Klis, F.M.; Boorsma, A.; De Groot, P.W.J. Cell wall contruction in Saccharomyces cerevisiae. Yeast 2006, 23, 185–202. [Google Scholar] [CrossRef] [PubMed]
- McMurrough, I.; Rose, A.H. Effect of growth rate and substrate limitation on the composition and structure of the cell wall of Saccharomyces cerevisiae. Biochem J. 1967, 105, 189–203. [Google Scholar] [CrossRef] [Green Version]
- Pengkumsrip, N.; Sivamaruthi, B.S.; Sirilun, S.; Peerajan, S.; Kesika, P.; Chaiyasut, K.; Chaiyasut, C. Extraction of β-glucan from Saccharomyces cerevisiae: Comparison of different extraction methods and in vivo assessment of immunomodulatory effect in mice. Food Sci. Technol. 2011, 37, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; He, J.; Wang, L.; Wang, Y.; Du, G.; Kang, Z. Metabolic engineering of Saccharomyces cerevisiae to improve glucan biosynthesis. J. Microbiol. Biotechnol. 2019, 29, 758–764. [Google Scholar] [CrossRef] [Green Version]
- Mongkontanawat, N.; Wasikadilok, N.; Phuangborisut, S.; Chanawanno, T.; Khunphutthiraphi, T. β-glucans production of saccharomyces cerevisiae by using malva nut juice production wastewater. Int. Food Res. J. 2018, 25, 499–503. [Google Scholar]
- Many, J.N.; Vizhi, K. Analysis of different extraction methods on the yield and recovery of β-glucan from baker’s yeast (Saccharomyces cerevisiae). Int. j. innov. Res. Sci. eng. 2014, 1, 2348–7968. [Google Scholar]
- Bzducha-Wróbel, A.; Błażejak, S.; Molenda, M.; Reczek, L. Biosynthesis of β(1,3)/(1,6)-glucans f cell wall of the yeast Candida utilis ATCC 9950 strains in the culture media supplemented with deproteinated potato juice water and glycerol. Eur Food Res. Technol. 2014, 240, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Bzducha-Wróbel, A.; Pobiega, K.; Błażejak, S.; Kieliszek, M. The scale-up cultivation od Candida utilis in waste potato juice water with glycerol affects biomass and β(1,3)/(1,6)-glucan characteristic and yield. Appl. Microbiol. 2018, 102, 9131–9145. [Google Scholar]
- Rossi, M.; Amaretti, A.; Raimondi, S.; Leonardi, A. Getting Lipids for Biodiesel Production from Oleaginous Fungi. In Biodiesel—Feedstocks and Processing Technologies; InTechOpen: London, UK, 2011. [Google Scholar] [CrossRef] [Green Version]
- Márova, I.; Szotkowski, M.; Byrtusova, D.; Rapta, M.; Hároniková, A.; Čertík, M.; Shapaval, V. Pigmented yeasts as biotechnological factories for food and feed supplements. J. Biotechnol. 2018, 280. [Google Scholar]
- Vanek, M.; Mravec, F.; Szotkowski, M.; Byrtusova, D.; Haronikova, A.; Certik, M.; Shapaval, V.; Marova, I. Fluorescence lifetime imaging of red yeast Cystofilobasidium capitatum during growth. EuroBiotech. J. 2018, 2, 114–120. [Google Scholar] [CrossRef] [Green Version]
- Jiru, T.M.; Groenewald, M.; Pohl, C.; Steyn, L.; Kiggundu, N.; Abate, D. Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech. 2017, 7, 145. [Google Scholar] [CrossRef] [Green Version]
- Pan, J.G.; Kwak, M.Y.; Rhee, J.S. High density cell culture of Rhodotorula glutinis using oxygen-enriched air. Biotechnol. Lett. 1986, 8, 715–718. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, W.; Xu, X.; Zhang, H.; Wang, J.; Xian, M. Production of free monounsaturated fatty acids by metabolically engineered Escherichia coli. Biotechnol. Biofuels. 2014, 7, 59. [Google Scholar] [CrossRef] [Green Version]
Number | Yeast Strain | Phylum | Strain Collection Number |
---|---|---|---|
1 | Cystofilobasidium infirmominiatum | Basidiomycetes | CCY 17-18-4 |
2 | Cystofilobasidium macerans | Basidiomycetes | CCY 10-1-2 |
3 | Metschnikowia pulcherrima | Ascomycetes | CCY 29-2-149 |
4 | Metschnikowia pulcherrima | Ascomycetes | CCY 29-2-147 |
5 | Metschnikowia pulcherrima | Ascomycetes | CCY 29-2-129 |
6 | Phaffia rhodozyma | Basidiomycetes | CCY 77-1-1 |
7 | Rhodotorula kratochvilovae | Basidiomycetes | CCY 20-2-26 |
8 | Rhodotorula mucilaginosa | Basidiomycetes | CCY 19-4-6 |
9 | Rhodotorula mucilaginosa | Basidiomycetes | CCY 20-9-7 |
10 | Rhodotorula toruloides | Basidiomycetes | CCY 62-2-4 |
11 | Saccharomyces cerevisiae | Ascomycetes | CCY 21-4-102 |
12 | Sporidiobolus metaroseus | Basidiomycetes | CCY 19-6-20 |
13 | Sporidiobolus pararoseus | Basidiomycetes | CCY 19-9-6 |
14 | Sporidiobolus salmonicolor | Basidiomycetes | CCY 19-6-4 |
15 | Sporidiobolus salmonicolor | Basidiomycetes | CCY 19-4-25 |
Biomass Yield (g/L) | |||||
---|---|---|---|---|---|
Strain Name | CCY | C/N 10:1 | C/N 40:1 | C/N 70:1 | C/N 100:1 |
Cystofilobasidium infirmominiatum | 17-18-4 | 3.80 ± 0.30 | 8.37 ± 0.31 | 13.06 ± 0.43 | 15.19 ± 0.91 |
Cystofilobasidium macerans | 10-1-2 | 3.63 ± 0.24 | 8.76 ± 0.27 | 13.34 ± 0.06 | 15.33 ± 1.16 |
Metschnikowia pulcherrima | 29-2-149 | 3.57 ± 0.05 | 5.42 ± 0.06 | 5.82 ± 0.18 | 6.78 ± 0.19 |
Metschnikowia pulcherrima | 29-2-147 | 3.32 ± 0.06 | 4.99 ± 0.07 | 5.66 ± 0.19 | 5.73 ± 0.10 |
Metschnikowia pulcherrima | 29-2-129 | 3.69 ± 0.24 | 5.49 ± 0.25 | 6.55 ± 0.34 | 6.73 ± 0.32 |
Phaffia rhodozyma | 77-1-1 | 2.67 ± 0.26 | 6.78 ± 0.24 | 10.98 ± 0.50 | 13.09 ± 1.01 |
Rhodotorula kratochvilovae | 20-2-26 | 4.15 ± 0.68 | 10.23 ± 0.17 | 12.05 ± 0.29 | 10.11 ± 1.37 |
Rhodotorula mucilaginosa | 19-4-6 | 4.57 ± 0.29 | 10.36 ± 0.26 | 11.34 ± 0.23 | 10.84 ± 0.35 |
Rhodotorula mucilaginosa | 20-9-7 | 4.30 ± 0.18 | 9.80 ± 0.18 | 9.97 ± 0.49 | 8.90 ± 1.52 |
Rhodotorula toruloides | 62-2-4 | 3.65 ± 0.10 | 8.70 ± 0.20 | 11.80 ± 0.61 | 11.70 ± 0.80 |
Saccharomyces cerevisiae | 21-4-102 | 3.59 ± 0.09 | 5.25 ± 0.36 | 5.32 ± 0.74 | 5.94 ± 0.56 |
Sporidiobolus metaroseus | 19-6-20 | 3.67 ± 0.25 | 8.88 ± 0.05 | 13.42 ± 0.12 | 15.11 ± 0.93 |
Sporidiobolus pararoseus | 19-9-6 | 3.83 ± 0.44 | 6.81 ± 1.30 | 10.88 ± 1.15 | 10.80 ± 1.88 |
Sporidiobolus salmonicolor | 19-6-4 | 2.99 ± 0.15 | 6.30 ± 0.15 | 6.55 ± 0.31 | 8.24 ± 1.09 |
Sporidiobolus salmonicolor | 19-4-25 | 3.49 ± 0.15 | 5.85 ± 0.27 | 5.88 ± 0.50 | 5.86 ± 0.36 |
Strain | C/N 10:1 | C/N 40:1 | C/N 70:1 | C/N 100:1 | |
---|---|---|---|---|---|
C. infirmominiatum CCY 17-18-4 | Total glucans | 26.04 ± 0.80 | 30.15 ± 3.21 | 24.78 ± 1.64 | 23.73 ± 2.25 |
α-glucans | 3.33 ± 0.39 | 4.81 ± 1.81 | 4.03 ± 0.94 | 3.01 ± 0.36 | |
β-glucans | 22.72 ± 0.41 | 25.34 ± 3.79 | 20.75 ± 1.33 | 20.73 ± 1.39 | |
C. macerans CCY 10-1-2 | Total glucans | 26.15 ± 1.38 | 23.61 ± 2.05 | 18.53 ± 2.08 | 16.32 ± 1.14 |
α-glucans | 2.68 ± 0.37 | 5.19 ± 3.30 | 5.08 ± 3.30 | 5.02 ± 3.25 | |
β-glucans | 23.43 ± 1.60 | 18.42 ± 2.64 | 13.45 ± 4.42 | 11.31 ± 3.34 | |
M. pulcherrima CCY 29-2-149 | Total glucans | 15.42 ± 0.90 | 18.26 ± 0.91 | 21.09 ± 0.94 | 21.34 ± 1.22 |
α-glucans | 0.29 ± 0.12 | 0.57 ± 0.20 | 0.64 ± 0.18 | 1.30 ± 0.31 | |
β-glucans | 15.13 ± 1.02 | 17.69 ± 0.79 | 20.45 ± 0.86 | 20.04 ± 1.12 | |
M. pulcherrima CCY 29-2-147 | Total glucans | 18.41 ± 1.55 | 19.84 ± 1.23 | 21.70 ± 1.56 | 21.73 ± 1.21 |
α-glucans | 0.35 ± 0.04 | 0.42 ± 0.04 | 0.77 ± 0.26 | 0.64 ± 0.11 | |
β-glucans | 18.06 ± 1.54 | 19.42 ± 1.09 | 20.93 ± 1.80 | 21.09 ± 0.69 | |
M. pulcherrima CCY 29-2-127 | Total glucans | 16.84 ± 1.08 | 21.13 ± 1.25 | 21.81 ± 1.56 | 23.25 ± 1.21 |
α-glucans | 0.47 ± 0.29 | 0.52 ± 0.19 | 1.28 ± 0.72 | 0.90 ± 0.59 | |
β-glucans | 16.37 ± 1.12 | 20.61 ± 1.09 | 20.54 ± 1.10 | 22.35 ± 1.68 | |
P. rhodozyma CCY 77-1-1 | Total glucans | 27.13 ± 0.88 | 24.93 ± 1.61 | 21.05 ± 1.74 | 20.35 ± 0.33 |
α-glucans | 2.61 ± 0.06 | 2.68 ± 0.75 | 2.20 ± 0.40 | 2.03 ± 0.28 | |
β-glucans | 24.52 ± 0.85 | 22.28 ± 1.05 | 20.04 ± 0.18 | 18.55 ± 0.15 | |
R. kratochvilovae CCY 20-2-26 | Total glucans | 23.18 ± 1.19 | 23.80 ± 1.12 | 21.84 ± 0.83 | 18.82 ± 0.29 |
α-glucans | 1.50 ± 0.34 | 1.04 ± 0.07 | 0.98 ± 0.11 | 1.23 ± 0.19 | |
β-glucans | 21.68 ± 0.96 | 22.20 ± 1.04 | 21.43 ± 0.34 | 17.59 ± 0.55 | |
R. mucilaginosa CCY 19-4-6 | Total glucans | 17.52 ± 0.64 | 14.60 ± 0.12 | 15.54 ± 1.04 | 15.99 ± 1.15 |
α-glucans | 0.87 ± 0.27 | 0.49 ± 0.09 | 0.66 ± 0.10 | 0.73 ± 0.04 | |
β-glucans | 16.65 ± 0.67 | 14.11 ± 0.20 | 14.88 ± 1.08 | 15.26 ± 1.15 | |
R. mucilaginosa CCY 20-9-7 | Total glucans | 18.18 ± 0.06 | 19.17 ± 0.67 | 19.91 ± 1.21 | 20.31 ± 0.95 |
α-glucans | 0.96 ± 0.32 | 0.98 ± 0.21 | 1.46 ± 0.72 | 1.18 ± 0.20 | |
β-glucans | 17.22 ± 0.26 | 18.19 ± 0.65 | 18.45 ± 1.68 | 19.13 ± 1.13 | |
R. toruloides CCY 62-2-4 | Total glucans | 19.26 ± 0.84 | 14.74 ± 0.25 | 11.75 ± 1.22 | 11.81 ± 0.58 |
α-glucans | 1.85 ± 0.30 | 1.97 ± 0.28 | 2.07 ± 0.42 | 1.78 ± 0.31 | |
β-glucans | 17.41 ± 0.98 | 12.83 ± 0.37 | 9.67 ± 1.63 | 10.03 ± 0.72 | |
S.cerevisiae CCY 21-4-102 | Total glucans | 20.54 ± 0.58 | 22.91 ± 2.03 | 26.21 ± 1.14 | 29.86 ± 3.11 |
α-glucans | 2.35 ± 0.38 | 2.35 ± 0.56 | 3.41 ± 0.80 | 2.90 ± 0.41 | |
β-glucans | 18.19 ± 0.36 | 20.57 ± 1.54 | 22.80 ± 0.58 | 26.96 ± 2.90 | |
S. metaroseus CCY 19-6-20 | Total glucans | 26.75 ± 2.59 | 22.77 ± 1.32 | 16.63 ± 1.00 | 17.68 ± 2.21 |
α-glucans | 2.60 ± 0.30 | 4.50 ± 0.36 | 2.62 ± 0.15 | 2.92 ± 0.23 | |
β-glucans | 24.15 ± 2.89 | 18.27 ± 1.32 | 13.99 ± 1.04 | 14.76 ± 2.32 | |
S. pararoseus CCY 19-9-6 | Total glucans | 14.30 ± 1.21 | 16.87 ± 1.91 | 15.58 ± 0.66 | 14.73 ± 0.79 |
α-glucans | 1.26 ± 0.45 | 2.41 ± 1.60 | 2.76 ± 1.88 | 3.51 ± 1.43 | |
β-glucans | 13.04 ± 0.79 | 14.46 ± 3.13 | 12.81 ± 2.20 | 11.23 ± 1.72 | |
S. salmonicolor CCY 19-6-4 | Total glucans | 12.90 ± 1.25 | 17.12 ± 0.92 | 17.96 ± 0.50 | 18.95 ± 2.00 |
α-glucans | 1.32 ± 0.28 | 2.28 ± 0.74 | 2.55 ± 0.57 | 2.43 ± 0.38 | |
β-glucans | 11.58 ± 1.03 | 14.83 ± 1.32 | 15.41 ± 0.88 | 16.52 ± 2.28 | |
S. salmonicolor CCY 19-4-25 | Total glucans | 15.04 ± 0.67 | 14.10 ± 0.31 | 14.95 ± 0.63 | 17.16 ± 1.73 |
α-glucans | 1.48 ± 0.14 | 2.35 ± 0.66 | 2.67 ± 0.76 | 2.84 ± 0.57 | |
β-glucans | 13.56 ± 0.55 | 11.75 ± 0.59 | 12.28 ± 1.29 | 14.32 ± 2.30 |
Peak № | Wavenumber | Peak Assignment | References |
---|---|---|---|
1 | 3010 | = C-H stretching in lipids | [32] |
2 | 2947 | -C-H (CH3) stretching in lipids and hydrocarbons | [32] |
3 | 2925 | -C-H (CH2) stretching | [33] |
4 | 2855 | CH2/CH3 stretching in lipids and hydrocarbons | [32] |
5 | 1745 | C = O ester bond stretching in lipids, esters and polyesters | [33] |
6 | 1680–1630 | -C = O stretching, α-Helix amide I in proteins | [34] |
7 | 1530–1560 | N-H bending and C-N stretching, amide II in proteins | [34] |
8 | 1465 | CH2/CH3 stretching in lipids | [32] |
9 | 1377 | -C-H (CH3) bending (sym) in lipids | [35] |
10 | 1265 | –P = O stretching of phosphodiesters | [35] |
11 | 1200−1100 | C-O-C/C-O stretching in polysaccharides | [35] |
Strain | C/N | 0% NaCl | 0.2% NaCl | 0.5% NaCl | 2% NaCl | 5% NaCl | 8% NaCl | 11% NaCl |
---|---|---|---|---|---|---|---|---|
1 | 40 | 8.37 ± 0.31 | 7.44 ± 0.04 | 7.38 ± 0.19 | 7.08 ± 0.11 | 6.38 ± 0.07 | 5.93 ± 0.07 | 4.81 ± 0.61 |
70 | 13.06 ± 0.43 | 11.40 ± 0.10 | 11.47 ± 0.35 | 10.77 ± 0.07 | 10.28 ± 0.07 | 9.13 ± 0.49 | 4.54 ± 0.84 | |
100 | 15.19 ± 0.91 | 15.25 ± 0.39 | 14.88 ± 0.11 | 11.40 ± 2.84 | 11.33 ± 0.05 | 8.90 ± 0.59 | 4.73 ± 0.24 | |
6 | 40 | 6.78 ± 0.24 | 5.62 ± 0.41 | 5.56 ± 0.08 | 2.24 ± 0.16 | 1.05 ± 0.14 | 0.70 ± 0.16 | 0.68 ± 0.07 |
70 | 10.98 ± 0.50 | 8.86 ± 0.61 | 8.69 ± 0.27 | 2.59 ± 0.21 | 1.06 ± 0.09 | 0.87 ± 0.16 | 0.64 ± 0.10 | |
100 | 13.09 ± 1.01 | 12.35 ± 1.21 | 11.11 ± 1.48 | 2.73 ± 0.19 | 1.00 ± 0.03 | 0.78 ± 0.23 | 0.66 ± 0.13 | |
7 | 40 | 10.23 ± 0.17 | 9.04 ± 0.31 | 8.57 ± 0.30 | 8.44 ± 0.07 | 7.52 ± 0.10 | 5.71 ± 0.25 | 3.71 ± 0.09 |
70 | 12.05 ± 0.29 | 11.76 ± 0.81 | 11.26 ± 0.73 | 10.70 ± 0.04 | 8.47 ± 0.08 | 5.80 ± 0.46 | 3.90 ± 0.39 | |
100 | 10.11 ± 1.37 | 11.52 ± 0.74 | 10.83 ± 0.75 | 10.48 ± 0.04 | 8.24 ± 0.06 | 5.69 ± 0.42 | 3.69 ± 0.47 | |
11 | 40 | 5.25 ± 0.36 | 5.45 ± 0.11 | 5.26 ± 0.20 | 5.03 ± 0.07 | 3.25 ± 0.04 | 2.71 ± 0.16 | 1.78 ± 0.13 |
70 | 5.32 ± 0.74 | 5.94 ± 0.14 | 5.70 ± 0.31 | 4.97 ± 0.06 | 3.82 ± 0.05 | 3.03 ± 0.29 | 1.69 ± 0.04 | |
100 | 5.94 ± 0.56 | 6.32 ± 0.40 | 5.71 ± 0.47 | 4.95 ± 0.09 | 4.00 ± 0.03 | 3.04 ± 0.28 | 1.57 ± 0.06 |
Strain | C/N | % w/w | 0% NaCl | 0.2% NaCl | 0.5% NaCl | 2% NaCl | 5% NaCl | 8% NaCl | 11% NaCl |
---|---|---|---|---|---|---|---|---|---|
1 | 40 | Total glucan | 30.15 ± 3.21 | 35.65 ± 0.86 | 34.10 ± 1.91 | 32.87 ± 1.75 | 22.71 ± 1.67 | 21.65 ± 0.97 | 20.80 ± 1.56 |
Alpha-glucan | 4.81 ± 1.81 | 3.50 ± 0.40 | 3.55 ± 0.39 | 3.07 ± 0.32 | 2.96 ± 0.22 | 3.03 ± 0.48 | 2.63 ± 0.43 | ||
Beta-glucan | 25.34 ± 3.79 | 32.15 ± 0.81 | 30.55 ± 1.84 | 29.80 ± 1.43 | 19.75 ± 1.87 | 18.62 ± 0.67 | 18.17 ± 1.55 | ||
70 | Total glucan | 24.78 ± 1.64 | 27.15 ± 1.26 | 25.42 ± 0.38 | 21.11 ± 0.44 | 23.33 ± 1.07 | 19.72 ± 0.56 | 21.07 ± 0.96 | |
Alpha-glucan | 4.03 ± 0.94 | 3.16 ± 0.21 | 3.11 ± 0.30 | 2.79 ± 0.10 | 3.87 ± 1.16 | 2.70 ± 0.12 | 2.79 ± 0.77 | ||
Beta-glucan | 20.75 ± 1.33 | 23.99 ± 1.06 | 22.32 ± 0.63 | 18.32 ± 0.52 | 19.46 ± 1.54 | 17.03 ± 0.66 | 18.28 ± 1.23 | ||
100 | Total glucan | 23.73 ± 2.25 | 21.83 ± 0.27 | 21.64 ± 1.47 | 23.16 ± 0.45 | 19.95 ± 1.58 | 17.96 ± 0.82 | 21.52 ± 2.16 | |
Alpha-glucan | 3.01 ± 0.36 | 3.04 ± 0.29 | 3.41 ± 0.36 | 4.42 ± 1.29 | 3.04 ± 0.18 | 3.20 ± 0.03 | 3.11 ± 0.77 | ||
Beta-glucan | 20.73 ± 1.39 | 18.78 ± 0.49 | 18.24 ± 1.11 | 18.73 ± 1.71 | 16.91 ± 1.40 | 14.76 ± 0.82 | 18.40 ± 2.02 | ||
6 | 40 | Total glucan | 24.93 ± 1.61 | 31.69 ± 1.97 | 32.51 ± 0.51 | 24.47 ± 1.76 | 27.75 ± 0.99 | 29.05 ± 0.46 | 26.25 ± 0.87 |
Alpha-glucan | 2.68 ± 0.75 | 4.37 ± 2.58 | 3.25 ± 0.52 | 3.44 ± 0.17 | 3.05 ± 0.45 | 3.25 ± 0.98 | 2.72 ± 0.56 | ||
Beta-glucan | 22.28 ± 1.05 | 27.32 ± 4.55 | 29.26 ± 1.02 | 21.03 ± 1.93 | 24.70 ± 0.60 | 25.80 ± 1.26 | 23.53 ± 1.44 | ||
70 | Total glucan | 21.05 ± 1.74 | 24.27 ± 2.24 | 24.30 ± 0.97 | 26.60 ± 2.10 | 27.18 ± 0.81 | 25.65 ± 0.74 | 24.27 ± 1.37 | |
Alpha-glucan | 2.20 ± 0.40 | 2.42 ± 0.35 | 2.71 ± 0.32 | 3.05 ± 0.24 | 2.69 ± 0.30 | 3.24 ± 0.66 | 2.46 ± 0.89 | ||
Beta-glucan | 20.04 ± 0.18 | 21.85 ± 2.07 | 21.59 ± 0.65 | 23.55 ± 2.31 | 24.49 ± 0.96 | 22.41 ± 0.20 | 21.81 ± 0.69 | ||
100 | Total glucan | 20.35 ± 0.33 | 24.97 ± 1.16 | 27.56 ± 1.29 | 24.29 ± 1.21 | 28.11 ± 0.87 | 26.74 ± 0.83 | 26.02 ± 1.06 | |
Alpha-glucan | 2.03 ± 0.28 | 2.32 ± 0.35 | 2.73 ± 0.57 | 3.09 ± 0.13 | 2.58 ± 0.50 | 2.87 ± 0.36 | 2.81 ± 0.88 | ||
Beta-glucan | 18.55 ± 0.15 | 22.65 ± 1.19 | 24.83 ± 1.86 | 21.20 ± 1.20 | 25.53 ± 1.28 | 23.87 ± 0.46 | 23.21 ± 1.17 | ||
7 | 40 | Total glucan | 23.80 ± 1.12 | 24.13 ± 2.17 | 23.53 ± 2.53 | 17.08 ± 1.09 | 13.29 ± 0.96 | 14.67 ± 0.67 | 12.23 ± 1.90 |
Alpha-glucan | 1.04 ± 0.07 | 1.25 ± 0.28 | 1.19 ± 0.11 | 1.13 ± 0.26 | 0.91 ± 0.14 | 1.19 ± 0.14 | 0.84 ± 0.23 | ||
Beta-glucan | 22.20 ± 1.04 | 22.88 ± 2.37 | 22.34 ± 2.53 | 15.95 ± 0.85 | 12.38 ± 1.04 | 13.47 ± 0.61 | 11.39 ± 1.67 | ||
70 | Total glucan | 21.84 ± 0.83 | 18.97 ± 1.45 | 20.32 ± 0.10 | 16.41 ± 1.00 | 11.81 ± 1.09 | 14.48 ± 1.85 | 14.84 ± 2.38 | |
Alpha-glucan | 0.98 ± 0.11 | 1.12 ± 0.33 | 0.83 ± 0.38 | 0.93 ± 0.31 | 0.68 ± 0.13 | 0.90 ± 0.24 | 1.14 ± 0.19 | ||
Beta-glucan | 21.43 ± 0.34 | 17.84 ± 1.20 | 19.49 ± 0.44 | 15.48 ± 1.30 | 11.14 ± 1.05 | 13.58 ± 1.62 | 13.69 ± 2.20 | ||
100 | Total glucan | 18.82 ± 0.29 | 20.36 ± 0.46 | 18.18 ± 1.00 | 13.03 ± 0.53 | 12.08 ± 0.67 | 15.68 ± 0.29 | 9.42 ± 0.38 | |
Alpha-glucan | 1.23 ± 0.19 | 1.20 ± 0.24 | 1.07 ± 0.24 | 0.68 ± 0.11 | 0.59 ± 0.07 | 1.05 ± 0.31 | 0.81 ± 0.20 | ||
Beta-glucan | 17.59 ± 0.55 | 19.16 ± 0.64 | 17.11 ± 0.78 | 12.35 ± 0.63 | 11.49 ± 0.63 | 14.63 ± 0.31 | 8.62 ± 0.34 | ||
11 | 40 | Total glucan | 22.91 ± 2.03 | 30.40 ± 0.72 | 29.87 ± 1.69 | 23.95 ± 2.51 | 23.76 ± 2.93 | 19.24 ± 1.12 | 16.31 ± 1.29 |
Alpha-glucan | 2.35 ± 0.56 | 1.49 ± 0.18 | 1.31 ± 0.35 | 2.05 ± 0.32 | 1.21 ± 0.17 | 0.67 ± 0.21 | 0.35 ± 0.13 | ||
Beta-glucan | 20.57 ± 1.54 | 28.91 ± 0.62 | 28.56 ± 1.37 | 21.90 ± 2.81 | 22.55 ± 2.77 | 18.57 ± 0.96 | 15.93 ± 1.45 | ||
70 | Total glucan | 26.21 ± 1.14 | 29.16 ± 1.40 | 27.29 ± 0.36 | 31.08 ± 2.42 | 25.83 ± 2.12 | 18.07 ± 0.45 | 16.94 ± 2.13 | |
Alpha-glucan | 3.41 ± 0.80 | 1.69 ± 0.39 | 1.54 ± 0.42 | 2.19 ± 0.32 | 1.50 ± 0.10 | 0.52 ± 0.20 | 0.58 ± 0.16 | ||
Beta-glucan | 22.80 ± 0.58 | 27.47 ± 1.03 | 25.75 ± 0.57 | 28.89 ± 2.40 | 24.33 ± 2.15 | 17.56 ± 0.58 | 16.36 ± 2.24 | ||
100 | Total glucan | 29.86 ± 3.11 | 33.38 ± 0.93 | 31.55 ± 2.43 | 30.06 ± 2.11 | 24.32 ± 0.92 | 21.67 ± 0.29 | 15.59 ± 2.03 | |
Alpha-glucan | 2.90 ± 0.41 | 2.06 ± 0.19 | 1.13 ± 0.47 | 1.75 ± 0.31 | 1.03 ± 0.09 | 1.05 ± 0.32 | 0.50 ± 0.14 | ||
Beta-glucan | 26.96 ± 2.90 | 31.32 ± 0.93 | 30.42 ± 2.02 | 28.31 ± 2.27 | 23.29 ± 0.84 | 20.62 ± 0.10 | 15.10 ± 1.92 |
Strain | C/N | 0% NaCl | 0.2% NaCl | 0.5% NaCl | 2% NaCl | 5% NaCl | 8% NaCl | 11% NaCl |
---|---|---|---|---|---|---|---|---|
1 | 40 | 23.28 ± 1.82 | 19.66 ± 1.58 | 18.64 ± 2.13 | 24.39 ± 0.67 | 29.07 ± 1.85 | 26.94 ± 1.28 | 19.50 ± 1.12 |
70 | 33.65 ± 2.12 | 25.58 ± 1.80 | 25.57 ± 2.15 | 30.88 ± 0.88 | 32.97 ± 0.94 | 36.27 ± 3.05 | 24.87 ± 0.98 | |
100 | 38.21 ± 3.25 | 39.85 ± 2.62 | 36.06 ± 4.36 | 35.22 ± 4.14 | 35.26 ± 2.12 | 31.31 ± 1.74 | 25.25 ± 2.24 | |
6 | 40 | 24.94 ± 1.20 | 22.08 ± 1.08 | 21.65 ± 17 | 27.95 ± 2.10 | 31.40 ± 1.69 | 16.57 ± 0.65 | 20.40 ± 0.60 |
70 | 36.82 ± 0.58 | 31.84 ± 0.31 | 35.13 ± 0.68 | 29.55 ± 1.85 | 36.64 ± 3.93 | 22.48 ± 4.36 | 19.38 ± 2.14 | |
100 | 38.00 ± 0.68 | 35.49 ± 3.35 | 31.78 ± 5.69 | 30.04 ± 0.43 | 36.32 ± 2.14 | 20.16 ± 1.22 | 25.35 ± 1.97 | |
7 | 40 | 32.85 ± 0.94 | 26.13 ± 3.85 | 26.62 ± 0.97 | 29.62 ± 0.99 | 31.33 ± 0.54 | 29.67 ± 1.11 | 18.91 ± 1.47 |
70 | 37.86 ± 2.56 | 27.66 ± 1.09 | 32.28 ± 3.04 | 35.04 ± 2.56 | 34.18 ± 2.29 | 31.40 ± 3.72 | 25.23 ± 2.20 | |
100 | 36.52 ± 0.66 | 31.82 ± 2.83 | 36.79 ± 4.17 | 31.35 ± 1.98 | 34.96 ± 2.23 | 30.09 ± 1.60 | 21.59 ± 1.49 | |
11 | 40 | 7.34 ± 0.18 | 6.62 ± 0.90 | 8.39 ± 0.71 | 8.87 ± 1.28 | 7.03 ± 0.55 | 7.99 ± 0.41 | 9.14 ± 0.76 |
70 | 8.54 ± 0.29 | 10.24 ± 0.21 | 10.48 ± 0.65 | 9.12 ± 0.67 | 10.99 ± 0.36 | 7.83 ± 0.88 | 12.09 ± 1.37 | |
100 | 9.20 ± 0.66 | 5.68 ± 0.19 | 8.67 ± 2.49 | 9.40 ± 0.87 | 11.73 ± 0.94 | 10.65 ± 0.45 | 13.14 ± 1.65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byrtusová, D.; Shapaval, V.; Holub, J.; Šimanský, S.; Rapta, M.; Szotkowski, M.; Kohler, A.; Márová, I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms 2020, 8, 1034. https://doi.org/10.3390/microorganisms8071034
Byrtusová D, Shapaval V, Holub J, Šimanský S, Rapta M, Szotkowski M, Kohler A, Márová I. Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms. 2020; 8(7):1034. https://doi.org/10.3390/microorganisms8071034
Chicago/Turabian StyleByrtusová, Dana, Volha Shapaval, Jiří Holub, Samuel Šimanský, Marek Rapta, Martin Szotkowski, Achim Kohler, and Ivana Márová. 2020. "Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast" Microorganisms 8, no. 7: 1034. https://doi.org/10.3390/microorganisms8071034
APA StyleByrtusová, D., Shapaval, V., Holub, J., Šimanský, S., Rapta, M., Szotkowski, M., Kohler, A., & Márová, I. (2020). Revealing the Potential of Lipid and β-Glucans Coproduction in Basidiomycetes Yeast. Microorganisms, 8(7), 1034. https://doi.org/10.3390/microorganisms8071034