The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fly Stocks
2.2. Nematode Stocks
2.3. Larval Infection
2.4. RNA Analysis
2.5. Measurement of Triglyceride, Trehalose, Glucose, and Glycogen Levels
2.6. Measurement of Cholesterol and ATP Levels
2.7. Lipid Droplet Staining
2.8. Statistical Analysis
3. Results
3.1. D. melanogaster daw Mutant Larvae Contain Lower Levels of Trehalose Upon Symbiotic H. bacteriophora Infection
3.2. D. melanogaster dpp Mutants Express dilp3 at Higher Levels in Response to Symbiotic H. bacteriophora Infection
3.3. The BMP Branch Regulates Metabolism of Stored Fats in D. melanogaster Larvae in the Context of H. bacteriophora Infection
3.4. ATP Levels in D. melanogaster daw and dpp Mutant Larvae Are Unaffected in Response to H. bacteriophora Infection
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Melo, R.C.N.; Ávila, H.D.; Fabrino, D.L.; Almeida, P.E.; Bozza, P.T. Macrophage lipid body induction by Chagas disease in vivo: Putative intracellular domains for eicosanoid formation during infection. Tissue Cell 2003, 35, 59–67. [Google Scholar] [CrossRef]
- Kapadia, S.B.; Chisari, F.V. Hepatitis C virus RNA replication is regulated by host geranylgeranylation and fatty acids. Proc. Natl. Acad. Sci. USA 2005, 102, 2561–2566. [Google Scholar] [CrossRef] [Green Version]
- D’Avila, H.; Melo, R.C.N.; Parreira, G.G.; Werneck-Barroso, E.; Castro-Faria-Neto, H.C.; Bozza, P.T. Mycobacterium bovis Bacillus Calmette-Guérin Induces TLR2-Mediated Formation of Lipid Bodies: Intracellular Domains for Eicosanoid Synthesis In Vivo. J. Immunol. 2006, 176, 3087–3097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, P.; Cermelli, S.; Li, Z.; Kassan, A.; Bosch, M.; Sigua, R.; Huang, L.; Ouellette, A.J.; Pol, A.; Welte, M.A.; et al. A novel role for lipid droplets in the organismal antibacterial response. Elife 2012, 1, e00003. [Google Scholar] [CrossRef] [PubMed]
- Harsh, S.; Ozakman, Y.; Kitchen, S.M.; Paquin-Proulx, D.; Nixon, D.F.; Eleftherianos, I. Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila. J. Immunol. 2018, 201, 3058–3072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozakman, Y.; Eleftherianos, I. TGF-β signaling interferes with the Drosophila innate immune and metabolic response to parasitic nematode infection. Front. Physiol. 2019, 10, 716. [Google Scholar] [CrossRef]
- Galenza, A.; Foley, E. Immunometabolism: Insights from the Drosophila model. Dev. Comp. Immunol. 2019, 94, 22–34. [Google Scholar] [CrossRef]
- Stock, S.P.; Blair, H.G. Entomopathogenic nematodes and their bacterial symbionts: The inside out of a mutualistic association. Symbiosis 2008, 46, 65–75. [Google Scholar]
- Castillo, J.C.; Reynolds, S.E.; Eleftherianos, I. Insect immune responses to nematode parasites. Trends Parasitol. 2011, 27, 537–547. [Google Scholar] [CrossRef]
- Eleftherianos, I.; ffrench-Constant, R.H.; Clarke, D.J.; Dowling, A.J.; Reynolds, S.E. Dissecting the immune response to the entomopathogen Photorhabdus. Trends Microbiol. 2010, 18, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Masucci, J.D.; Miltenberger, R.J.; Hoffmann, F.M. Pattern-specific expression of the Drosophila decapentaplegic gene in imaginal disks is regulated by 3′ cis-regulatory elements. Genes Dev. 1990, 4, 2011–2023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lecuit, T.; Brook, W.J.; Ng, M.; Calleja, M.; Sun, H.; Cohen, S.M. Two distinct mechanisms for long-range patterning by Decapentaplegic in the Drosophila wing. Nature 1996, 381, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Dobendsa, L.L.; Raftery, L.A. Drosophila Oogenesis: A Model System to Understand TGF-β/Dpp Directed Cell Morphogenesis. Ann. N. Y. Acad. Sci. 1998, 857, 245–247. [Google Scholar]
- Eleftherianos, I.; Castillo, J.C.; Patrnogic, J. TGF-β signaling regulates resistance to parasitic nematode infection in Drosophila melanogaster. Immunobiology 2016, 221, 1362–1368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrnogic, J.; Heryanto, C.; Eleftherianos, I. Transcriptional up-regulation of the TGF-β intracellular signaling transducer Mad of Drosophila larvae in response to parasitic nematode infection. Innate Immun. 2018, 24, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raftery, L.A.; Sutherland, D.J. TGF-β family signal transduction in Drosophila development: From Mad to Smads. Dev. Biol. 1999, 210, 251–268. [Google Scholar] [CrossRef] [Green Version]
- Moustakas, A.; Heldin, C.H. Non-Smad TGF-β signals. J. Cell Sci. 2005, 118, 3573–3584. [Google Scholar] [CrossRef]
- Shi, Y.; Massagué, J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 2003, 113, 685–700. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.J.; O’Connor, M.B. Strategies for exploring TGF-β signaling in Drosophila. Methods 2014, 68, 183–193. [Google Scholar] [CrossRef] [Green Version]
- Zi, Z.; Chapnick, D.A.; Liu, X. Dynamics of TGF-β/ Smad signaling. FEBS Lett. 2012, 2586, 1921–1928. [Google Scholar] [CrossRef] [Green Version]
- White, G.F. A Method for Obtaining Infective Nematode Larvae From Cultures. Science (80-.) 1927, 66, 302–303. [Google Scholar] [CrossRef] [PubMed]
- Kenney, E.; Hawdon, J.M.; O’Halloran, D.; Eleftherianos, I. Heterorhabditis bacteriophora Excreted-Secreted Products Enable Infection by Photorhabdus luminescens Through Suppression of the Imd Pathway. Front. Immunol. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tennessen, J.M.; Barry, W.E.; Cox, J.; Thummel, C.S. Methods for studying metabolism in Drosophila. Methods 2014, 68, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Mattila, J.; Hietakangas, V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics 2017, 207, 1231–1253. [Google Scholar] [CrossRef]
- Nässel, D.R.; Liu, Y.; Luo, J. Insulin/IGF signaling and its regulation in Drosophila. Gen. Comp. Endocrinol. 2015, 221, 255–266. [Google Scholar] [CrossRef]
- DiAngelo, J.R.; Birnbaum, M.J. Regulation of Fat Cell Mass by Insulin in Drosophila melanogaster. Mol. Cell. Biol. 2009, 29, 6341–6352. [Google Scholar] [CrossRef] [Green Version]
- Géminard, C.; Arquier, N.; Layalle, S.; Bourouis, M.; Slaidina, M.; Delanoue, R.; Bjordal, M.; Ohanna, M.; Ma, M.; Colombani, J.; et al. Control of metabolism and growth through insulin-like peptides in Drosophila. Diabetes 2006, 55, 5–8. [Google Scholar] [CrossRef] [Green Version]
- Grönke, S.; Clarke, D.F.; Broughton, S.; Andrews, T.D.; Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 2010, 6, e1000857. [Google Scholar] [CrossRef] [Green Version]
- Semaniuk, U.V.; Gospodaryov, D.V.; Feden’ko, K.M.; Yurkevych, I.S.; Vaiserman, A.M.; Storey, K.B.; Simpson, S.J.; Lushchak, O. Insulin-like peptides regulate feeding preference and metabolism in Drosophila. Front. Physiol. 2018, 9, 1–14. [Google Scholar] [CrossRef]
- Ghosh, A.C.; O’Connor, M.B. Systemic Activin signaling independently regulates sugar homeostasis, cellular metabolism, and pH balance in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2014, 111, 5729–5734. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Huang, X. Lipid metabolism in Drosophila: Development and disease. Acta Biochim. Biophys. Sin. (Shanghai) 2013, 45, 44–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Roh, Y.S.; Song, J.; Zhang, B.; Liu, C.; Loomba, R.; Seki, E. Transforming growth factor beta signaling in hepatocytes participates in steatohepatitis through regulation of cell death and lipid metabolism in mice. Hepatology 2014, 59, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Ballard, S.L.; Jarolimova, J.; Wharton, K.A. Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila. Dev. Biol. 2010, 337, 375–385. [Google Scholar] [CrossRef] [Green Version]
- Kühnlein, R.P. The contribution of the Drosophila model to lipid droplet research. Prog. Lipid Res. 2011, 50, 348–356. [Google Scholar] [CrossRef]
- Freyberg, Z.; Harvill, E.T. Pathogen manipulation of host metabolism: A common strategy for immune evasion. PLoS Pathog. 2017, 13, e1006669. [Google Scholar] [CrossRef] [Green Version]
- Shea-Donohue, T.; Qin, B.; Smith, A. Parasites, nutrition, immune responses and biology of metabolic tissues. Parasite Immunol. 2017, 39, e12422. [Google Scholar] [CrossRef] [Green Version]
- Shokal, U.; Kopydlowski, H.; Harsh, S.; Eleftherianos, I. Thioester-Containing Proteins 2 and 4 Affect the Metabolic Activity and Inflammation Response in Drosophila. Infect. Immun. 2018, 86, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Jarc, E.; Petan, T. A twist of FATe: Lipid droplets and inflammatory lipid mediators. Biochimie 2020, 169, 69–87. [Google Scholar] [CrossRef]
- Yadav, S.; Frazer, J.; Banga, A.; Pruitt, K.; Harsh, S.; Jaenike, J.; Eleftherianos, I. Endosymbiont-based immunity in Drosophila melanogaster against parasitic nematode infection. PLoS ONE 2018, 13, e0192183. [Google Scholar] [CrossRef]
- Song, W.; Owusu-Ansah, E.; Hu, Y.; Cheng, D.; Ni, X.; Zirin, J.; Perrimon, N. Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc. Natl. Acad. Sci. USA 2017, 114, 8596–8601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waterfield, N.R.; Ciche, T.; Clarke, D. Photorhabdus and a Host of Hosts. Annu. Rev. Microbiol. 2009, 63, 557–574. [Google Scholar] [CrossRef] [PubMed]
Gene | Accession No | Primer (5′–3′) | Sequence | Tm (°C) |
---|---|---|---|---|
RpL32 | CG7939 | Forward | GATGACCATCCGCCCAGCA | 60 |
Reverse | CGGACCGACAGCTGCTTGGC | |||
Dilp6 | CG14049 | Forward | ATATGCGTAAGCGGAACGGT | 57 |
Reverse | GCAAGAGCTCCCTGTAGGTG | |||
Dilp3 | CG14167 | Forward | AGAGAACTTTGGACCCCGTGAA | 59 |
Reverse | TGAACCGAACTATCACTCAACAGTCT | |||
fOXO | CG3143 | Forward | AGGCGCAGCCGATAGACGAATTTA | 60 |
Reverse | TGCTGTTGACCAGGTTCGTGTTGA |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozakman, Y.; Pagadala, T.; Raval, D.; Eleftherianos, I. The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling. Microorganisms 2020, 8, 971. https://doi.org/10.3390/microorganisms8070971
Ozakman Y, Pagadala T, Raval D, Eleftherianos I. The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling. Microorganisms. 2020; 8(7):971. https://doi.org/10.3390/microorganisms8070971
Chicago/Turabian StyleOzakman, Yaprak, Trishya Pagadala, Dhaivat Raval, and Ioannis Eleftherianos. 2020. "The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling" Microorganisms 8, no. 7: 971. https://doi.org/10.3390/microorganisms8070971
APA StyleOzakman, Y., Pagadala, T., Raval, D., & Eleftherianos, I. (2020). The Drosophila melanogaster Metabolic Response against Parasitic Nematode Infection Is Mediated by TGF-β Signaling. Microorganisms, 8(7), 971. https://doi.org/10.3390/microorganisms8070971