An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli
Abstract
:1. Introduction
2. STEC: The Elusive GIT Passenger
2.1. STEC Definition and Pathology
2.2. Virulence Factors
2.3. Cattle Are the Main Reservoir of STEC (but in Low Abundance)
2.4. STEC Survival, Colonization and Metabolism in the Bovine GIT
3. The Native GIT Microbiota and Its Interactions with STEC
3.1. The Diverse GIT Microbial Community
3.2. Interactions between STEC and Native Bacterial Symbionts
3.3. STEC Predation by Phages and Protozoa
4. STEC Emergence in Cattle Farms
4.1. STEC and GIT Symbionts Are Affected by Diet
4.2. Ruminal Acidosis and the Emergence of Acid Resistant Strains
4.3. Other Husbandry Practices Related to STEC Emergence
5. STEC Prevention Methods and Future Perspectives
5.1. Active and Passive Vaccination
5.2. Bacteriophages
5.3. Non-Microbial Feed Additives
5.4. Direct-Fed Microbials
5.5. Towards New Strategies for STEC Control
Funding
Acknowledgments
Conflicts of Interest
References
- Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 2002, 418, 700–707. [Google Scholar] [CrossRef] [PubMed]
- Hobson, P.N.; Stewart, C.S. The Rumen Microbial Ecosystem; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997; ISBN 978-0-7514-0366-4. [Google Scholar]
- Schingoethe, D.J.; Kalscheur, K.F.; Hippen, A.R.; Garcia, A.D. Invited review: The use of distillers products in dairy cattle diets. J. Dairy Sci. 2009, 92, 5802–5813. [Google Scholar] [CrossRef] [PubMed]
- Hales, K.E.; Wells, J.E.; Berry, E.D.; Kalchayanand, N.; Bono, J.L.; Kim, M. The effects of monensin in diets fed to finishing beef steers and heifers on growth performance and fecal shedding of Escherichia coli O157:H7. J. Anim. Sci. 2017, 95, 3738–3744. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, M.J.; Greko, C.; Wallinga, D.B.; Beran, G.W.; Riley, D.G.; Thorne, P.S. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ. Health Perspect. 2007, 115, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diez-Gonzalez, F.; Callaway, T.R.; Kizoulis, M.G.; Russell, J.B. Grain feeding and the dissemination of acid-resistant Escherichia coli from cattle. Science 1998, 281, 1666–1668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karmali, M.A.; Mascarenhas, M.; Shen, S.; Ziebell, K.; Johnson, S.; Reid-Smith, R.; Isaac-Renton, J.; Clark, C.; Rahn, K.; Kaper, J.B. Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J. Clin. Microbiol. 2003, 41, 4930–4940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laing, C.R.; Buchanan, C.; Taboada, E.N.; Zhang, Y.; Karmali, M.A.; Thomas, J.E.; Gannon, V.P. In silico genomic analyses reveal three distinct lineages of Escherichia coli O157:H7, one of which is associated with hyper-virulence. BMC Genom. 2009, 10, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsoumanis, K.; Allende, A.; Alvarez-Ordóñez, A.; Bover-Cid, S.; Chemaly, M.; Davies, R.; Cesare, A.D.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J. 2020, 18, e05967. [Google Scholar] [CrossRef]
- Caprioli, A.; Morabito, S.; Brugère, H.; Oswald, E. Enterohaemorrhagic Escherichia coli: Emerging issues on virulence and modes of transmission. Vet. Res. 2005, 36, 289–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conrad, C.C.; Stanford, K.; Narvaez-Bravo, C.; Callaway, T.; McAllister, T. Farm fairs and petting zoos: A review of animal contact as a source of zoonotic enteric disease. Foodborne Pathog. Dis. 2016, 14, 59–73. [Google Scholar] [CrossRef] [PubMed]
- Ferens, W.A.; Hovde, C.J. Escherichia coli O157:H7: Animal reservoir and sources of human infection. Foodborne Pathog. Dis. 2011, 8, 465–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brugère, H.; Auvray, F.; Mariani-Kurkdjian, P.; King, L.A.; Loukiadis, E. E coli producteurs de shigatoxines (STEC): Définitions, virulence et propriétés des souches entérohémorragiques (EHEC). Fr. Épidémiologique St. Anim. Aliment. 2012, 50, 79. [Google Scholar]
- Burger, R. EHEC O104:h4 in germany 2011: Large Outbreak of Bloody Diarrhea and Haemolytic Uraemic Syndrome by Shiga Toxin–Producing E. coli Via Contaminated Food; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Fatima, R.; Aziz, M. Enterohemorrhagic Escherichia coli (EHEC). In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2019. [Google Scholar]
- Chase-Topping, M.; Gally, D.; Low, C.; Matthews, L.; Woolhouse, M. Super-shedding and the link between human infection and livestock carriage of escherichia coli O157. Nat. Rev. Microbiol. 2008, 6, 904–912. [Google Scholar] [CrossRef] [PubMed]
- Duffy, G.; McCabe, E. Veterinary public health approach to managing pathogenic verocytotoxigenic Escherichia coli in the agri-food Chain. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaucheyras-Durand, F.; Dunière, L.; Forano, E. Comment garantir la sécurité microbiologique de la viande bovine ? Rev. Viandes Prod. Carnés Artic. Sci. 2016, VPC-2016-32-4-3, 1–9. [Google Scholar]
- Berry, E.D.; Wells, J.E. Chapter 4—Escherichia coli O157:H7: Recent advances in research on occurrence, transmission, and control in cattle and the production environment. In Advances in Food and Nutrition Research; Taylor, S.L., Ed.; Academic Press: Cambridge, MA, USA, 2010; Volume 60, pp. 67–117. [Google Scholar]
- Bertin, Y.; Habouzit, C.; Dunière, L.; Laurier, M.; Durand, A.; Duchez, D.; Segura, A.; Thévenot-Sergentet, D.; Baruzzi, F.; Chaucheyras-Durand, F.; et al. Lactobacillus reuteri suppresses E. coli O157:H7 in bovine ruminal fluid: Toward a pre-slaughter strategy to improve food safety? PLoS ONE 2017, 12, e0187229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wisener, L.V.; Sargeant, J.M.; O’Connor, A.M.; Faires, M.C.; Glass-Kaastra, S.K. The use of direct-fed microbials to reduce shedding of Escherichia coli O157 in beef cattle: A systematic review and meta-analysis. Zoonoses Public Health 2015, 62, 75–89. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Beauchemin, K.A.; Alazzeh, A.Y.; Baah, J.; Teather, R.M.; Stanford, K. Review: The use of direct fed microbials to mitigate pathogens and enhance production in cattle. Can. J. Anim. Sci. 2011, 91, 193–211. [Google Scholar] [CrossRef] [Green Version]
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, T.A.T.; Elias, W.P.; Scaletsky, I.C.A.; Guth, B.E.C.; Rodrigues, J.F.; Piazza, R.M.F.; Ferreira, L.C.S.; Martinez, M.B. Diarrheagenic. Escherichia Coli. Braz. J. Microbiol. 2016, 47, 3–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, J.; Nightingale, K. 12—Tracking of pathogens via virulence factors: Shiga toxin-producing Escherichia coli in cattle and potential risks for human disease. In Advances in Microbial Food Safety; Sofos, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 227–259. ISBN 978-0-85709-438-4. [Google Scholar]
- Kaper, J.B.; Nataro, J.P.; Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2004, 2, 123–140. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, E.V.; Robins-Browne, R.M. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect. 2001, 3, 493–507. [Google Scholar] [CrossRef]
- Siegler, R.L. Postdiarrheal Shiga toxin-mediated hemolytic uremic syndrome. JAMA 2003, 290, 1379–1381. [Google Scholar] [CrossRef] [PubMed]
- Bruyand, M.; Mariani-Kurkdjian, P.; Hello, S.L.; Lefevre, S.; Jourdan-Da Silva, N.; Nisavanh, A.; Mailles, A.; Bonacorsi, S.; De Valk, H. Surveillance du Syndrome Hémolytique et Urémique Post-Diarrhéique Chez L’enfant de Moins de 15 Ans en France en 2017; Santé Publique: Saint-Maurice, France, 2017; pp. 1–5. [Google Scholar]
- Van Elsas, J.D.; Semenov, A.V.; Costa, R.; Trevors, J.T. Survival of Escherichia coli in the environment: Fundamental and public health aspects. ISME J. 2011, 5, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyles, C.L. Shiga toxin-producing Escherichia coli: An overview. J. Anim. Sci. 2007, 85, E45–E62. [Google Scholar] [CrossRef] [PubMed]
- Mathusa, E.C.; Chen, Y.; Enache, E.; Hontz, L. Non-O157 Shiga toxin-producing Escherichia coli in foods. J. Food Prot. 2010, 73, 1721–1736. [Google Scholar] [CrossRef] [PubMed]
- Amézquita-López, B.A.; Soto-Beltrán, M.; Lee, B.G.; Yambao, J.C.; Quiñones, B. Isolation, genotyping and antimicrobial resistance of Shiga toxin-producing Escherichia coli. J. Microbiol. Immunol. Infect. 2018, 51, 425–434. [Google Scholar] [CrossRef] [PubMed]
- Nataro, J.P.; Kaper, J.B. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 1998, 11, 142–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean-Nystrom, E.A.; Bosworth, B.T.; Cray, W.C.; Moon, H.W. Pathogenicity of Escherichia coli O157:H7 in the intestines of neonatal calves. Infect. Immun. 1997, 65, 1842–1848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheutz, F.; Teel, L.D.; Beutin, L.; Piérard, D.; Buvens, G.; Karch, H.; Mellmann, A.; Caprioli, A.; Tozzoli, R.; Morabito, S.; et al. Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J. Clin. Microbiol. 2012, 50, 2951–2963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacheco, A.R.; Sperandio, V. Shiga toxin in enterohemorrhagic E. coli: Regulation and novel anti-virulence strategies. Front. Cell. Infect. Microbiol. 2012, 2, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coombes, B.K.; Wickham, M.E.; Mascarenhas, M.; Gruenheid, S.; Finlay, B.B.; Karmali, M.A. Molecular Analysis as an Aid To Assess the Public Health Risk of Non-O157 Shiga Toxin-Producing Escherichia coli Strains. Appl. Environ. Microbiol. 2008, 74, 2153–2160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, E.M.; Skov, M.N.; Madsen, J.J.; Lodal, J.; Jespersen, J.B.; Baggesen, D.L. Verocytotoxin-Producing Escherichia coli in Wild Birds and Rodents in Close Proximity to Farms. Appl. Environ. Microbiol. 2004, 70, 6944–6947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Gall, T.; Clermont, O.; Gouriou, S.; Picard, B.; Nassif, X.; Denamur, E.; Tenaillon, O. Extraintestinal virulence is a coincidental by-product of commensalism in B2 phylogenetic group Escherichia coli strains. Mol. Biol. Evol. 2007, 24, 2373–2384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leimbach, A.; Hacker, J.; Dobrindt, U.E. coli as an all-rounder: The thin line between commensalism and pathogenicity. Curr. Top. Microbiol. Immunol. 2013, 358, 3–32. [Google Scholar] [CrossRef] [PubMed]
- Diard, M.; Garry, L.; Selva, M.; Mosser, T.; Denamur, E.; Matic, I. Pathogenicity-associated islands in extraintestinal pathogenic Escherichia coli are fitness elements involved in intestinal colonization. J. Bacteriol. 2010, 192, 4885–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean-Nystrom, E.A.; Bosworth, B.T.; Moon, H.W.; O’Brien, A.D. Escherichia coli O157:H7 Requires Intimin for Enteropathogenicity in Calves. Infect. Immun. 1998, 66, 4560–4563. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.G.E.; Naylor, S.W.; Gally, D.L. Consequences of EHEC colonisation in humans and cattle. Int. J. Med. Microbiol. IJMM 2002, 292, 169–183. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, J.; Baljer, G.; Menge, C. Maternally and naturally acquired antibodies to Shiga Toxins in a cohort of calves shedding Shiga-Toxigenic Escherichia coli. Appl. Environ. Microbiol. 2009, 75, 3695–3704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meltz Steinberg, K.; Levin, B.R. Grazing protozoa and the evolution of the Escherichia coli O157:H7 Shiga toxin-encoding prophage. Proc. R. Soc. B Biol. Sci. 2007, 274, 1921–1929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.E.; Shringi, S.; Besser, T.E. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages. PLoS ONE 2016, 11, e0147270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaway, T.R.; Carr, M.A.; Edrington, T.S.; Anderson, R.C.; Nisbet, D.J. Diet, Escherichia coli O157:H7, and cattle: A review after 10 years. Curr. Issues Mol. Biol. 2009, 11, 67–79. [Google Scholar] [PubMed]
- Wells, J.E.; Kim, M.; Bono, J.L.; Kuehn, L.A.; Benson, A.K. Meat science and muscle biology symposium: Escherichia coli O157:H7, diet, and fecal microbiome in beef cattle. J. Anim. Sci. 2014, 92, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhao, T.; Doyle, M.P. Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces. Appl. Environ. Microbiol. 1996, 62, 2567–2570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukushima, H.; Hoshina, K.; Gomyoda, M. Long-term survival of Shiga toxin-producing Escherichia coli O26, O111, and O157 in Bovine Feces. Appl. Environ. Microbiol. 1999, 65, 5177–5181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fremaux, B.; Prigent-Combaret, C.; Vernozy-Rozand, C. Long-term survival of Shiga toxin-producing Escherichia coli in cattle effluents and environment: An updated review. Vet. Microbiol. 2008, 132, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Besser, T.E.; Richards, B.L.; Rice, D.H.; Hancock, D.D. Escherichia coli O157:H7 infection of calves: Infectious dose and direct contact transmission. Epidemiol. Infect. 2001, 127, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Semenov, A.M.; Kuprianov, A.A.; Van Bruggen, A.H.C. Transfer of enteric pathogens to successive habitats as part of microbial cycles. Microb. Ecol. 2010, 60, 239–249. [Google Scholar] [CrossRef]
- Shaw, D.J.; Jenkins, C.; Pearce, M.C.; Cheasty, T.; Gunn, G.J.; Dougan, G.; Smith, H.R.; Woolhouse, M.E.J.; Frankel, G. Shedding patterns of verocytotoxin-producing Escherichia coli strains in a cohort of calves and their dams on a scottish beef farm. Appl. Environ. Microbiol. 2004, 70, 7456–7465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.Z.; Musekiwa, A.; Islam, K.; Ahmed, S.; Chowdhury, S.; Ahad, A.; Biswas, P.K. Regional variation in the prevalence of E. coli O157 in cattle: A meta-analysis and meta-regression. PLoS ONE 2014, 9, e93299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibbal, D.; Loukiadis, E.; Kérourédan, M.; Ferré, F.; Dilasser, F.; De Peytavin Garam, C.; Cartier, P.; Oswald, E.; Gay, E.; Auvray, F.; et al. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl. Environ. Microbiol. 2015, 81, 1397–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekong, P.; Sanderson, M.; Cernicchiaro, N. Prevalence and concentration of Escherichia coli O157 in different seasons and cattle types processed in North America: A systematic review and meta-analysis of published research. Prev. Vet. Med. 2015, 121, 74–85. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, E.M.; Tegtmeier, C.; Andersen, H.J.; Grønbaek, C.; Andersen, J.S. Influence of age, sex and herd characteristics on the occurrence of Verocytotoxin-producing Escherichia coli O157 in Danish dairy farms. Vet. Microbiol. 2002, 88, 245–257. [Google Scholar] [CrossRef]
- Mir, R.A.; Weppelmann, T.A.; Kang, M.; Bliss, T.M.; DiLorenzo, N.; Lamb, G.C.; Ahn, S.; Jeong, K.C. Association between animal age and the prevalence of Shiga toxin-producing Escherichia coli in a cohort of beef cattle. Vet. Microbiol. 2015, 175, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Tyler, P.J.; Starnes, J.; Bratcher, C.L.; Rankins, D.; McCaskey, T.A.; Wang, L. Correlation analysis of Shiga toxin-producing Escherichia coli shedding and faecal bacterial composition in beef cattle. J. Appl. Microbiol. 2013, 115, 591–603. [Google Scholar] [CrossRef] [PubMed]
- Stanford, K.; Johnson, R.P.; Alexander, T.W.; McAllister, T.A.; Reuter, T. Influence of season and feedlot location on prevalence and virulence factors of seven serogroups of Escherichia coli in feces of Western-Canadian slaughter cattle. PLoS ONE 2016, 11, e0159866. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, R.; Chen, H.; Gao, J.; Wang, Y.; Zhang, Y.; Qi, Z. Effect of different seasons (spring vs. summer) on the microbiota diversity in the feces of dairy cows. Int. J. Biometeorol. 2020, 64, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Grauke, L.J.; Kudva, I.T.; Yoon, J.W.; Hunt, C.W.; Williams, C.J.; Hovde, C.J. Gastrointestinal tract location of Escherichia coli O157:H7 in ruminants. Appl. Environ. Microbiol. 2002, 68, 2269–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keen, J.E.; Laegreid, W.W.; Chitko-McKown, C.G.; Durso, L.M.; Bono, J.L. Distribution of Shiga-toxigenic Escherichia coli O157 in the gastrointestinal tract of naturally O157-shedding cattle at necropsy. Appl. Environ. Microbiol. 2010, 76, 5278–5281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, S.W.; Low, J.C.; Besser, T.E.; Mahajan, A.; Gunn, G.J.; Pearce, M.C.; McKendrick, I.J.; Smith, D.G.E.; Gally, D.L. Lymphoid follicle-dense mucosa at the terminal rectum is the principal site of colonization of enterohemorrhagic Escherichia coli O157:H7 in the bovine host. Infect. Immun. 2003, 71, 1505–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boukhors, K.; Pradel, N.; Girardeau, J.-P.; Livrelli, V.; Ou Saïd, A.M.; Contrepois, M.; Martin, C. Effect of diet on Shiga toxin-producing Escherichia coli (STEC) growth and survival in rumen and abomasum fluids. Vet. Res. 2002, 33, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudva, I.T.; Stanton, T.B.; Lippolis, J.D. The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses. BMC Microbiol. 2014, 14, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.Y.; Sheng, H.; Seo, K.S.; Park, Y.H.; Hovde, C.J. Characterization of an Escherichia coli O157:H7 plasmid O157 deletion mutant and its survival and persistence in cattle. Appl. Environ. Microbiol. 2007, 73, 2037–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Price, S.B.; Wright, J.C.; DeGraves, F.J.; Castanie-Cornet, M.-P.; Foster, J.W. Acid resistance systems required for survival of Escherichia coli O157:H7 in the bovine gastrointestinal tract and in apple cider are different. Appl. Environ. Microbiol. 2004, 70, 4792–4799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Free, A.L.; Duoss, H.A.; Bergeron, L.V.; Shields-Menard, S.A.; Ward, E.; Callaway, T.R.; Carroll, J.A.; Schmidt, T.B.; Donaldson, J.R. Survival of O157:H7 and Non-O157 Serogroups of Escherichia coli in Bovine Rumen Fluid and Bile Salts. Foodborne Pathog. Dis. 2012, 9, 1010–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamner, S.; McInnerney, K.; Williamson, K.; Franklin, M.J.; Ford, T.E. Bile salts affect expression of Escherichia coli O157:H7 genes for virulence and iron acquisition, and promote growth under iron limiting conditions. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, J. How the rumen works. In Tropical Dairy Farming: Feeding Management for Small Holder Dairy Farmers in the Humid Tropics; CSIRO Publishing: Melbourne, Australia, 2005; pp. 41–49. ISBN 978-0-643-09123-8. [Google Scholar]
- Monteiro, R.; Ageorges, V.; Rojas-Lopez, M.; Schmidt, H.; Weiss, A.; Bertin, Y.; Forano, E.; Jubelin, G.; Henderson, I.R.; Livrelli, V.; et al. A secretome view of colonisation factors in Shiga toxin-encoding Escherichia coli (STEC): From enterohaemorrhagic E. coli (EHEC) to related enteropathotypes. FEMS Microbiol. Lett. 2016, 363. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, B.D.; Torres, A.G. Enterohemorrhagic Escherichia coli adhesins. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ageorges, V.; Monteiro, R.; Leroy, S.; Burgess, C.M.; Pizza, M.; Chaucheyras-durand, F.; Desvaux, M. Molecular determinants of surface colonisation in diarrhoeagenic Escherichia coli (DEC): From bacterial adhesion to biofilm formation. FEMS Microbiol. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Dziva, F.; Van Diemen, P.M.; Stevens, M.P.; Smith, A.J.; Wallis, T.S. Identification of Escherichia coli O157: H7 genes influencing colonization of the bovine gastrointestinal tract using signature-tagged mutagenesis. Microbiol. Read. Engl. 2004, 150, 3631–3645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, S.W.; Roe, A.J.; Nart, P.; Spears, K.; Smith, D.G.E.; Low, J.C.; Gally, D.L. Escherichia coli O157: H7 forms attaching and effacing lesions at the terminal rectum of cattle and colonization requires the LEE4 operon. Microbiology 2005, 151, 2773–2781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baehler, A.A.; Moxley, R.A. Escherichia coli O157:H7 induces attaching-effacing lesions in large intestinal mucosal explants from adult cattle. FEMS Microbiol. Lett. 2000, 185, 239–242. [Google Scholar] [CrossRef] [PubMed]
- Phillips, A.; Navabpour, S.; Hicks, S.; Dougan, G.; Wallis, T.; Frankel, G. Enterohaemorrhagic Escherichia coli O157:H7 target Peyer’s patches in humans and cause attaching/effacing lesions in both human and bovine intestine. GUT 2000, 47, 377–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, J.C.; McKendrick, I.J.; McKechnie, C.; Fenlon, D.; Naylor, S.W.; Currie, C.; Smith, D.G.E.; Allison, L.; Gally, D.L. Rectal carriage of enterohemorrhagic Escherichia coli O157 in slaughtered cattle. Appl. Environ. Microbiol. 2005, 71, 93–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, V.K.; Sacco, R.E.; Kunkle, R.A.; Bearson, S.M.D.; Palmquist, D.E. Correlating levels of type III secretion and secreted proteins with fecal shedding of Escherichia coli O157:H7 in cattle. Infect. Immun. 2012, 80, 1333–1342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Diemen, P.M.; Dziva, F.; Stevens, M.P.; Wallis, T.S. Identification of enterohemorrhagic Escherichia coli O26:H−Genes required for intestinal colonization in calves. Infect. Immun. 2005, 73, 1735–1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahajan, A.; Currie, C.G.; Mackie, S.; Tree, J.; McAteer, S.; McKendrick, I.; McNeilly, T.N.; Roe, A.; La Ragione, R.M.; Woodward, M.J.; et al. An investigation of the expression and adhesin function of H7 flagella in the interaction of Escherichia coli O157: H7 with bovine intestinal epithelium. Cell. Microbiol. 2009, 11, 121–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erdem, A.L.; Avelino, F.; Xicohtencatl-Cortes, J.; Girón, J.A. Host protein binding and adhesive properties of H6 and H7 flagella of attaching and effacing Escherichia coli. J. Bacteriol. 2007, 189, 7426–7435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, A.S.; Dziva, F.; Torres, A.G.; Martinez, J.L.; Rosser, T.; Naylor, S.; Spears, K.; Holden, N.; Mahajan, A.; Findlay, J.; et al. Cloning, expression, and characterization of fimbrial operon F9 from enterohemorrhagic Escherichia coli O157:H7. Infect. Immun. 2006, 74, 2233–2244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kudva, I.T.; Griffin, R.W.; Krastins, B.; Sarracino, D.A.; Calderwood, S.B.; John, M. Proteins other than the locus of enterocyte effacement-encoded proteins contribute to Escherichia coli O157:H7 adherence to bovine rectoanal junction stratified squamous epithelial cells. BMC Microbiol. 2012, 12, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xicohtencatl-Cortes, J.; Monteiro-Neto, V.; Ledesma, M.A.; Jordan, D.M.; Francetic, O.; Kaper, J.B.; Puente, J.L.; Girón, J.A. Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157:H7. J. Clin. Investig. 2007, 117, 3519–3529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ooka, T.; Seto, K.; Kawano, K.; Kobayashi, H.; Etoh, Y.; Ichihara, S.; Kaneko, A.; Isobe, J.; Yamaguchi, K.; Horikawa, K.; et al. Clinical significance of Escherichia albertii. Emerg. Infect. Dis. 2012, 18, 488–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzhenry, R.J.; Pickard, D.J.; Hartland, E.L.; Reece, S.; Dougan, G.; Phillips, A.D.; Frankel, G. Intimin type influences the site of human intestinal mucosal colonisation by enterohaemorrhagic Escherichia coli O157:H7. GUT 2002, 50, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Koike, S.; Kobayashi, Y. Fibrolytic rumen bacteria: Their ecology and functions. Asian Aust. J. Anim. Sci. 2009, 2009, 131–138. [Google Scholar] [CrossRef]
- Dodd, D.; Mackie, R.I.; Cann, I.K.O. Xylan degradation, a metabolic property shared by rumen and human colonic Bacteroidetes. Mol. Microbiol. 2011, 79, 292–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seshadri, R.; Leahy, S.C.; Attwood, G.T.; Teh, K.H.; Lambie, S.C.; Cookson, A.L.; Eloe-Fadrosh, E.A.; Pavlopoulos, G.A.; Hadjithomas, M.; Varghese, N.J.; et al. Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nat. Biotechnol. 2018, 36, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.D.; Auffret, M.D.; Warr, A.; Wiser, A.H.; Press, M.O.; Langford, K.W.; Liachko, I.; Snelling, T.J.; Dewhurst, R.J.; Walker, A.W.; et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, R.J.; Snelling, T.J.; McCartney, C.A.; Tapio, I.; Strozzi, F. Application of meta-omics techniques to understand greenhouse gas emissions originating from ruminal metabolism. Genet. Sel. Evol. GSE 2017, 49, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, C.S. Lactic acid bacteria in the rumen. In The Lactic Acid Bacteria Volume 1: The Lactic Acid Bacteria in Health and Disease; Wood, B.J.B., Ed.; Springer US: Boston, MA, USA, 1992; pp. 49–68. ISBN 978-1-4615-3522-5. [Google Scholar]
- Yang, H.E.; Zotti, C.A.; McKinnon, J.J.; McAllister, T.A. Lactobacilli are prominent members of the microbiota involved in the ruminal digestion of barley and corn. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Muñoz-Tamayo, R.; Forano, E.; Waters, S.M.; Hess, M.; et al. Addressing global ruminant agricultural challenges through understanding the rumen microbiome: Past, present, and future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef] [PubMed]
- Plaizier, J.C.; Danesh Mesgaran, M.; Derakhshani, H.; Golder, H.; Khafipour, E.; Kleen, J.L.; Lean, I.; Loor, J.; Penner, G.; Zebeli, Q. Review: Enhancing gastrointestinal health in dairy cows. Anim. Int. J. Anim. Biosci. 2018, 12, s399–s418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kameshwar, A.K.S.; Ramos, L.P.; Qin, W. Metadata analysis approaches for understanding and improving the functional involvement of rumen microbial consortium in digestion and metabolism of plant biomass. J. Genom. 2019, 7, 31–45. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The rumen microbiome: A crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Comtet-Marre, S.; Parisot, N.; Lepercq, P.; Chaucheyras-Durand, F.; Mosoni, P.; Peyretaillade, E.; Bayat, A.R.; Shingfield, K.J.; Peyret, P.; Forano, E. Metatranscriptomics reveals the active bacterial and eukaryotic fibrolytic communities in the rumen of dairy cow fed a mixed diet. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hook, S.E.; Wright, A.-D.G.; McBride, B.W. Methanogens: Methane Producers of the Rumen and Mitigation Strategies. Available online: https://www.hindawi.com/journals/archaea/2010/945785/ (accessed on 21 October 2019).
- Gilbert, R.A.; Townsend, E.M.; Crew, K.S.; Hitch, T.C.A.; Friedersdorff, J.C.A.; Creevey, C.J.; Pope, P.B.; Ouwerkerk, D.; Jameson, E. Rumen virus populations: Technological advances enhancing current understanding. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Holman, D.B.; Gzyl, K.E. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol. Ecol. 2019, 95. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.R.; Dowd, S.E.; Edrington, T.S.; Anderson, R.C.; Krueger, N.; Bauer, N.; Kononoff, P.J.; Nisbet, D.J. Evaluation of bacterial diversity in the rumen and feces of cattle fed different levels of dried distillers grains plus solubles using bacterial tag-encoded FLX amplicon pyrosequencing. J. Anim. Sci. 2010, 88, 3977–3983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, S.; Zhang, M.; Liu, J.; Zhu, W. Characterising the bacterial microbiota across the gastrointestinal tracts of dairy cattle: Membership and potential function. Sci. Rep. 2015, 5, 16116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergmann, G.T. Microbial community composition along the digestive tract in forage- and grain-fed bison. BMC Vet. Res. 2017, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Oliveira, M.N.V.; Jewell, K.A.; Freitas, F.S.; Benjamin, L.A.; Tótola, M.R.; Borges, A.C.; Moraes, C.A.; Suen, G. Characterizing the microbiota across the gastrointestinal tract of a Brazilian Nelore steer. Vet. Microbiol. 2013, 164, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Malmuthuge, N.; Guan, L.L. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health. J. Dairy Sci. 2017, 100, 5996–6005. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.J.; Jalanka, J.; Pessa-Morikawa, T.; Kokkonen, T.; Satokari, R.; Hynönen, U.; Iivanainen, A.; Niku, M. The composition of the perinatal intestinal microbiota in cattle. Sci. Rep. 2018, 8, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Morgavi, D.P.; Forano, E.; Martin, C.; Newbold, C.J. Microbial ecosystem and methanogenesis in ruminants. Anim. Int. J. Anim. Biosci. 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brashears, M.M.; Jaroni, D.; Trimble, J. Isolation, selection, and characterization of lactic acid bacteria for a competitive exclusion product to reduce shedding of Escherichia coli O157:H7 in cattle. J. Food Prot. 2003, 66, 355–363. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, K.; Li, X.; Cao, Z.; Wang, X.; Li, Z.; Song, Y.; Xu, Y. Use of bacteriophages to control Escherichia coli O157:H7 in domestic ruminants, meat products, and fruits and vegetables. Foodborne Pathog. Dis. 2017, 14, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Henderson, G.; Cox, F.; Ganesh, S.; Jonker, A.; Young, W.; Janssen, P.H. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci. Rep. 2015, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Wang, O.; McAllister, T.A.; Plastow, G.; Stanford, K.; Selinger, B.; Guan, L.L. Interactions of the hindgut mucosa-associated microbiome with its host regulate shedding of Escherichia coli O157:H7 by cattle. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaheen, S.; Kim, S.W.; Karns, J.S.; Hovingh, E.; Haley, B.J.; Van Kessel, J.A.S. Metagenomic analysis of the fecal microbiomes from Escherichia coli O157:H7-shedding and non-shedding cows on a single dairy farm. Food Control 2019, 102, 76–80. [Google Scholar] [CrossRef]
- Zaheer, R.; Dugat-Bony, E.; Holman, D.; Cousteix, E.; Xu, Y.; Munns, K.; Selinger, L.J.; Barbieri, R.; Alexander, T.; McAllister, T.A.; et al. Changes in bacterial community composition of Escherichia coli O157:H7 super-shedder cattle occur in the lower intestine. PLoS ONE 2017, 12, e0170050. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Dugat-Bony, E.; Zaheer, R.; Selinger, L.; Barbieri, R.; Munns, K.; McAllister, T.A.; Selinger, L.B. Escherichia coli O157:H7 super-shedder and non-shedder feedlot steers harbour distinct fecal bacterial communities. PLoS ONE 2014, 9, e98115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stenkamp-Strahm, C.; McConnel, C.; Magzamen, S.; Abdo, Z.; Reynolds, S. Associations between Escherichia coli O157 shedding and the faecal microbiota of dairy cows. J. Appl. Microbiol. 2018, 124, 881–898. [Google Scholar] [CrossRef] [PubMed]
- Sperandio, V. SdiA sensing of acyl-homoserine lactones by enterohemorrhagic E. coli (EHEC) serotype O157:H7 in the bovine rumen. Gut Microbes 2010, 1, 432–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheng, H.; Nguyen, Y.N.; Hovde, C.J.; Sperandio, V. SdiA aids enterohemorrhagic Escherichia coli carriage by cattle fed a forage or grain diet. Infect. Immun. 2013, 81, 3472–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertin, Y.; Chaucheyras-Durand, F.; Robbe-Masselot, C.; Durand, A.; De la Foye, A.; Harel, J.; Cohen, P.S.; Conway, T.; Forano, E.; Martin, C. Carbohydrate utilization by enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ. Microbiol. 2013, 15, 610–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertin, Y.; Girardeau, J.P.; Chaucheyras-Durand, F.; Lyan, B.; Pujos-Guillot, E.; Harel, J.; Martin, C. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ. Microbiol. 2011, 13, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Bertin, Y.; Segura, A.; Jubelin, G.; Dunière, L.; Durand, A.; Forano, E. Aspartate metabolism is involved in the maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. Environ. Microbiol. 2018, 20, 4473–4485. [Google Scholar] [CrossRef] [PubMed]
- Bertin, Y.; Deval, C.; De la Foye, A.; Masson, L.; Gannon, V.; Harel, J.; Martin, C.; Desvaux, M.; Forano, E. The gluconeogenesis pathway is involved in maintenance of enterohaemorrhagic Escherichia coli O157:H7 in bovine intestinal content. PLoS ONE 2014, 9, e98367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forano, E.; Chaucheyras-Durand, F.; Bertin, Y.; Martin, C. EHEC carriage in ruminants and probiotic effects. Biol. Aujourdhui 2013, 207, 261–267. [Google Scholar] [CrossRef] [PubMed]
- Montagne, L.; Toullec, R.; Lallès, J.P. Calf intestinal mucin: Isolation, partial characterization, and measurement in ileal digesta with an enzyme-linked immunosorbent assay. J. Dairy Sci. 2000, 83, 507–517. [Google Scholar] [CrossRef]
- Snider, T.A.; Fabich, A.J.; Conway, T.; Clinkenbeard, K.D.E. coli O157:H7 catabolism of intestinal mucin-derived carbohydrates and colonization. Vet. Microbiol. 2009, 136, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Aperce, C.C.; Heidenreich, J.M.; Drouillard, J.S. Capacity of the bovine intestinal mucus and its components to support growth of Escherichia coli O157:H7. Anim. Int. J. Anim. Biosci. 2014, 8, 731–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Segura, A.; Bertoni, M.; Auffret, P.; Klopp, C.; Bouchez, O.; Genthon, C.; Durand, A.; Bertin, Y.; Forano, E. Transcriptomic analysis reveals specific metabolic pathways of enterohemorrhagic Escherichia coli O157:H7 in bovine digestive contents. BMC Genom. 2018, 19, 766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Morita, M.; Tanji, Y.; Mizoguchi, K.; Akitsu, T.; Kijima, N.; Unno, H. Characterization of a virulent bacteriophage specific for Escherichia coli O157:H7 and analysis of its cellular receptor and two tail fiber genes. FEMS Microbiol. Lett. 2002, 211, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Shahrbabak, S.S.; Khodabandehlou, Z.; Shahverdi, A.R.; Skurnik, M.; Ackermann, H.-W.; Varjosalo, M.; Yazdi, M.T.; Sepehrizadeh, Z. Isolation, characterization and complete genome sequence of PhaxI: A phage of Escherichia coli O157: H7. Microbiol. Read. Engl. 2013, 159, 1629–1638. [Google Scholar] [CrossRef] [PubMed]
- Tomat, D.; Migliore, L.; Aquili, V.; Quiberoni, A.; Balagué, C. Phage biocontrol of enteropathogenic and shiga toxin-producing Escherichia coli in meat products. Front. Cell. Infect. Microbiol. 2013, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Z.; Breidt, F. Escherichia coli O157:H7 bacteriophage Φ241 isolated from an industrial cucumber fermentation at high acidity and salinity. Front. Microbiol. 2015, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bumunang, E.W.; McAllister, T.A.; Stanford, K.; Anany, H.; Niu, Y.D.; Ateba, C.N. Characterization of Non-O157 STEC infecting bacteriophages isolated from cattle faeces in North-West South Africa. Microorganisms 2019, 7, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montso, P.K.; Mlambo, V.; Ateba, C.N. Characterization of lytic bacteriophages infecting multidrug-resistant Shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Front. Public Health 2019, 7, 355. [Google Scholar] [CrossRef] [PubMed]
- Son, H.M.; Duc, H.M.; Masuda, Y.; Honjoh, K.-I.; Miyamoto, T. Application of bacteriophages in simultaneously controlling Escherichia coli O157:H7 and extended-spectrum beta-lactamase producing Escherichia coli. Appl. Microbiol. Biotechnol. 2018, 102, 10259–10271. [Google Scholar] [CrossRef] [PubMed]
- Stanford, K.; Bach, S.J.; Stephens, T.P.; McAllister, T.A. Effect of rumen protozoa on Escherichia coli O157:H7 in the rumen and feces of specifically faunated sheep. J. Food Prot. 2010, 73, 2197–2202. [Google Scholar] [CrossRef] [PubMed]
- Burow, L.C.; Gobius, K.S.; Vanselow, B.A.; Klieve, A.V. A lack of predatory interaction between rumen ciliate protozoa and Shiga-toxin producing Escherichia coli. Lett. Appl. Microbiol. 2005, 40, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Paddock, Z.D.; Renter, D.G.; Shi, X.; Krehbiel, C.R.; DeBey, B.; Nagaraja, T.G. Effects of feeding dried distillers grains with supplemental starch on fecal shedding of Escherichia coli O157:H7 in experimentally inoculated steers. J. Anim. Sci. 2013, 91, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Schneider, L.G.; Klopfenstein, T.J.; Stromberg, Z.R.; Lewis, G.L.; Erickson, G.E.; Moxley, R.A.; Smith, D.R. A randomized controlled trial to evaluate the effects of dietary fibre from distillers grains on enterohemorrhagic Escherichia coli detection from the rectoanal mucosa and hides of feedlot steers. Zoonoses Public Health 2018, 65, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Hallewell, J.; Barbieri, L.R.; Thomas, J.E.; Stanford, K.; McAllister, T.A. Fecal shedding in cattle inoculated with Escherichia coli O157:H7 and fed corn or wheat distillers’ dried grain with solubles. J. Food Prot. 2013, 76, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Huws, S.A.; Kim, E.J.; Cameron, S.J.S.; Girdwood, S.E.; Davies, L.; Tweed, J.; Vallin, H.; Scollan, N.D. Characterization of the rumen lipidome and microbiome of steers fed a diet supplemented with flax and echium oil. Microb. Biotechnol. 2015, 8, 331–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasparovska, J.; Pecinkova, M.; Dadakova, K.; Krizova, L.; Hadrova, S.; Lexa, M.; Lochman, J.; Kasparovsky, T. Effects of isoflavone-enriched feed on the rumen microbiota in dairy cows. PLoS ONE 2016, 11, e0154642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCabe, M.S.; Cormican, P.; Keogh, K.; O’Connor, A.; O’Hara, E.; Palladino, R.A.; Kenny, D.A.; Waters, S.M. Illumina miseq phylogenetic amplicon sequencing shows a large reduction of an uncharacterised Succinivibrionaceae and an increase of the Methanobrevibacter gottschalkii clade in feed restricted cattle. PLoS ONE 2015, 10, e0133234. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Cao, H.; Dai, Y.; Wu, J.; Lv, J.; Du, R.; Han, B. Effect of high-fat diet and growth stage on the diversity and composition of intestinal microbiota in healthy bovine livestock. J. Sci. Food Agric. 2017, 97, 5004–5013. [Google Scholar] [CrossRef] [PubMed]
- Abdela, N. Sub-acute Ruminal Acidosis (SARA) and its consequence in dairy cattle: A review of past and recent research at global prospective. Achiev. Life Sci. 2016, 10, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Characterization of the core rumen microbiome in cattle during transition from forage to concentrate as well as during and after an acidotic challenge. PLoS ONE 2013, 8, e83424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, R.M.; Schwaiger, T.; Penner, G.B.; Beauchemin, K.A.; Forster, R.J.; McKinnon, J.J.; McAllister, T.A. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl. Environ. Microbiol. 2013, 79, 3744–3755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, S.C.; Purvis, H.T.; Najar, F.Z.; Sukharnikov, L.O.; Krehbiel, C.R.; Nagaraja, T.G.; Roe, B.A.; Desilva, U. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl. Environ. Microbiol. 2010, 76, 7482–7490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neubauer, V.; Petri, R.; Humer, E.; Kröger, I.; Mann, E.; Reisinger, N.; Wagner, M.; Zebeli, Q. High-grain diets supplemented with phytogenic compounds or autolyzed yeast modulate ruminal bacterial community and fermentation in dry cows. J. Dairy Sci. 2018, 101, 2335–2349. [Google Scholar] [CrossRef] [PubMed]
- Tajima, K.; Aminov, R.I.; Nagamine, T.; Matsui, H.; Nakamura, M.; Benno, Y. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PCR. Appl. Environ. Microbiol. 2001, 67, 2766–2774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khafipour, E.; Li, S.; Plaizier, J.C.; Krause, D.O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 2009, 75, 7115–7124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plaizier, J.C.; Li, S.; Tun, H.M.; Khafipour, E. Nutritional Models of Experimentally-Induced Subacute Ruminal Acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khafipour, E.; Plaizier, J.C.; Aikman, P.C.; Krause, D.O. Population structure of rumen Escherichia coli associated with subacute ruminal acidosis (SARA) in dairy cattle. J. Dairy Sci. 2011, 94, 351–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaucheyras-Durand, F.; Faqir, F.; Ameilbonne, A.; Rozand, C.; Martin, C. Fates of acid-resistant and non-acid-resistant Shiga toxin-producing Escherichia coli strains in ruminant digestive contents in the absence and presence of probiotics. Appl. Environ. Microbiol. 2010, 76, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, T.A.; Bach, S.J.; Stanford, K.; Callaway, T.R. Shedding of Escherichia coli O157:H7 by cattle fed diets containing monensin or tylosin. J. Food Prot. 2006, 69, 2075–2083. [Google Scholar] [CrossRef] [PubMed]
- Paddock, Z.D.; Walker, C.E.; Drouillard, J.S.; Nagaraja, T.G. Dietary monensin level, supplemental urea, and ractopamine on fecal shedding of Escherichia coli O157:H7 in feedlot cattle. J. Anim. Sci. 2011, 89, 2829–2835. [Google Scholar] [CrossRef] [PubMed]
- Cobbold, R.N.; Hancock, D.D.; Rice, D.H.; Berg, J.; Stilborn, R.; Hovde, C.J.; Besser, T.E. Rectoanal junction colonization of feedlot cattle by Escherichia coli O157:H7 and its association with supershedders and excretion dynamics. Appl. Environ. Microbiol. 2007, 73, 1563–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, D.; Blackford, M.; Younts, S.; Moxley, R.; Gray, J.; Hungerford, L.; Milton, T.; Klopfenstein, T. Ecological relationships between the prevalence of cattle shedding Escherichia coli O157:H7 and characteristics of the cattle or conditions of the feedlot pen. J. Food Prot. 2001, 64, 1899–1903. [Google Scholar] [CrossRef] [PubMed]
- Talley, J.L.; Wayadande, A.C.; Wasala, L.P.; Gerry, A.C.; Fletcher, J.; DeSilva, U.; Gilliland, S.E. Association of Escherichia coli O157:H7 with filth flies (Muscidae and Calliphoridae) captured in leafy greens fields and experimental transmission of E. coli O157:H7 to spinach leaves by house flies (Diptera: Muscidae). J. Food Prot. 2009, 72, 1547–1552. [Google Scholar] [CrossRef] [PubMed]
- Segura, A. Portage Animal des Escherichia coli Entérohémorragiques: Colonisation et Interaction Avec le Microbiote Digestif Animal; Toxicologie, Université Clermont Auvergne: Theix, France, 2018. [Google Scholar]
- Wray, C.; McLaren, I.; Pearson, G.R. Occurrence of “attaching and effacing” lesions in the small intestine of calves experimentally infected with bovine isolates of verocytotoxic E. coli. Vet. Rec. 1989, 125, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Widiasih, D.A.; Matsuda, I.; Omoe, K.; Hu, D.-L.; Sugii, S.; Shinagawa, K. Passive transfer of antibodies to Shiga toxin-producing Escherichia coli O26, O111 and O157 antigens in neonatal calves by feeding colostrum. J. Vet. Med. Sci. 2004, 66, 213–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabinovitz, B.C.; Gerhardt, E.; Tironi Farinati, C.; Abdala, A.; Galarza, R.; Vilte, D.A.; Ibarra, C.; Cataldi, A.; Mercado, E.C. Vaccination of pregnant cows with EspA, EspB, γ-intimin, and Shiga toxin 2 proteins from Escherichia coli O157:H7 induces high levels of specific colostral antibodies that are transferred to newborn calves. J. Dairy Sci. 2012, 95, 3318–3326. [Google Scholar] [CrossRef] [PubMed]
- Rabinovitz, B.C.; Vilte, D.A.; Larzábal, M.; Abdala, A.; Galarza, R.; Zotta, E.; Ibarra, C.; Mercado, E.C.; Cataldi, A. Physiopathological effects of Escherichia coli O157:H7 inoculation in weaned calves fed with colostrum containing antibodies to EspB and Intimin. Vaccine 2014, 32, 3823–3829. [Google Scholar] [CrossRef] [PubMed]
- Rugbjerg, H.; Nielsen, E.M.; Andersen, J.S. Risk factors associated with faecal shedding of verocytotoxin-producing Escherichia coli O157 in eight known-infected Danish dairy herds. Prev. Vet. Med. 2003, 58, 101–113. [Google Scholar] [CrossRef]
- Stenkamp-Strahm, C.; Lombard, J.E.; Magnuson, R.J.; Linke, L.M.; Magzamen, S.; Urie, N.J.; Shivley, C.B.; McConnel, C.S. Preweaned heifer management on US dairy operations: Part IV. Factors associated with the presence of Escherichia coli O157 in preweaned dairy heifers. J. Dairy Sci. 2018, 101, 9214–9228. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.P.; Cray, W.C.; Johnson, S.T. Serum antibody responses of cattle following experimental infection with Escherichia coli O157:H7. Infect. Immun. 1996, 64, 1879–1883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffman, M.A.; Menge, C.; Casey, T.A.; Laegreid, W.; Bosworth, B.T.; Dean-Nystrom, E.A. Bovine immune response to shiga-toxigenic Escherichia coli O157:H7. Clin. Vaccine Immunol. CVI 2006, 13, 1322–1327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaut, R.G.; Boggiatto, P.M.; Loving, C.L.; Sharma, V.K. Cellular and mucosal immune responses following vaccination with inactivated mutant of Escherichia coli O157:H7. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, N.; Barth, S.A.; Frahm, J.; Meyer, U.; Dänicke, S.; Geue, L.; Menge, C. Decreased STEC shedding by cattle following passive and active vaccination based on recombinant Escherichia coli Shiga toxoids. Vet. Res. 2018, 49, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, A.A.; Klashinsky, S.; Li, Y.; Frey, E.; Townsend, H.; Rogan, D.; Erickson, G.; Hinkley, S.; Klopfenstein, T.; Moxley, R.A.; et al. Decreased shedding of Escherichia coli O157:H7 by cattle following vaccination with type III secreted proteins. Vaccine 2004, 22, 362–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Donkersgoed, J.; Hancock, D.; Rogan, D.; Potter, A.A. Escherichia coli O157:H7 vaccine field trial in 9 feedlots in Alberta and Saskatchewan. Can. Vet. J. Rev. Vet. Can. 2005, 46, 724–728. [Google Scholar]
- Torres, A.G. Chapter 51—Intestinal pathogenic Escherichia coli. In Vaccines for Biodefense and Emerging and Neglected Diseases; Barrett, A.D.T., Stanberry, L.R., Eds.; Academic Press: London, UK, 2009; pp. 1013–1029. ISBN 978-0-12-369408-9. [Google Scholar]
- Kropinski, A.M.; Lingohr, E.J.; Moyles, D.M.; Ojha, S.; Mazzocco, A.; She, Y.-M.; Bach, S.J.; Rozema, E.A.; Stanford, K.; McAllister, T.A.; et al. Endemic bacteriophages: A cautionary tale for evaluation of bacteriophage therapy and other interventions for infection control in animals. Virol. J. 2012, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kieckens, E.; Rybarczyk, J.; De Zutter, L.; Duchateau, L.; Vanrompay, D.; Cox, E. Clearance of Escherichia coli O157:H7 infection in calves by rectal administration of bovine lactoferrin. Appl. Environ. Microbiol. 2015, 81, 1644–1651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohya, T.; Marubashi, T.; Ito, H. Significance of fecal volatile fatty acids in shedding of Escherichia coli O157 from calves: Experimental infection and preliminary use of a probiotic product. J. Vet. Med. Sci. 2000, 62, 1151–1155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
A | |||||
---|---|---|---|---|---|
NS | SS | ||||
Phylum | Family/Order | Authors | Phylum | Family/Order | Authors |
Actinobacteria | Intrasporangiaceae | Wang et al. [116] | Actinobacteria | Actinomycetaceae | Salaheen et al. [117] |
Actinobacteria | Thermomonosporaceae | Salaheen et al. [117] | Actinobacteria | Corynebacteriaceae | Wang et al. [116] |
Bacteroidetes | Paraprevotellaceae | Wang et al., Zaheer et al. [116,118] | Actinobacteria | Gordoniaceae | Wang et al. [116] |
Bacteroidetes | Prevotellaceae | Zaheer et al. [118] | Actinobacteria | Propionibacteriaceae | Wang et al. [116] |
Bacteroidetes | Sphingobacteriaceae | Wang et al. [116] | Actinobacteria | Unclassified Bifidobacteriales | Salaheen et al. [117] |
Cyanobacteria | Cyanophyceae | Salaheen et al. [117] | Bacteroidetes | Marinilabiliaceae | Salaheen et al. [117] |
Cyanobacteria | Synechococcaceae | Salaheen et al. [117] | Bacteroidetes | Prevotellaceae | Xu et al. [119] |
Firmicutes | Bacillaceae | Stenkamp-Strahm et al. [120] | Bacteroidetes | Rikenellaceae | Zaheer et al., Xu et al. [118,119] |
Firmicutes | Clostridiaceae | Xu et al., Salaheen et al. [117,119] | Bacteroidetes | Sphingobacteriaceae | Salaheen et al. [117] |
Firmicutes | Erysipelotrichaceae | Xu et al. [119] | Firmicutes | Clostridiaceae | Xu et al. [119] |
Firmicutes | Heliobacteriaceae | Salaheen et al. [117] | Firmicutes | Erysipelotrichaceae | Wang et al. [116] |
Firmicutes | Lachnospiraceae | Wang et al., Xu et al., Salaheen et al. [116,117,119] | Firmicutes | Lachnospiraceae | Stenkamp-Strahm, Xu et al. [119,120] |
Firmicutes | Ruminococcaceae | Wang et al., Zaheer et al., Xu et al. [116,118,119] | Firmicutes | Lactobacillaceae | Wang et al. [116] |
Firmicutes | Sporolactobacillaceae | Salaheen et al. [117] | Firmicutes | Mogibacteriaceae | Wang et al. [116] |
Firmicutes | Streptococcaceae | Salaheen et al. [117] | Firmicutes | Peptococcaceae | Xu et al. [119] |
Firmicutes | Veillonellaceae | Wang et al. [116] | Firmicutes | Ruminococcaceae | Zaheer et al., Xu et al. [118,119] |
Fusobacteria | Fusobacteriaceae | Wang et al. [116] | Firmicutes | Staphylococcaceae | Wang et al. [116] |
Proteobacteria | Alcaligenaceae | Wang et al., Zaheer et al. [116,118] | Firmicutes | Veillonellaceae | Wang et al. [116] |
Proteobacteria | Bdellovibrionaceae | Wang et al. [116] | Proteobacteria | Moraxellaceae | Wang et al. [116] |
Proteobacteria | Bradyrhizobiaceae | Wang et al. [116] | Proteobacteria | Rhodobacterales | Wang et al. [116] |
Proteobacteria | Comamonadaceae | Salaheen et al. [117] | |||
Proteobacteria | Desulfovibrionaceae | Xu et al. [119] | |||
Proteobacteria | Nannocystaceae | Salaheen et al. [117] | |||
Proteobacteria | Rhodospirillaceae | Salaheen et al. [117] | |||
Proteobacteria | Shewanellaceae | Wang et al. [116] | |||
Proteobacteria | Succinivibrionaceae | Zaheer et al. [118] | |||
Spirochaetes | Spirochaetaceae | Zaheer et al. [118] | |||
Spirochaetes | Unclassified Leptospiraceae | Salaheen et al. [117] | |||
Spirochaetes | Unclassified Spirochaetales | Salaheen et al. [117] | |||
Verrucomicrobia | Unclassified Chthoniobacterales | Salaheen et al. [117] | |||
B | |||||
doi Number | First Author | Tissue | Country | Animal | |
10.1128/AEM.01738-17 [116] | Wang | rectum | Canada | beef steers | |
10.1111/jam.13679 [120] | Stenkamp-Strahm | rectum | US | Holstein-Friesian cows | |
10.1371/journal.pone.0170050 [118] | Zaheer | lower GI tract | Canada | beef steers | |
10.1371/journal.pone.0098115 [119] | Xu | rectum | Canada | feedlot steers | |
10.1016/j.foodcont.2019.03.022 [117] | Salaheen | feces | US | lactating cows |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sapountzis, P.; Segura, A.; Desvaux, M.; Forano, E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms 2020, 8, 877. https://doi.org/10.3390/microorganisms8060877
Sapountzis P, Segura A, Desvaux M, Forano E. An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms. 2020; 8(6):877. https://doi.org/10.3390/microorganisms8060877
Chicago/Turabian StyleSapountzis, Panagiotis, Audrey Segura, Mickaël Desvaux, and Evelyne Forano. 2020. "An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli" Microorganisms 8, no. 6: 877. https://doi.org/10.3390/microorganisms8060877
APA StyleSapountzis, P., Segura, A., Desvaux, M., & Forano, E. (2020). An Overview of the Elusive Passenger in the Gastrointestinal Tract of Cattle: The Shiga Toxin Producing Escherichia coli. Microorganisms, 8(6), 877. https://doi.org/10.3390/microorganisms8060877