Pectobacterium brasiliense: Genomics, Host Range and Disease Management
Abstract
:1. Introduction
2. Genomics: From Advances in Taxonomy to Insights in Biodiversity and Virulence
3. Symptoms, Host Range and Geographical Distribution
4. Isolation, Characterization and Detection of Pbr
4.1. Pbr Isolation
4.2. Characterization by Biochemical Methods
4.3. Characterization and Detection by Molecular Methods
4.4. Other Methods
5. Management and the Control of Pbr
5.1. Preventive Measures
5.2. Chemical Control
5.3. Nanoparticles
5.4. Biocontrol Using Bacteriophages
5.5. Biocontrol Using Bacteria
5.6. Biocontrol Targeting Quorum-Sensing (QS): Chemicals and Biostimulants
6. Further Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: Proposal for enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morgane. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef] [PubMed]
- Beattie, G.A. Plant-associated bacteria: Survey, molecular phylogeny, genomics and recent advances. In Plant-Associated Bacteria; Springer: Dordrecht, The Netherlands, 2006; pp. 1–56. [Google Scholar]
- Bhai, R.S.; Kishore, V.K.; Kumar, A.; Anandaraj, M.; Eapen, S.J. Screening of rhizobacterial isolates against soft rot disease of ginger (Zingiber officinale Rosc.). J. Spices Aromat. Crop. 2005, 14, 130–136. [Google Scholar]
- Van der Wolf, J.; de Haan, E.G.; Kastelein, P.; Krijger, M.; de Haas, B.H.; Velvis, H.; Mendes, O.; Kooman-Gersmann, M.; van der Zouwen, P.S. Virulence of Pectobacterium carotovorum subsp. Brasiliense on potato compared with that of other Pectobacterium and Dickeya species under climatic conditions prevailing in The Netherlands. Plant Pathol. 2017, 66, 571–583. [Google Scholar] [CrossRef]
- Voronina, M.V.; Bugaeva, E.N.; Vasiliev, D.M.; Kabanova, A.P.; Barannik, A.P.; Shneider, M.M.; Kulikov, E.E.; Korzhenkov, A.A.; Toschakov, S.V.; Ignatov, A.N.; et al. Characterization of Pectobacterium carotovorum subsp. carotovorum Bacteriophage PP16 Prospective for Biocontrol of Potato Soft Rot. Microbiology 2019, 88, 451–460. [Google Scholar] [CrossRef]
- Meng, X.; Chai, A.; Shi, Y.; Xie, X.; Ma, Z.; Li, B. Emergence of Bacterial Soft Rot in Cucumber Caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis. 2017, 101, 279–287. [Google Scholar] [CrossRef] [Green Version]
- Van der Merwe, J.J.; Coutinho, T.A.; Korsten, L.; van der Waals, J.E. Pectobacterium carotovorum subsp. brasiliensis causing blackleg on potatoes in South Africa. Eur. J. Plant Pathol. 2010, 126, 175–185. [Google Scholar] [CrossRef] [Green Version]
- Oulghazi, S.; Moumni, M.; Khayi, S.; Robic, K.; Sarfraz, S.; Lopez-Roques, C.; Vandecasteele, C.; Faure, D. Diversity of Pectobacteriaceae Species in Potato Growing Regions in Northern Morocco. Microorganisms 2020, 8, 895. [Google Scholar] [CrossRef]
- Naas, H.; Sebaihia, M.; Orfei, B.; Rezzonico, F.; Buonaurio, R.; Moretti, C. Pectobacterium carotovorum subsp. brasiliense and Pectobacterium carotovorum subsp. carotovorum as causal agents of potato soft rot in Algeria. Eur. J. Plant Pathol. 2018, 151, 1027–1034. [Google Scholar] [CrossRef]
- Onkendi, E.M.; Moleleki, L.N. Characterization of Pectobacterium carotovorum subsp. carotovorum and brasiliense from diseased potatoes in Kenya. Eur. J. Plant Pathol. 2014, 139, 557–566. [Google Scholar] [CrossRef]
- Duarte, V.; De Boer, S.H.; Ward, L.J.; De Oliveira, A.M.R. Characterization of atypical Erwinia carotovora strains causing blackleg of potato in Brazil. J. Appl. Microbiol. 2004, 96, 535–545. [Google Scholar] [CrossRef]
- Leite, L.N.; de Haan, E.G.; Krijger, M.; Kastelein, P.; van der Zouwen, P.S.; van den Bovenkamp, G.W.; Tebaldi, N.D.; van der Wolf, J.M. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliensis in the Netherlands. New Dis. Rep. 2014, 29, 24. [Google Scholar] [CrossRef] [Green Version]
- De Werra, P.; Bussereau, F.; Keiser, A.; Ziegler, D. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliense in Switzerland. Plant Dis. 2015, 99, 551. [Google Scholar] [CrossRef]
- Voronina, M.V.; Kabanova, A.P.; Shneider, M.M.; Korzhenkov, A.A.; Toschakov, S.V.; Miroshnikov, K.K.; Miroshnikov, K.A.; Ignatov, A.N. First report of Pectobacterium carotovorum subsp. brasiliense causing blackleg and stem rot disease of potato in Russia. Plant Dis. 2019, 103, 364. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QV (accessed on 1 November 2020).
- Skelsey, P.; Humphris, S.N.; Campbell, E.J.; Toth, I.K. Threat of establishment of non-indigenous potato blackleg and tuber soft rot pathogens in Great Britain under climate change. PLoS ONE 2018, 13, e0205711. [Google Scholar] [CrossRef]
- Zaczek-Moczydłowska, M.A.; Fleming, C.C.; Young, G.K.; Campbell, K.; O’Hanlon, R. Pectobacterium and Dickeya species detected in vegetables in Northern Ireland. Eur. J. Plant Pathol. 2019, 154, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Dees, M.W.; Lebecka, R.; Perminow, J.I.S.; Czajkowski, R.; Grupa, A.; Motyka, A.; Zoledowska, S.; Śliwka, J.; Lojkowska, E.; Brurberg, M.B. Characterization of Dickeya and Pectobacterium strains obtained from diseased potato plants in different climatic conditions of Norway and Poland. Eur. J. Plant Pathol. 2017, 148, 839–851. [Google Scholar] [CrossRef]
- Lukianova, A.A.; Shneider, M.M.; Evseev, P.V.; Shpirt, A.M.; Bugaeva, E.N.; Kabanova, A.P.; Obraztsova, E.A.; Miroshnikov, K.K.; Senchenkova, S.N.; Shashkov, A.S.; et al. Morphologically Different Pectobacterium brasiliense Bacteriophages PP99 and PP101: Deacetylation of O-Polysaccharide by the Tail Spike Protein of Phage PP99 Accompanies the Infection. Front. Microbiol. 2020, 10, 3147. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Cai, H.; Bai, Y.; Guo, C. Comparative genomics of 151 plant-associated bacteria reveal putative mechanisms underlying specific interactions between bacteria and plant hosts. Genes Genom. 2018, 40, 857–864. [Google Scholar] [CrossRef]
- Xu, J.; Wang, N. Where are we going with genomics in plant pathogenic bacteria? Genomics 2019, 111, 729–736. [Google Scholar] [CrossRef]
- Klosterman, S.J.; Rollins, J.R.; Sudarshana, M.R.; Vinatzer, B.A. Disease management in the genomics era-summaries of focus issue papers. Phytopathology 2016, 106, 1068–1070. [Google Scholar] [CrossRef] [PubMed]
- Glasner, J.D.; Marquez-Villavicencio, M.; Kim, H.-S.; Jahn, C.E.; Ma, B.; Biehl, B.S.; Rissman, A.I.; Mole, B.; Yi, X.; Yang, C.-H.; et al. Niche-Specificity and the Variable Fraction of the Pectobacterium Pan-Genome. Mol. Plant Microbe Interact. 2008, 21, 1549–1560. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, C.; Wang, H.; Guan, T.; Liu, L.; Yu, S. Bioinformatic analysis of the complete genome sequence of Pectobacterium carotovorum subsp. brasiliense BZA12 and candidate effector screening. J. Plant Pathol. 2019, 101, 39–49. [Google Scholar] [CrossRef]
- Toth, I.K.; Pritchard, L.; Birch, P.R.J. Comparative Genomics Reveals What Makes An Enterobacterial Plant Pathogen. Annu. Rev. Phytopathol. 2006, 44, 305–336. [Google Scholar] [CrossRef] [PubMed]
- Bellieny-Rabelo, D.; Tanui, C.K.; Miguel, N.; Kwenda, S.; Shyntum, D.Y.; Moleleki, L.N. Transcriptome and Comparative Genomics Analyses Reveal New Functional Insights on Key Determinants of Pathogenesis and Interbacterial Competition in Pectobacterium and Dickeya spp. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arizala, D.; Arif, M. Genome-wide analyses revealed remarkable heterogeneity in pathogenicity determinants, antimicrobial compounds, and CRISPR-cas systems of complex phytopathogenic genus Pectobacterium. Pathogens 2019, 8, 247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, T.H.; Choi, B.S.; Choi, A.Y.; Choi, I.Y.; Heu, S.; Park, B.S. Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. Genome Announc. 2012, 194, 6345–6346. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, Y.; Liang, S.; Tian, Y.; Yin, S.; Xie, S.; Xie, H. Comparative genomics of 84 Pectobacterium genomes reveals the variations related to a pathogenic lifestyle 06 Biological Sciences 0604 Genetics 06 Biological Sciences 0607 Plant Biology. BMC Genom. 2018, 19, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Yuan, L.; Shi, Y.; Xie, X.; Chai, A.; Wang, Q.; Li, B. Comparative genomic analysis of Pectobacterium carotovorum subsp. brasiliense SX309 provides novel insights into its genetic and phenotypic features. BMC Genom. 2019, 20, 486. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Filiatrault, M.J. Complete Genome Sequence of the Necrotrophic Plant-Pathogenic Bacterium Pectobacterium brasiliense 1692. Microbiol. Resour. Announc. 2020, 9, e00037-20. [Google Scholar] [CrossRef] [Green Version]
- Gardan, L.; Gouy, C.; Christen, R.; Samson, R. Elevation of three subspecies of Pectobacterium carotovorum to species level: Pectobacterium atrosepticum sp. nov., Pectobacterium betavasculorum sp. nov. and Pectobacterium wasabiae sp. nov. Int. J. Syst. Evol. Microbiol. 2003, 53, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Portier, P.; Pédron, J.; Taghouti, G.; Fischer-Le Saux, M.; Caullireau, E.; Bertrand, C.; Laurent, A.; Chawki, K.; Oulgazi, S.; Moumni, M.; et al. Elevation of Pectobacterium carotovorum subsp. odoriferum to species level as pectobacterium odoriferum sp. nov., proposal of Pectobacterium brasiliense sp. nov. and Pectobacterium actinidiae sp. nov., emended description of Pectobacterium carotovorum and description of Pectobacterium versatile sp. nov., isolated from streams and symptoms on diverse plants. Int. J. Syst. Evol. Microbiol. 2019, 69, 3207–3216. [Google Scholar] [CrossRef] [PubMed]
- Dees, M.W.; Lysøe, E.; Rossmann, S.; Perminow, J.; Brurberg, M.B. Pectobacterium polaris sp. nov., isolated from potato (Solanum tuberosum). Int. J. Syst. Evol. Microbiol. 2017, 67, 5222–5229. [Google Scholar] [CrossRef] [PubMed]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Wielgomas, B.; Waleron, K. Transfer of Pectobacterium carotovorum subsp. carotovorum strains isolated from potatoes grown at high altitudes to Pectobacterium peruviense sp. nov. Syst. Appl. Microbiol. 2018, 41, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Waleron, M.; Misztak, A.; Waleron, M.; Jonca, J.; Furmaniak, M.; Waleron, K. Pectobacterium polonicum sp. Nov. isolated from vegetable fields. Int. J. Syst. Evol. Microbiol. 2019, 69, 1751–1759. [Google Scholar] [CrossRef]
- Koh, Y.J.; Kim, G.H.; Lee, Y.S.; Sohn, S.H.; Koh, H.S.; Kwon, S.; Heu, S.; Jung, J.S. Pectobacterium carotovorum subsp. actinidiae subsp. nov., a new bacterial pathogen causing canker-like symptoms in yellow kiwifruit, Actinidia chinensis. N. Z. J. Crop Hortic. Sci. 2012, 40, 269–279. [Google Scholar] [CrossRef] [Green Version]
- Waleron, M.; Misztak, A.; Waleron, M.; Franczuk, M.; Jońca, J.; Wielgomas, B.; Mikiciński, A.; Popović, T.; Waleron, K. Pectobacterium zantedeschiae sp. nov. a new species of a soft rot pathogen isolated from Calla lily (Zantedeschia spp.). Syst. Appl. Microbiol. 2019, 42, 275–283. [Google Scholar] [CrossRef]
- Gallois, A.; Samson, R.; Ageron, E.; Grimont, P.A.D. Erwinia carotovora subsp. odorifera subsp. nov., Associated with Odorous Soft Rot of Chicory (Cichorium intybus L.). Int. J. Syst. Bacteriol. 1992, 42, 582–588. [Google Scholar] [CrossRef]
- Khayi, S.; Cigna, J.; Chong, T.M.; Quêtu-Laurent, A.; Chan, K.G.; Helias, V.; Faure, D. Transfer of the potato plant isolates of Pectobacterium wasabiae to Pectobacterium parmentieri sp. nov. Int. J. Syst. Evol. Microbiol. 2016, 66, 5379–5383. [Google Scholar] [CrossRef]
- Sarfraz, S.; Riaz, K.; Oulghazi, S.; Cigna, J.; Sahi, S.T.; Khan, S.H.; Faure, D. Pectobacterium punjabense sp. nov., isolated from blackleg symptoms of potato plants in Pakistan. Int. J. Syst. Evol. Microbiol. 2018, 68, 3551–3556. [Google Scholar] [CrossRef]
- Oulghazi, S.; Cigna, J.; Lau, Y.Y.; Moumni, M.; Chan, K.G.; Faure, D. Transfer of the waterfall source isolate Pectobacterium carotovorum M022 to Pectobacterium fontis sp. nov., a deep-branching species within the genus Pectobacterium. Int. J. Syst. Evol. Microbiol. 2019, 69, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Pédron, J.; Bertrand, C.; Taghouti, G.; Portier, P.; Barny, M.-A. Pectobacterium aquaticum sp. nov., isolated from waterways. Int. J. Syst. Evol. Microbiol. 2019, 69, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Burkholder, W.R.; McFadden, L.A.; Dimock, E.W. A bacterial blight ol Chrysanthemums. Phytopathology 1953, 43, 522–526. [Google Scholar]
- Goto, M.; Matsumoto, K. Erwinia carotovora subsp. wasabiae subsp. nov. Isolated from Diseased Rhizomes and Fibrous Roots of Japanese Horseradish (Eutrema wasabi Maxim.). Int. J. Syst. Bacteriol. 1987, 37, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Thomson, S.V.; Hildebrand, D.C.; Schroth, M.N. Identification and Nutritional Differentiation of the Erwinia Sugar Beet Pathogen from Members of Erwinia carotovora and Erwinia chrysanthemi. Phytopathology 1981, 71, 1037–1042. [Google Scholar] [CrossRef]
- Nabhan, S.; de Boer, S.H.; Maiss, E.; Wydra, K. Pectobacterium aroidearum sp. nov., a soft rot pathogen with preference for monocotyledonous plants. Int. J. Syst. Evol. Microbiol. 2013, 63, 2520–2525. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Hibbing, M.E.; Kim, H.S.; Reedy, R.M.; Yedidia, I.; Breuer, J.; Breuer, J.; Glasner, J.D.; Perna, N.T.; Kelman, A.; et al. Host range and molecular phylogenies of the soft rot enterobacterial genera Pectobacterium and Dickeya. Phytopathology 2007, 97, 1150–1163. [Google Scholar] [CrossRef] [Green Version]
- Nabhan, S.; Wydra, K.; Linde, M.; Debener, T. The use of two complementary DNA assays, AFLP and MLSA, for epidemic and phylogenetic studies of pectolytic enterobacterial strains with focus on the heterogeneous species Pectobacterium carotovorum. Plant Pathol. 2012, 61, 498–508. [Google Scholar] [CrossRef]
- Jones, L.R. Bacillus carotovorus n. sp., die Ursache einer weichen Fäulnis der Möhre. Zent. Bakteriol. Parasitenkd. Infekt. Hyg. Abt II 1901, 7, 12–21. [Google Scholar]
- Van Hall, C.J.J. Bijdragen tot de Kennis der Bakterieele Plantenziekten. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 1902. [Google Scholar]
- Winslow, C.E.; Broadhurst, J.; Buchanan, R.E.; Krumwiede, C.; Rogers, L.A.; Smith, G.H. The Families and Genera of the Bacteria: Final Report of the Committee of the Society of American Bacteriologists on Characterization and Classification of Bacterial Types. J. Bacteriol. 1920, 5, 191–229. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.; Legendre, J.B.; Christen, R.; Fischer-Le Saux, M.; Achouak, W.; Gardan, L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dick. Int. J. Syst. Evol. Microbiol. 2005, 55, 1415–1427. [Google Scholar] [CrossRef] [PubMed]
- Hauben, L.; Moore, E.R.B.; Vauterin, L.; Steenackers, M.; Mergaert, J.; Verdonck, L.; Swings, J. Phylogenetic position of phytopathogens within the Enterobacteriaceae. Syst. Appl. Microbiol. 1998, 21, 384–397. [Google Scholar] [CrossRef]
- Lechner, M.; Findeiß, S.; Steiner, L.; Marz, M.; Stadler, P.F.; Prohaska, S.J. Proteinortho: Detection of (Co-)orthologs in large-scale analysis. BMC Bioinform. 2011, 12, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Coulthurst, S.J.; Pritchard, L.; Hedley, P.E.; Ravensdale, M.; Humphris, S.; Burr, T.; Takle, G.; Brurberg, M.B.; Birch, P.R.J.; et al. Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog. 2008, 4, e1000093. [Google Scholar] [CrossRef]
- Moleleki, L.N.; Pretorius, R.G.; Tanui, C.K.; Mosina, G.; Theron, J. A quorum sensing-defective mutant of Pectobacterium carotovorum ssp. brasiliense 1692 is attenuated in virulence and unable to occlude xylem tissue of susceptible potato plant stems. Mol. Plant Pathol. 2017, 18, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Kubheka, G.C.; Coutinho, T.A.; Moleleki, N.; Moleleki, L.N. Colonization patterns of an mcherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology 2013, 103, 1268–1279. [Google Scholar] [CrossRef] [Green Version]
- Del Pilar Marquez-Villavicencio, M.; Groves, R.L.; Charkowski, A.O. Soft rot disease severity is affected by potato physiology and Pectobacterium taxa. Plant Dis. 2011, 95, 232–241. [Google Scholar] [CrossRef] [Green Version]
- Shyntum, D.Y.; Nkomo, N.P.; Shingange, N.L.; Gricia, A.R.; Bellieny-Rabelo, D.; Moleleki, L.N. The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Front. Microbiol. 2019, 10, 2379. [Google Scholar] [CrossRef]
- Lee, D.H.; Kim, J.B.; Lim, J.A.; Han, S.W.; Heu, S. Genetic diversity of Pectobacterium carotovorum subsp. brasiliensis isolated in Korea. Plant Pathol. J. 2014, 30, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Cariddi, C.; Bubici, G. First report of bacterial pith soft rot caused by Pectobacterium carotovorum subsp. brasiliense on Artichoke in Italy. J. Plant Pathol. 2016, 98, 563–568. [Google Scholar] [CrossRef]
- Gokul, G.G.; Louis, V.; Namitha, P.M.; Mathew, D.; Girija, D.; Shylaja, M.R.; Abida, P.S. Variability of Pectobacterium carotovorum causing rhizome rot in banana. Biocatal. Agric. Biotechnol. 2019, 17, 60–81. [Google Scholar] [CrossRef]
- Zlatković, N.; Prokić, A.; Gašić, K.; Kuzmanović, N.; Ivanović, M.; Obradović, A. First Report of Pectobacterium carotovorum subsp. brasiliense Causing Soft Rot on Squash and Watermelon in Serbia. Plant Dis. 2019, 103, 2667. [Google Scholar] [CrossRef]
- Arizala, D.; Dobhal, S.; Paudel, S.; Boluk, G.; Silva, J.; Ahmad, A.A.; Uyeda, J.; Sugano, J.; Alvarez, A.M.; Arif, M. First Report of Pectobacterium brasiliense Causing Bacterial Soft Rot and Blackleg Diseases of Potato in Hawaii. Plant Dis. 2020, 104, 2515. [Google Scholar] [CrossRef] [Green Version]
- De Boer, S.H.; Li, X.; Ward, L.J. Pectobacterium spp. Associated with Bacterial Stem Rot Syndrome of Potato in Canada. Phytopathology 2012, 102, 937–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNally, R.R.; Curland, R.D.; Webster, B.T.; Robinson, A.P.; Ishimaru, C.A. First report of Pectobacterium carotovorum subsp. brasiliensis causing blackleg and stem rot in commercial and seed potato fields in Minnesota and North Dakota. Plant Dis. 2017, 101, 1672. [Google Scholar] [CrossRef]
- Waleron, M.; Waleron, K.; Lojkowska, E. First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot on potato and other vegetables in Poland. Plant Dis. 2015, 99, 1271. [Google Scholar] [CrossRef]
- Ozturk, M.; Aksoy, H.M. First report of Pectobacterium carotovorum subsp. brasiliense causing blackleg and soft rot of potato in Turkey. J. Plant Pathol. 2016, 98, 692. [Google Scholar] [CrossRef]
- Onkendi, E.M.; Maluleke, L.N.; Moleleki, L.N. First report of Pectobacterium carotovorum subsp. brasiliense causing soft rot and blackleg of potatoes in Kenya. Plant Dis. 2014, 98, 684. [Google Scholar] [CrossRef] [Green Version]
- Ashmawy, N.A.; Jadalla, N.M.; Shoeib, A.A.; El-Bebany, A.F. Identification and Genetic Characterization of Pectobacterium spp. and Related Enterobacteriaceae Causing Potato Soft Rot Diseases in Egypt. J. Pure Appl. Microbiol. 2015, 9, 1847–1858. [Google Scholar]
- Fujimoto, T.; Yasuoka, S.; Aono, Y.; Nakayama, T.; Ohki, T.; Sayama, M.; Maoka, T. First report of potato blackleg caused by Pectobacterium carotovorum subsp. brasiliense in Japan. Plant Dis. 2017, 101, 241. [Google Scholar] [CrossRef]
- Zhao, Y.Q.; Dou, J.; Geng, G.M.; Tian, Y.L.; Fan, J.Q.; Li, X.; Hu, B.S. First report of Pectobacterium carotovorum subsp. brasiliense causing blackleg and stem rot on potato in China. Plant Dis. 2018, 102, 1653. [Google Scholar] [CrossRef]
- Jiang, S.B.; Lin, B.R.; Yang, Q.Y.; Zhang, J.X.; Shen, H.F.; Pu, X.M.; Sun, D.Y. First Report of Bacterial Soft Rot of Potato Caused by Pectobacterium carotovorum subsp. brasiliense in Guangdong Province, China. Plant Dis. 2019, 103, 2468. [Google Scholar] [CrossRef]
- Kumvinit, A.; Akarapisan, A. Characterization of blackleg and soft rot from potato in northern Thailand. J. Phytopathol. 2019, 167, 655–666. [Google Scholar] [CrossRef]
- Panda, P.; Fiers, M.A.W.J.; Armstrong, K.; Pitman, A.R. First report of blackleg and soft rot of potato caused by Pectobacterium carotovorum subsp. brasiliensis in New Zealand. New Dis. Rep. 2012, 26, 15. [Google Scholar] [CrossRef] [Green Version]
- Jaramillo, A.; Huertas, C.A.; Gómez, E.D. First report of bacterial stem rot of tomatoes caused by Pectobacterium carotovorum subsp. brasiliense in Colombia. Plant Dis. 2017, 101, 830. [Google Scholar] [CrossRef]
- Rosskopf, E.; Hong, J. First Report of Bacterial Stem Rot of “Heirloom” Tomatoes Caused by Pectobacterium carotovorum subsp. brasiliensis in Florida. Plant Dis. 2016, 100, 1233. [Google Scholar] [CrossRef]
- Caruso, A.; Licciardello, G.; La Rosa, R.; Catara, V.; Bella, P. Mixed infection of Pectobacterium caratovorum subsp. carotovorum and P. carotovorum subsp. brasiliensis in tomato stem rot in Italy. J. Plant Pathol. 2016, 98, 661–665. [Google Scholar] [CrossRef]
- Gillis, A.; Santana, M.A.; Rodríguez, M.; Romay, G. First Report of Bell Pepper Soft-Rot Caused by Pectobacterium carotovorum subsp. brasiliense in Venezuela. Plant Dis. 2017, 101, 1671. [Google Scholar] [CrossRef]
- Choi, O.; Kim, J. Pectobacterium carotovorum subsp. brasiliense Causing Soft Rot on Paprika in Korea. J. Phytopathol. 2013, 161, 125–127. [Google Scholar] [CrossRef]
- She, X.M.; Lan, G.B.; Tang, Y.F.; He, Z.F. Pectobacterium carotovorum subsp. brasiliense causing pepper black spot disease in China. J. Plant Pathol. 2017, 99, 769–772. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.H.; Dai, P.G.; Chen, D.X.; Zhao, T.C.; Li, X.L.; Huang, Q. First report of tobacco bacterial leaf blight caused by Pectobacterium carotovorum subsp. brasiliense in China. Plant Dis. 2017, 101, 830. [Google Scholar] [CrossRef]
- Mejía-Sánchez, D.; Aranda-Ocampo, S.; Nava-Díaz, C.; Teliz-Ortiz, D.; Livera-Muñoz, M.; De La Torre-Almaráz, R.; Ramírez-Alarcón, S. Pectobacterium carotovorum subsp. brasiliense causes soft rot and death of Neobuxbaumia tetetzo in Zapotitlan Salinas Valley, Puebla, Mexico. Plant Dis. 2019, 103, 398–403. [Google Scholar] [CrossRef] [Green Version]
- Jee, S.; Choi, J.-G.; Hong, S.; Lee, Y.-G.; Kwon, M. First Report of Soft Rot by Pectobacterium carotovorum subsp. brasiliense on Amaranth in Korea. Res. Plant Dis. 2018, 24, 339–341. [Google Scholar] [CrossRef]
- IRIIS Phytoprotection. Available online: https://www.iriisphytoprotection.qc.ca/ (accessed on 25 October 2020).
- Portier, P.; Pédron, J.; Taghouti, G.; Dutrieux, C.; Barny, M.A. Updated Taxonomy of Pectobacterium Genus in the CIRM-CFBP Bacterial Collection: When Newly Described Species Reveal “Old” Endemic Population. Microorganisms 2020, 8, 1441. [Google Scholar] [CrossRef] [PubMed]
- Ngadze, E.; Brady, C.L.; Coutinho, T.A.; van der Waals, J.E. Pectinolytic bacteria associated with potato soft rot and blackleg in South Africa and Zimbabwe. Eur. J. Plant Pathol. 2012, 134, 533–549. [Google Scholar] [CrossRef] [Green Version]
- Onkendi, E.M.; Ramesh, A.M.; Kwenda, S.; Naidoo, S.; Moleleki, L. Draft genome sequence of a virulent Pectobacterium carotovorum subsp. brasiliense isolate causing soft rot of cucumber. Genome Announc. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottsberger, R.A.; Huss, H. Pectobacterium carotovorum subsp. brasiliensis causing a soft rot on Styrian oil pumpkin in Austria. New Dis. Rep. 2016, 33, 12. [Google Scholar] [CrossRef] [Green Version]
- Moraes, A.J.G.; Souza, E.B.; Mariano, R.L.R.; Silva, A.M.F.; Lima, N.B.; Peixoto, A.R.; Gama, M.A.S. First report of Pectobacterium aroidearum and Pectobacterium carotovorum subsp. brasiliensis causing soft rot of cucurbita pepo in Brazil. Plant Dis. 2017, 101, 379. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, M.; Yang, L.; Luo, W.; Che, S.; Su, J.; Zhao, B.; Lu, Y.; Hu, B.; Fan, J. First Report of Pectobacterium carotovorum subsp. brasiliense Causing Soft Rot on Raphanus sativus in China. Plant Dis. 2019, 103, 1409. [Google Scholar] [CrossRef]
- Secor, G.A.; Rivera-Varas, V.V.; Brueggeman, R.S.; Metzger, M.S.; Rengifo, J.; Richards, J.K. First Report of Field Decay of Sugar Beet Caused by Pectobacterium carotovorum subsp. brasiliense in North America. Plant Dis. 2016, 100, 2160. [Google Scholar] [CrossRef]
- Tsror, L.; Lebiush, S.; Erlich, O.; Galilov, I.; Chalupowicz, L.; Reuven, M.; Dror, O.; Manulis-Sasson, S. First report of latent infection of Malva nicaeensis caused by Pectobacterium carotovorum subsp. brasiliense in Israel. New Dis. Rep. 2019, 39, 4. [Google Scholar] [CrossRef] [Green Version]
- Arizala, D.; Dobhal, S.; Paudel, S.; Gunarathne, S.; Boluk, G.; Arif, M. First Report of Bacterial Soft Rot and Blackleg on Potato Caused by Pectobacterium parmentieri in Hawaii. Plant Dis. 2020, 104, 970. [Google Scholar] [CrossRef]
- Boluk, G.; Arizala, E.D.; Ocenar, J.; Mokwele, J.; Silva, J.; Dobhal, S.; Uyeda, J.; Alvarez, A.M.; Arif, M. First Report of Pectobacterium brasiliense Causing Soft Rot on Brassica oleracea var. sabellica L. in Hawaii, United States. Plant Dis. 2020, 104, 2721. [Google Scholar] [CrossRef]
- Laurila, J.; Ahola, V.; Lehtinen, A.; Joutsjoki, T.; Hannukkala, A.; Rahkonen, A.; Pirhonen, M. Characterization of Dickeya strains isolated from potato and river water samples in Finland. Eur. J. Plant Pathol. 2008, 122, 213–225. [Google Scholar] [CrossRef]
- Tsror, L.; Erlich, O.; Lebiush, S.; Hazanovsky, M.; Zig, U.; Slawiak, M.; Grabe, G.; Van Der Wolf, J.M.; Van De Haar, J.J. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur. J. Plant Pathol. 2009, 123, 311–320. [Google Scholar] [CrossRef]
- Hélias, V.; Hamon, P.; Huchet, E.; Wolf, J.V.D.; Andrivon, D. Two new effective semiselective crystal violet pectate media for isolation of Pectobacterium and Dickeya. Plant Pathol. 2012, 61, 339–345. [Google Scholar] [CrossRef]
- Cuppels, D.; Kelman, A. Evaluation of Selective Media for Isolation of Soft-Rot Bacteria from Soil and Plant Tissue. Phytopathology 1974, 64, 468. [Google Scholar] [CrossRef]
- Nabhan, S.; De Boer, S.H.; Maiss, E.; Wydra, K. Taxonomic relatedness between Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum and Pectobacterium carotovorum subsp. brasiliense subsp. nov. J. Appl. Microbiol. 2012, 113, 904–913. [Google Scholar] [CrossRef]
- Muzhinji, N.; Dube, J.P.; de Haan, E.G.; Woodhall, J.W.; van der Waals, J.E. Development of a TaqMan PCR assay for specific detection and quantification of Pectobacterium brasiliense in potato tubers and soil. Eur. J. Plant Pathol. 2020, 158, 521–532. [Google Scholar] [CrossRef]
- Pérombelon, M.C.M. Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathol. 2002, 51, 1–12. [Google Scholar] [CrossRef]
- Hyman, L.J.; Sullivan, L.; Toth, I.K.; Perombelon, M.C.M. Modified crystal violet pectate medium (CVP) based on a new polypectate source (Slendid) for the detection and isolation of soft rot erwinias. Potato Res. 2001, 44, 265–270. [Google Scholar] [CrossRef]
- Perombelon, M.C.M.; Van Der Wolf, J.M. Methods for the Detection and Quantification of Erwinia carotovora Subsp. Atropsetica on Potatoes: A Laboratory Manual; Scottish Crop Research Institute: Invergowrie, UK, 2002; pp. 9–71. [Google Scholar] [CrossRef]
- Bdliya, B.S.; Langerfeld, E.; Rudolph, K. A modified crystal violet pectate (CVP) medium for detection and isolation of soft rot Erwinia spp. from plant materials. J. Plant Dis. Prot. 2004, 111, 506–5015. [Google Scholar]
- Perombelon, M.C.M.; Burnett, E.M. Two modified crystal violet pectate (CVP) media for the detection, isolation and enumeration of soft rot erwinias. Potato Res. 1991, 34, 79–85. [Google Scholar] [CrossRef]
- Darrasse, A.; Priou, S.; Kotoujansky, A.; Bertheau, Y. PCR and restriction fragment length polymorphism of a pel gene as a tool to identify Erwinia carotovora in relation to potato diseases. Appl. Environ. Microbiol. 1994, 60, 1437–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigna, J.; Dewaegeneire, P.; Beury, A.; Gobert, V.; Faure, D. A gapA PCR-sequencing Assay for Identifying the Dickeya and Pectobacterium Potato Pathogens. Plant Dis. 2017, 101, 1278–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarfraz, S.; Sahi, S.T.; Oulghazi, S.; Riaz, K.; Rajput, N.A.; Atiq, M.; Tufail, M.R.; Hameed, A.; Faure, D. Species diversity of Dickeya and Pectobacterium causing blackleg disease in potato fields in Pakistan. Plant Dis. 2020, 104, 1492–1499. [Google Scholar] [CrossRef]
- Tameh, M.H.; Primiceri, E.; Chiriacò, M.S.; Poltronieri, P.; Bahar, M.; Maruccio, G. Pectobacterium atrosepticum biosensor for monitoring blackleg and soft rot disease of potato. Biosensors 2020, 10, 64. [Google Scholar] [CrossRef]
- Yasuhara-Bell, J.; Marrero, G.; De Silva, A.; Alvarez, A.M. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification. Mol. Plant Pathol. 2016, 17, 1499–1505. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.; Liu, H.; Huang, J.; Peng, J.; Fei, F.; Zhang, Y.; Hsiang, T.; Zheng, L. A loop-mediated isothermal amplification assay for rapid detection of Pectobacterium aroidearum that causes soft rot in Konjac. Int. J. Mol. Sci. 2019, 20, 1937. [Google Scholar] [CrossRef] [Green Version]
- Yasuhara-Bell, J.; Marrero, G.; Arif, M.; De Silva, A.; Alvarez, A.M. Development of a loop-mediated isothermal amplification assay for the detection of Dickeya spp. Phytopathology 2017, 107, 1339–1345. [Google Scholar] [CrossRef]
- Ocenar, J.; Arizala, D.; Boluk, G.; Dhakal, U.; Gunarathne, S.; Paudel, S.; Dobhal, S.; Arif, M. Development of a robust, field-deployable loop-mediated isothermal amplification (LAMP) assay for specific detection of potato pathogen Dickeya dianthicola targeting a unique genomic region. PLoS ONE 2019, 14, e0218868. [Google Scholar] [CrossRef] [Green Version]
- Safenkova, I.V.; Zaitsev, I.A.; Varitsev, Y.A.; Byzova, N.A.; Drenova, N.V.; Zherdev, A.V.; Dzantiev, B.B. Development of a lateral flow immunoassay for rapid diagnosis of potato blackleg caused by Dickeya species. Anal. Bioanal. Chem. 2017, 409, 1915–1927. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.A.; Larrea-Sarmiento, A.; Alvarez, A.M.; Arif, M. Genome-informed diagnostics for specific and rapid detection of Pectobacterium species using recombinase polymerase amplification coupled with a lateral flow device. Sci. Rep. 2018, 8, 15972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Aqil, G.; Tsror, L.; Shufan, E.; Adawi, S.; Mordechai, S.; Huleihel, M.; Salman, A. Differentiation of Pectobacterium and Dickeya spp. phytopathogens using infrared spectroscopy and machine learning analysis. J. Biophotonics 2020, 13, e201960156. [Google Scholar] [CrossRef]
- Charkowski, A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018, 56, 269–288. [Google Scholar] [CrossRef]
- Dzimitrowicz, A.; Motyka, A.; Jamroz, P.; Lojkowska, E.; Babinska, W.; Terefinko, D.; Pohl, P.; Sledz, W. Application of silver nanostructures synthesized by cold atmospheric pressure plasma for inactivation of bacterial phytopathogens from the genera Dickeya and Pectobacterium. Materials 2018, 9, 331. [Google Scholar] [CrossRef] [Green Version]
- CABI. Pectobacterium brasiliense (Soft Rot and Blackleg of Ornamentals and Potato). Available online: https://www.cabi.org/isc/datasheet/119196#toPictures (accessed on 2 September 2020).
- Joshi, J.R.; Burdman, S.; Lipsky, A.; Yariv, S.; Yedidia, I. Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Mol. Plant Pathol. 2016, 17, 487–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, J.R.; Khazanov, N.; Senderowitz, H.; Burdman, S.; Lipsky, A.; Yedidia, I. Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Sci. Rep. 2016, 6, 38126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, J.A.; Lee, D.H.; Heu, S. Isolation and genomic characterization of the T4-Like Bacteriophage PM2 Infecting Pectobacterium carotovorum subsp. carotovorum. Plant Pathol. J. 2015, 31, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.A.; Heu, S.; Park, J.; Roh, E. Genomic characterization of bacteriophage vB_PcaP_PP2 infecting Pectobacterium carotovorum subsp. carotovorum, a new member of a proposed genus in the subfamily Autographivirinae. Arch. Virol. 2017, 162, 2441–2444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPPO. Pectobacterium brasiliense (PECBCB)[Categorization]|EPPO Global Database. Available online: https://gd.eppo.int/taxon/PECBCB/categorization (accessed on 22 August 2020).
- EU Council Directive 2002/55/EC of 13 June 2002 on the Marketing of Vegetable Seed. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32002L0055 (accessed on 22 August 2020).
- AHDB Blackleg and Bacterial Soft Rot|AHDB. Available online: https://ahdb.org.uk/knowledge-library/blackleg-and-bacterial-soft-rot (accessed on 22 August 2020).
- Hossain, A.; Hong, X.; Ibrahim, E.; Li, B.; Sun, G.; Meng, Y.; Wang, Y.; An, Q. Green synthesis of silver nanoparticles with culture supernatant of a bacterium Pseudomonas rhodesiae and their antibacterial activity against soft rot pathogen Dickeya dadantii. Molecules 2019, 24, 2303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayisigi, M.; Cokislerel, A.; Kucukcobanoglu, Y.; Yalcin, T.; Aktas, L.Y. Green synthesized silver nanoparticles for an effective control on soft rodisease pathogen Pectobacterium carotovorum and growth stimulation in pepper. Bulg. J. Agric. Sci. 2020, 26, 574–584. [Google Scholar]
- Spagnoletti, F.N.; Spedalieri, C.; Kronberg, F.; Giacometti, R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manag. 2019, 231, 457–466. [Google Scholar] [CrossRef]
- Youdkes, D.; Helman, Y.; Burdman, S.; Matan, O.; Jurkevitch, E. Potential control of potato soft rot disease by the obligate predators bdellovibrio and like organisms. Appl. Environ. Microbiol. 2020, 86. [Google Scholar] [CrossRef] [PubMed]
- Czajkowski, R.; Ozymko, Z.; De Jager, V.; Siwinska, J.; Smolarska, A.; Ossowicki, A.; Narajczyk, M.; Lojkowska, E. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages PdblPD10.3 and PdblPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE 2015, 10, e0119812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowski, R.; Smolarska, A.; Ozymko, Z. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants. PLoS ONE 2017, 12, e0183200. [Google Scholar] [CrossRef] [Green Version]
- Carstens, A.B.; Djurhuus, A.M.; Kot, W.; Hansen, L.H. A novel six-phage cocktail reduces Pectobacterium atrosepticum soft rot infection in potato tubers under simulated storage conditions. FEMS Microbiol. Lett. 2019, 366, 101. [Google Scholar] [CrossRef]
- Muturi, P.; Yu, J.; Maina, A.N.; Kariuki, S.; Mwaura, F.B.; Wei, H. Bacteriophages Isolated in China for the Control of Pectobacterium carotovorum Causing Potato Soft Rot in Kenya. Virol. Sin. 2019, 34, 287–294. [Google Scholar] [CrossRef]
- Zaczek-Moczydłowska, M.A.; Young, G.K.; Trudgett, J.; Plahe, C.; Fleming, C.C.; Campbell, K.; O’Hanlon, R. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. Under in vitro and in vivo conditions. PLoS ONE 2020, 15, e0230842. [Google Scholar] [CrossRef] [Green Version]
- Zaczek-Moczydłowska, M.A.; Young, G.K.; Trudgett, J.; Fleming, C.C.; Campbell, K.; O’Hanlon, R. Genomic characterization, formulation and efficacy in planta of a siphoviridae and podoviridae protection cocktail against the bacterial plant pathogens Pectobacterium spp. Viruses 2020, 12, 150. [Google Scholar] [CrossRef] [Green Version]
- Adriaenssens, E.M.; van Vaerenbergh, J.; Vandenheuvel, D.; Dunon, V.; Ceyssens, P.J.; de Proft, M.; Kropinski, A.M.; Noben, J.P.; Maes, M.; Lavigne, R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by “Dickeya solani”. PLoS ONE 2012, 7, e33227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APS Biocontrol Ltd APS Biocontrol. Available online: https://www.apsbiocontrol.com/ (accessed on 8 September 2020).
- EU. Regulation (EU) 2016/2031 of the European Parliament of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32016R2031 (accessed on 22 August 2020).
- EU. Commission Implementing Regulation EU 2019/2072. Available online: https://eur-lex.europa.eu/eli/reg_impl/2019/2072/oj (accessed on 22 August 2020).
- EU. Council Directive 2002/56/EC of 13 June 2002 on the Marketing of Seed Potatoes. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32002L0056 (accessed on 22 August 2020).
- Pethybridge, G.H.; Murphy, P.A. A Bacterial Disease of the Potato Plant in Ireland and the Organism Causing It. Proc. R. Ir. Acad. B 1912, 29, 1–37. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czajkowski, R.; Pérombelon, M.C.M.; Van Veen, J.A.; Van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Himel, R.M.; Khan, A.A.; Reza, M.E. Effect of chemicals against bacterial soft rot of fruits. J. Biosci. Agric. Res. 2017, 13, 1087–1091. [Google Scholar] [CrossRef] [Green Version]
- Morais, T.P.; Zaini, P.A.; Chakraborty, S.; Gouran, H.; Carvalho, C.P.; Almeida-Souza, H.O.; Souza, J.B.; Santos, P.S.; Goulart, L.R.; Luz, J.M.Q.; et al. The plant-based chimeric antimicrobial protein SlP14a-PPC20 protects tomato against bacterial wilt disease caused by Ralstonia solanacearum. Plant Sci. 2019, 280, 197–205. [Google Scholar] [CrossRef]
- Motyka, A.; Zoledowska, S.; Sledz, W.; Lojkowska, E. Molecular methods as tools to control plant diseases caused by Dickeya and Pectobacterium spp.: A minireview. New Biotechnol. 2017, 39, 181–189. [Google Scholar] [CrossRef]
- Zeitler, B.; Herrera Diaz, A.; Dangel, A.; Thellmann, M.; Meyer, H.; Sattler, M.; Lindermayr, C. De-Novo Design of Antimicrobial Peptides for Plant Protection. PLoS ONE 2013, 8, e71687. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.-J.; Kang, K.-K. Application of Antimicrobial Peptides for Disease Control in Plants. Plant Breed. Biotechnol. 2014, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- FAO. Summary Report of an FAO Meeting of Experts. In Antimicrobial Resistance and Foods of Plant Origin; FAO: Roma, Italy, 2018; Available online: http://www.fao.org/3/BU657en/bu657en.pdf (accessed on 22 August 2020).
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic pollution in the environment: From microbial ecology to public policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [Green Version]
- Charkowski, A.O. Biology and control of Pectobacterium in potato. Am. J. Potato Res. 2015, 92, 223–229. [Google Scholar] [CrossRef]
- Maciag, T.; Krzyzanowska, D.M.; Jafra, S.; Siwinska, J.; Czajkowski, R. The Great Five—an artificial bacterial consortium with antagonistic activity towards Pectobacterium spp. and Dickeya spp.: Formulation, shelf life, and the ability to prevent soft rot of potato in storage. Appl. Microbiol. Biotechnol. 2020, 104, 4547–4561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani-Delfan, A.; Etemadifar, Z.; Emtiazi, G.; Bouzari, M. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Braz. J. Microbiol. 2015, 46, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Marei, E.; El-Afifi, S.I.; Elsharouny, T.; Hammad, A.M.M. Biological control of Pectobacterium carotovorum via specific lytic bacteriophage. J. Basic Appl. Sci. Res. 2017, 7, 1–9. [Google Scholar]
- Buttimer, C.; Hendrix, H.; Lucid, A.; Neve, H.; Noben, J.P.; Franz, C.; O’Mahony, J.; Lavigne, R.; Coffey, A. Novel N4-like bacteriophages of Pectobacterium atrosepticum. Pharmaceuticals 2018, 11, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Des Essarts, Y.R.; Cigna, J.; Quêtu-Laurent, A.; Caron, A.; Munier, E.; Beury-Cirou, A.; Hélias, V.; Faure, D. Biocontrol of the potato blackleg and soft rot diseases caused by Dickeya dianthicola. Appl. Environ. Microbiol. 2016, 82, 268–278. [Google Scholar] [CrossRef] [Green Version]
- Sharga, B.M.; Lyon, G.D. Bacillus subtilis BS 107 as an antagonist of potato blackleg and soft rot bacteria. Can. J. Microbiol. 1998, 44, 777–783. [Google Scholar] [CrossRef]
- Cui, W.; He, P.; Munir, S.; He, P.; He, Y.; Li, X.; Yang, L.; Wang, B.; Wu, Y.; He, P. Biocontrol of soft rot of Chinese cabbage using an endophytic bacterial strain. Front. Microbiol. 2019, 10, 1471. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.S.; Kamalnath, M.; Umamaheswari, R.; Rajinikanth, R.; Prabu, P.; Priti, K.; Grace, G.N.; Chaya, M.K.; Gopalakrishnan, C. Bacillus subtilis IIHR BS-2 enriched vermicompost controls root knot nematode and soft rot disease complex in carrot. Sci. Hortic. 2017, 218, 56–62. [Google Scholar] [CrossRef]
- Cladera-Olivera, F.; Caron, G.R.; Brandelli, A. Bacteriocin-like substance production by Bacillus licheniformis strain P40. Lett. Appl. Microbiol. 2004, 38, 251–256. [Google Scholar] [CrossRef]
- Zhaolin, J.; Huiwen, H.; Huijuan, Z.; Feng, H.; Yunhui, T.; Zhengwen, Y.; Jingyou, X. The Biocontrol Effects of the Bacillus licheniformis W10 Strain and Its Antifungal Protein Against Brown Rot in Peach. Hortic. Plant J. 2015, 1, 131–138. [Google Scholar] [CrossRef]
- Lapidot, D.; Dror, R.; Vered, E.; Mishli, O.; Levy, D.; Helman, Y. Disease protection and growth promotion of potatoes (Solanum tuberosum L.) by Paenibacillus dendritiformis. Plant Pathol. 2015, 64, 545–551. [Google Scholar] [CrossRef]
- Trias, R.; Bañeras, L.; Montesinos, E.; Badosa, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 2008, 11, 231–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, K.; Tsuji, G.; Higashiyama, M.; Ogiyama, H.; Umemura, K.; Mitomi, M.; Kubo, Y.; Kosaka, Y. Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biol. Control 2016, 100, 63–69. [Google Scholar] [CrossRef]
- Barnard, A.M.L.; Salmond, G.P.C. Quorum sensing in Erwinia species. Anal. Bioanal. Chem. 2007, 387, 415–423. [Google Scholar] [CrossRef]
- Charkowski, A.O. Decaying signals: Will understanding bacterial-plant communications lead to control of soft rot? Curr. Opin. Biotechnol. 2009, 20, 178–184. [Google Scholar] [CrossRef]
- Rodríguez, M.; Torres, M.; Blanco, L.; Béjar, V.; Sampedro, I.; Llamas, I. Plant growth-promoting activity and quorum quenching-mediated biocontrol of bacterial phytopathogens by Pseudomonas segetis strain P6. Sci. Rep. 2020, 10, 4121. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Ye, T.; Li, Q.; Bhatt, P.; Zhang, L.; Chen, S. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum. Front. Microbiol. 2020, 11, 898. [Google Scholar] [CrossRef]
- Alinejad, F.; Shahryari, F.; Eini, O.; Sarafraz-Niko, F.; Shekari, A.; Setareh, M. Screening of quorum-quenching bacteria associated with rhizosphere as biocontrol agents of Pectobacterium carotovorum subsp. carotovorum. Arch. Phytopathol. Plant Prot. 2020, 53, 509–523. [Google Scholar] [CrossRef]
- Barbey, C.; Crépin, A.; Cirou, A.; Budin-Verneuil, A.; Orange, N.; Feuilloley, M.; Faure, D.; Dessaux, Y.; Burini, J.F.; Latour, X. Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J. Proteome Res. 2012, 11, 206–216. [Google Scholar] [CrossRef]
- Cirou, A.; Mondy, S.; An, S.; Charrier, A.; Sarrazin, A.; Thoison, O.; Du Bow, M.; Faure, D. Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl. Environ. Microbiol. 2012, 78, 481–492. [Google Scholar] [CrossRef] [Green Version]
- Barbey, C.; Crépin, A.; Bergeau, D.; Ouchiha, A.; Mijouin, L.; Taupin, L.; Orange, N.; Feuilloley, M.; Dufour, A.; Burini, J.F.; et al. In Planta Biocontrol of Pectobacterium atrosepticum by Rhodococcus erythropolis Involves Silencing of Pathogen Communication by the Rhodococcal Gamma-Lactone Catabolic Pathway. PLoS ONE 2013, 8, e66642. [Google Scholar] [CrossRef]
Clade | Family | Host (Plant Species) | Region/Country | General Disease | Symptoms | References |
---|---|---|---|---|---|---|
Dicotyledons | Solanaceae | Potato (Solanum tuberosum) | Brazil, Kenya, Japon, Canada, South Africa, Switzerland, Poland, New Zealand, South Korea, Netherlands, Algeria, Turkey, Russia, China, Egypt, USA, Hawaii, Thailand, Morocco, Zimbabwe, Syria, France | Soft rot and blackleg | The infected plants were stunted with yellowish foliage, water-soaked regions with watery ooze, darkened and necrotic basal stem symptoms extending upward. | [7,8,9,11,12,13,14,62,66,67,68,69,70,71,72,73,74,75,76,77,88,89] |
Tomato (Solanum lycopersicu ) | South Korea, Colombia, USA, Italy | Stem rot | Soft and aqueous lesions, dark brown discoloration of the basal part of stem petioles, water-soaked pith tissue and internal necrotic. | [62,78,79,80] | ||
Pepper (Capsicum annuum) | Venezuela, South Korea, China | Soft rot and black spot | Watery lesions at the basal part of the stem, water-soaked and necrotic tissue, defoliation and fruit decay. | [81,82,83] | ||
Eggplant (Solanum melongena) | South Korea | Soft rot | Water-soaked lesions, soft rot symptoms on fruits, discoloration of vascular tissues, stem hollowness, and dark green lesions that turned brown with age. | [62] | ||
Tobacco (Nicotiana tabacum) | China | Bacterial leaf blight | Necrosis along the main or lateral veins, drying and rotting of the leaves. | [84] | ||
Cucurbitaceae | Cucumber (Cucumis sativus) | China, South Africa | Soft rot | The gummosis emerged on the surface of leaves, stems, petioles, and fruit. The basal stem color was dark brown and the stem base turned to wet rot. Yellow spots and wet rot emerged at the edge of the infected leaves and gradually infected the leaf centers. | [6,90] | |
Zucchini (Cucurbita pepo) | Poland, Brazil, Serbia, Austria, Italy | Soft rot | Round water-soaked lesions. The affected tissues were light brown, slightly sunken, soft, and macerated. | [65,69,88,91,92] | ||
Watermelon (Citrullus lanatus) | Serbia | Soft rot | Soft rot brownish lesions of stems, collapse and wilting of entire vines. | [65] | ||
Brassicaceae | Cabbage (Brassica oleracea var. capitata) | Poland | Soft rot | Symptoms were characterized by gray to pale brown discoloration and expanding water-soaked lesions on leaves. | [69] | |
Chinese cabbage (Brassica rapa ssp. pekinensis and chinensis) | South Korea | Soft rot | Water-soaked lesions, affected tissue turns brown and becomes soft and mushy. Leaves, stems, and roots may decay entirely. | [62] | ||
Raphanus (Raphanus sativus) | China | Root rot | The infected plants were stunted with yellowish foliage and blackened center leaves and the infected roots exhibited a completely decayed pith region. | [93] | ||
Asteraceae | Chrysanths (Chrysanthemum) | South Korea, France, USA | Soft rot | * | [62,88] | |
Artichoke (Cynara cardunculus var. scolymus) | Italy | Soft rot | Chlorosis and wilting of the older leaves accompanied by dark-green to dark-brown soft rotting of the pith. | [63] | ||
Amaranthaceae | Sugar beet (Beta vulgaris) | Poland, USA | Soft rot | Soft decay of internal root tissues, reddening of affected tissue after cutting, blackening of petiole vascular bundles, half-leaf yellowing, and frothing. | [69,94] | |
Chenopodiaceae | Amaranth (Amaranthus) | South Korea | Soft rot | Wilting, defoliation and odd smell. | [86] | |
Cactaceae | Tetecho (Neobuxbaumia tetetzo) | Mexico | Soft rot | Soft rot that damages the whole plant and causes its fall and disintegration. | [85] | |
Nepenthaceae | Nepenthes (Nepenthes) | South Korea | Soft rot | * | [62] | |
Malvaceae | Bull Mallow (Malva nicaeensis) | Israel | ** | ** | [95] | |
Gossypium sp. | USA | * | * | [88] | ||
Primulaceae | Cyclamen sp. | France | * | * | [88] | |
Caricaceae | Carica papaya | France (Overseas territory, La Réunion) | * | * | [88] | |
Monocotyledon | Musaceae | Banana (Musa sp.) | India, France (Overseas territory, Martinique) | Rhizome rot | Massive soft rot accompanied by disagreeable foul-smelling rot of the rhizome and internal decay of the pseudostem as the infection spread upward. | [64,88] |
Non-Host Environment | Water | Spain | * | * | [34,88] | |
Rhizosphere of Solanum dulcamara | France | * | * | [88] |
Classification | Method | Applications | Primers/Probes | Features | Target Species | References |
---|---|---|---|---|---|---|
Artificial media | CVP, modified CVP (single or double layer), enrichment using PEB, other formulations | Isolation pure cultures of bacteria | Pectinase | Degradation of polypectate or other reaction | Pectobacterium and Dickeya spp. | [100,101,104,105,106,107,108] |
PCR methods | Conventional | Identification to genus level | Y1 & Y2 | pel gene | Pectobacterium spp. including Pbr | [109] |
Identification to species level | BR1f/L1r | 16S–23S rRNA | Pbr | [11] | ||
Real-time (qPCR) | Identification and quantification | Pb1F/Pb2R; Probe name PbPr | (16S-23S ITS) and tRNA-Glu gene AraC sequences | Pbr | [4,103] | |
PbrFW/PbrRv; Probe name Pbrb | ||||||
DNA Sequencing methods | Single gene sequencing | Identification of species | gapA326F/gapA845R | gapA gene | Pectobacterium and Dickeya spp. | [110] |
mdh86F/mdh628R | mdh gene | Pectobacterium spp. | [9] | |||
Pec.dnaA-F1/Pec.dnaA-R1 | dnaA gene | Pectobacterium spp. | [66] | |||
Whole genome sequencing (MLSA, ANI, isDDH, phylogenomics) | Identification of species | Not applicable | Not applicable | The study of phylogenetic relationships of species within a genus | [8] |
Control/Management Method | Agent | Target Species | Application | Information | References |
---|---|---|---|---|---|
Preventive Measures | Not applicable | SRP including Pbr | In the course of potato production and storage | Seed potato tubers are tested for the presence of SRP causing blackleg under seed certification scheme. Good hygiene practice when planting, harvesting and storing potato tubers prevent the spread of SRP and soft rot disease development. | [127,128,129] |
Nanoparticles | AgNPs | SRP including Pbr | In vitro | AgNPs tested in laboratory conditions showed high antiseptic properties against SRP. | [121,130,131,132] |
Biocontrol | Bdellovibrio spp. | Pbr | Potato slice bioassay | In bioassay experiment on potato slices Bdellovibrio spp. were tested with high efficacy against Pbr. | [133] |
Salicylic acid (SA) and cinnamic acid (CA) | Pbr | Bioassays on potato and Calla lily | In laboratory and bioassays experiments SA and CA interfered with QS and significantly suppressed Pbr growth. | [123] | |
Carvacrol and eugenol | Pbr | Potato, cabbage and C. lily bioassays | Two tested compounds have interfered with QS gene expression and caused on biofilm formation and secreting PCWDEs leading to effective suppression of infection caused by Pbr. | [124] | |
Bacteriophages PP99 and PP101 | Pbr | Host range screening | Two isolated phages PP99 and PP101 were tested as highly specific against Pbr which potentially could be used for biocontrol application. | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oulghazi, S.; Sarfraz, S.; Zaczek-Moczydłowska, M.A.; Khayi, S.; Ed-Dra, A.; Lekbach, Y.; Campbell, K.; Novungayo Moleleki, L.; O’Hanlon, R.; Faure, D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms 2021, 9, 106. https://doi.org/10.3390/microorganisms9010106
Oulghazi S, Sarfraz S, Zaczek-Moczydłowska MA, Khayi S, Ed-Dra A, Lekbach Y, Campbell K, Novungayo Moleleki L, O’Hanlon R, Faure D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms. 2021; 9(1):106. https://doi.org/10.3390/microorganisms9010106
Chicago/Turabian StyleOulghazi, Said, Sohaib Sarfraz, Maja A. Zaczek-Moczydłowska, Slimane Khayi, Abdelaziz Ed-Dra, Yassir Lekbach, Katrina Campbell, Lucy Novungayo Moleleki, Richard O’Hanlon, and Denis Faure. 2021. "Pectobacterium brasiliense: Genomics, Host Range and Disease Management" Microorganisms 9, no. 1: 106. https://doi.org/10.3390/microorganisms9010106
APA StyleOulghazi, S., Sarfraz, S., Zaczek-Moczydłowska, M. A., Khayi, S., Ed-Dra, A., Lekbach, Y., Campbell, K., Novungayo Moleleki, L., O’Hanlon, R., & Faure, D. (2021). Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms, 9(1), 106. https://doi.org/10.3390/microorganisms9010106