Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen?
Abstract
:1. Introduction
2. Importance of Cross-Contamination
3. Biofilms
3.1. Initial Attachment and Development
3.2. Extracellular Component Matrix (ECM)
3.3. Mechanisms of Resistance
4. Listeria monocytogenes
4.1. Generalities and Characteristics
4.2. Recent Food-Related Crises
4.3. L. monocytogenes and Its Affinity for Materials
5. Control Strategies Implemented in the Food Industry
5.1. Cleaning
5.2. Disinfection
5.3. Complementary Alternative Strategies
5.4. L. monocytogenes in the Food Industry: Its Control
5.4.1. Dairy Industry
5.4.2. Meat Processing Industry
5.4.3. Fish Processing Industry
5.4.4. Chilled Vegetable Industry
5.4.5. Ready-to-Eat (RTE) Products Industry
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food Safety|WHO. Available online: https://www.who.int/news-room/fact-sheets/detail/food-safety (accessed on 23 November 2020).
- Espinosa, L.; Varela, C.; Martínez, E.V.; Cano, R. Brotes de enfermedades transmitidas por alimentos. España, 2008-2011 (excluye brotes hídricos). Boletín Epidemiológico Semanal 2014, 22, 130–136. [Google Scholar]
- World Health Organization. WHO Estimates of the Global Burden of Foodborne Diseases Short; Tech. Rep.; World Health Organization: Geneva, Switzerland, 2015; pp. 1–255. [Google Scholar] [CrossRef]
- Hoelzer, K.; Moreno Switt, A.I.; Wiedmann, M.; Boor, K.J. Emerging needs and opportunities in foodborne disease detection and prevention: From tools to people. Food Microbiol. 2018, 75, 65–71. [Google Scholar] [CrossRef] [PubMed]
- González-Rivas, F.; Ripolles-Avila, C.; Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Biofilms in the spotlight: Detection, quantification, and removal methods. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1261–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ripolles-Avila, C.; Hascoët, A.S.; Martínez-Suárez, J.V.; Capita, R.; Rodríguez-Jerez, J.J. Evaluation of the microbiological contamination of food processing environments through implementing surface sensors in an iberian pork processing plant: An approach towards the control of Listeria monocytogenes. Food Control 2019, 99, 40–47. [Google Scholar] [CrossRef]
- EFSA-ECDC. The European Union One Health 2018 Zoonoses Report. EFSA J. 2019, 17, 1–276. [Google Scholar] [CrossRef] [Green Version]
- Dewey-Mattia, D.; Manikonda, K.; Wise, M.E.; Crowe, S.J. Surveillance for foodborne disease outbreaks—United States, 2009–2015. MMWR Surveill. Summ. 2018, 67, 1–11. [Google Scholar] [CrossRef]
- Silva, D.A.L.; Botelho, C.V.; Martins, B.T.F.; Tavares, R.M.; Camargo, A.C.; Yamatogi, R.S.; Bersot, L.S.; Nero, L.A. Listeria monocytogenes from farm to fork in a Brazilian pork production chain. J. Food Prot. 2020, 83, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Nowak, J.; Cruz, C.D.; Tempelaars, M.; Abee, T.; van Vliet, A.H.M.; Fletcher, G.C.; Hedderley, D.; Palmer, J.; Flint, S. Persistent Listeria monocytogenes strains isolated from mussel production facilities form more biofilm but are not linked to specific genetic markers. Int. J. Food Microbiol. 2017, 256, 45–53. [Google Scholar] [CrossRef]
- Pažin, V.; Jankuloski, D.; Kozačinski, L.; Dobranić, V.; Njari, B.; Cvrtila, Ž.; Lorenzo, J.M.; Zdolec, N. Tracing of Listeria monocytogenes contamination routes in fermented sausage production chain by pulsed-field gel electrophoresis typing. Foods 2018, 7, 198. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Campos, D.; Rodríguez-Melcón, C.; Alonso-Calleja, C.; Capita, R. Persistent Listeria monocytogenes isolates from a poultry-processing facility form more biofilm but do not have a greater resistance to disinfectants than sporadic strains. Pathogens 2019, 8, 250. [Google Scholar] [CrossRef] [Green Version]
- Jahid, I.K.; Ha, S. A review of microbial biofilms of produce: Future challenge to food safety. Food Sci. Biotechnol. 2012, 21, 299–316. [Google Scholar] [CrossRef]
- Ripolles-Avila, C.; Ríos-Castillo, A.G.; Rodríguez-Jerez, J.J. Development of a peroxide biodetector for a direct detection of biofilms produced by catalase-positive bacteria on food-contact surfaces. CYTA J. Food 2018, 16, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Suárez, J.V.; Ortiz, S.; López-Alonso, V. Potential impact of the resistance to quaternary ammonium disinfectants on the persistence of Listeria monocytogenes in food processing environments. Front. Microbiol. 2016, 7, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Five Keys to Safer Food Manual Safer Food Manual; WHO: Geneva, Switzerland, 2006; Volume 6, pp. 154–196. ISBN 9241594632. [Google Scholar]
- Londero, A.; Costa, M.; Galli, L.; Brusa, V.; Linares, L.; Prieto, M.; Leotta, G. Characterization and subtyping of Listeria monocytogenes strains from butcher shops. LWT Food Sci. Technol. 2019, 113, 1–6. [Google Scholar] [CrossRef]
- Pérez-Rodríguez, F.; Valero, A.; Carrasco, E.; García, R.M.; Zurera, G. Understanding and modelling bacterial transfer to foods: A review. Food Sci. Technol. 2008, 19, 131–144. [Google Scholar] [CrossRef]
- Finn, S.; Condell, O.; McClure, P.; Amézquita, A.; Fanning, S. Mechanisms of survival, responses, and sources of Salmonella in low-moisture environments. Front. Microbiol. 2013, 4, 1–15. [Google Scholar] [CrossRef] [Green Version]
- EFSA-ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. EFSA J. 2012, 17, 1–442. [Google Scholar] [CrossRef]
- Doijad, S.P.; Barbuddhe, S.B.; Garg, S.; Poharkar, K.V.; Kalorey, D.R.; Kurkure, N.V.; Rawool, D.B.; Chakraborty, T. Biofilm-forming abilities of Listeria monocytogenes serotypes isolated from different sources. PLoS ONE 2015, 10, e0137046. [Google Scholar] [CrossRef] [Green Version]
- Melo, J.; Andrew, P.W.; Faleiro, M.L. Listeria monocytogenes in cheese and the dairy environment remains a food safety challenge: The role of stress responses. Food Res. Int. 2015, 67, 75–90. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S. Listeria monocytogenes: Biofilm formation and persistence in food-processing environments. Biofilms 2004, 1, 107–121. [Google Scholar] [CrossRef]
- Magalhães, R.; Ferreira, V.; Brandão, T.R.S.; Palencia, R.C.; Almeida, G.; Teixeira, P. Persistent and non-persistent strains of Listeria monocytogenes: A focus on growth kinetics under different temperature, salt, and pH conditions and their sensitivity to sanitizers. Food Microbiol. 2016, 57, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Gaulin, C.; Ramsay, D.; Bekal, S. Widespread listeriosis outbreak attributable to pasteurized cheese, which led to extensive cross-contamination affecting cheese retailers, Quebec, Canada, 2008. J. Food Prot. 2012, 75, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Pagadala, S.; Parveen, S.; Rippen, T.; Luchansky, J.B.; Call, J.E.; Tamplin, M.L.; Porto-Fett, A.C.S. Prevalence, characterization and sources of Listeria monocytogenes in blue crab (Callinectus sapidus) meat and blue crab processing plants. Food Microbiol. 2012, 31, 263–270. [Google Scholar] [CrossRef] [PubMed]
- McCollum, J.T.; Cronquist, A.B.; Silk, B.J.; Jackson, K.A.; O’Connor, K.A.; Cosgrove, S.; Gossack, J.P.; Parachini, S.S.; Jain, N.S.; Ettestad, P.; et al. Multistate outbreak of listeriosis associated with cantaloupe. N. Engl. J. Med. 2013, 369, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Multistate Outbreak of Listeriosis Linked to Blue Bell Creameries Products (Final Update)|CDC. Available online: https://www.cdc.gov/listeria/outbreaks/ice-cream-03-15/index.html (accessed on 24 November 2020).
- Spanu, C.; Scarano, C.; Ibba, M.; Spanu, V.; De Santis, E.P.L. Occurrence and traceability of Listeria monocytogenes strains isolated from sheep’s milk cheese-making plants environment. Food Control 2015, 47, 318–325. [Google Scholar] [CrossRef]
- Acciari, V.A.; Iannetti, L.; Gattuso, A.; Sonnessa, M.; Scavia, G.; Montagna, C.; Addante, N.; Torresi, M.; Zocchi, L.; Scattolini, S.; et al. Tracing sources of Listeria contamination in traditional Italian cheese associated with a US outbreak: Investigations in Italy. Epidemiol. Infect. 2016, 144, 2719–2727. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Z.; Wang, H.; Wang, P.; Lan, R.; Deng, J.; Miao, Y.; Wang, Y.; Wang, Y.; Xu, J.; et al. A 12-month longitudinal study of Listeria monocytogenes contamination and persistence in pork retail markets in China. Food Control 2017, 76, 66–73. [Google Scholar] [CrossRef]
- Li, H.; Wang, P.; Lan, R.; Luo, L.; Cao, X.; Wang, Y.; Wang, Y.; Li, H.; Zhang, L.; Ji, S.; et al. Risk factors and level of Listeria monocytogenes contamination of raw pork in retail markets in China. Front. Microbiol. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Listeriosis-Spain|WHO. Available online: http://www.who.int/csr/don/16-september-2019-listeriosis-spain/en/ (accessed on 9 December 2020).
- Lüth, S.; Halbedel, S.; Rosner, B.; Wilking, H.; Holzer, A.; Roedel, A.; Dieckmann, R.; Vincze, S.; Prager, R.; Flieger, A.; et al. Backtracking and forward checking of human listeriosis clusters identified a multiclonal outbreak linked to Listeria monocytogenes in meat products of a single producer. Emerg. Microbes Infect. 2020, 9, 1600–1608. [Google Scholar] [CrossRef]
- Carrasco, E.; Morales-Rueda, A.; García-Gimeno, R.M. Cross-contamination and recontamination by Salmonella in foods: A review. Food Res. Int. 2012, 45, 545–556. [Google Scholar] [CrossRef]
- Ríos-Castillo, A.G.; Ripolles-Avila, C.; Rodriguez Jerez, J.J. Detection of Salmonella Typhimurium and Listeria monocytogenes biofilm cells exposed to different drying and pre-enrichment times using conventional and rapid methods. Int. J. Food Microbiol. 2020, 324, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ríos-Castillo, A.G.; Ripolles-avila, C.; Rodríguez-Jerez, J.J. The Effects of dry, humid and wear conditions on the antimicrobial efficiency of triclosan-containing surfaces. Appl. Sci. 2019, 9, 1717. [Google Scholar] [CrossRef] [Green Version]
- Fuster-Valls, N.; Hernández-Herrero, M.; Marín-de-Mateo, M.; Rodríguez-Jerez, J. Effect of different environmental conditions on the bacteria survival on stainless steel surfaces. Food Control 2008, 19, 308–314. [Google Scholar] [CrossRef]
- Lee, B.H.; Cole, S.; Badel-Berchoux, S.; Guillier, L.; Felix, B.; Krezdorn, N.; Hébraud, M.; Bernardi, T.; Sultan, I.; Piveteau, P. Biofilm formation of Listeria monocytogenes strains under food processing environments and pan-genome-wide association study. Front. Microbiol. 2019, 10, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Ripolles-Avila, C.; Hascoët, A.S.; Guerrero-Navarro, A.E.; Rodríguez-Jerez, J.J. Establishment of incubation conditions to optimize the in vitro formation of mature Listeria monocytogenes biofilms on food-contact surfaces. Food Control 2018, 92, 240–248. [Google Scholar] [CrossRef]
- Møretrø, T.; Langsrud, S.; Heir, E. Bacteria on meat abattoir process surfaces after sanitation: Characterisation of survival properties of Listeria monocytogenes and the commensal bacterial flora. Adv. Microbiol. 2013, 03, 255–264. [Google Scholar] [CrossRef] [Green Version]
- Castro-Rosas, J.; Escartín, E.F. Increased tolerance of Vibrio cholerae O1 to temperature, pH, or drying associated with colonization of shrimp carapaces. Int. J. Food Microbiol. 2005, 102, 195–201. [Google Scholar] [CrossRef]
- Speranza, B.; Monacis, N.; Sinigaglia, M.; Corbo, M.R. Approaches to removal and killing of Salmonella spp. biofilms. J. Food Process. Preserv. 2016, 41, 1–9. [Google Scholar] [CrossRef]
- Yin, W.; Wang, Y.; Liu, L.; He, J. Biofilms: The microbial “protective clothing” in extreme environments. Int. J. Mol. Sci. 2019, 20, 3423. [Google Scholar] [CrossRef] [Green Version]
- Tribedi, P.; Sil, A.K. Cell surface hydrophobicity: A key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2. J. Appl. Microbiol. 2013, 116, 295–303. [Google Scholar] [CrossRef]
- Stoodley, P.; Sauer, K.; Davies, D.G.; Costerton, J.W. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 2002, 56, 187–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, C.G.; Anand, S.K. Significance of microbial biofilms in food industry: A review. Int. J. Food Microbiol. 1998, 42, 9–27. [Google Scholar] [CrossRef]
- Chmielewski, R.A.N.; Frank, J.F. Biofilm formation and control in food processing facilities. Compr. Rev. Food Sci. Food Saf. 2003, 2, 22–32. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial life on surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Neu, T.R.; Wozniak, D.J. The EPS matrix: The house of biofilm cells. Emerg. Infect. Dis. 2007, 189, 7945–7947. [Google Scholar] [CrossRef] [Green Version]
- Bogino, P.C.; Oliva, M.; de las, M.; Sorroche, F.G.; Giordano, W. The role of bacterial biofilms and surface components in plant-bacterial associations. Int. J. Mol. Sci. 2013, 14, 15838–15859. [Google Scholar] [CrossRef] [Green Version]
- Ripolles-avila, C.; Ramos-Rubio, M.; Hascoët, A.S.; Castillo, M.; Rodríguez-Jerez, J.J. New approach for the removal of mature biofilms formed by wild strains of Listeria monocytogenes isolated from food contact surfaces in an Iberian pig processing plant. Int. J. Food Microbiol. 2020, 323, 108595. [Google Scholar] [CrossRef]
- Sauer, K.; Camper, A.K.; Ehrlich, G.D.; Costerton, J.W.; Davies, D.G. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 2002, 184, 1140–1154. [Google Scholar] [CrossRef] [Green Version]
- Percival, S.L.; Knottenbelt, D.C.; Cochrane, C.A. Biofilms and Veterinary Medicine. En Springer Series on Biofilms; Springer International Publishing: Basel, Switzerland, 2011; pp. 1–39. [Google Scholar]
- Todhanakasem, T.; Young, G.M. Loss of flagellum-based motility by Listeria monocytogenes results in formation of hyperbiofilms. J. Bacteriol. 2008, 190, 6030–6034. [Google Scholar] [CrossRef] [Green Version]
- Gründling, A.; Burrack, L.S.; Bouwer, H.G.A.; Higgins, D.E. Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence. Proc. Natl. Acad. Sci. USA 2004, 101, 12318–12323. [Google Scholar] [CrossRef] [Green Version]
- Lemon, K.P.; Higgins, D.E.; Kolter, R. Flagellar motility is critical for Listeria monocytogenes biofilm formation. J. Bacteriol. 2007, 189, 4418–4424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tresse, O.; Lebret, V.; Garmyn, D.; Dussurget, O. The impact of growth history and flagellation on the adhesion of various Listeria monocytogenes strains to polystyrene. Can. J. Microbiol. 2009, 55, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Tresse, O.; Shannon, K.; Pinon, A.; Malle, P.; Vialette, M.; Midelet-Bourdin, G. Variable adhesion of Listeria monocytogenes isolates from food-processing facilities and clinical cases to inert surfaces. J. Food Prot. 2007, 70, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Poimenidou, S.V.; Chrysadakou, M.; Tzakoniati, A.; Bikouli, V.C.; Nychas, G.J.; Skandamis, P.N. Variability of Listeria monocytogenes strains in biofilm formation on stainless steel and polystyrene materials and resistance to peracetic acid and quaternary ammonium compounds. Int. J. Food Microbiol. 2016, 237, 164–171. [Google Scholar] [CrossRef]
- Monk, I.R.; Cook, G.M.; Monk, B.C.; Bremer, P.J. Morphotypic conversion in Listeria monocytogenes biofilm formation: Biological significance of rough colony isolates. Appl. Environ. Microbiol. 2004, 70, 6686–6694. [Google Scholar] [CrossRef] [Green Version]
- Colagiorgi, A.; Di Ciccio, P.; Zanardi, E.; Ghidini, S.; Ianieri, A. A look inside the Listeria monocytogenes biofilms extracellular matrix. Microorganisms 2016, 4, 22. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef]
- Mazaheri, T.; Ripolles-Avila, C.; Hascoët, A.S.; Rodríguez-Jerez, J.J. Effect of an enzymatic treatment on the removal of mature Listeria monocytogenes biofilms: A quantitative and qualitative study. Food Control 2020, 114, 107266. [Google Scholar] [CrossRef]
- Branda, S.S.; Vik, Å.; Friedman, L.; Kolter, R. Biofilms: The matrix revisited. Trends Microbiol. 2005, 13, 20–26. [Google Scholar] [CrossRef]
- Ryder, C.; Byrd, M.; Wozniak, D.J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr. Opin. Microbiol. 2007, 10, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Lasa, I.; Penadés, J.R. Bap: A family of surface proteins involved in biofilm formation. Res. Microbiol. 2006, 157, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Whitchurch, C.B.; Tolker-Nielsen, T.; Ragas, P.C.; Mattick, J.S. Extracellular DNA required for bacterial biofilm formation. Science 2002, 295, 1487. [Google Scholar] [CrossRef] [PubMed]
- Combrouse, T.; Sadovskaya, I.; Faille, C.; Kol, O.; Guérardel, Y.; Midelet-Bourdin, G. Quantification of the extracellular matrix of the Listeria monocytogenes biofilms of different phylogenic lineages with optimization of culture conditions. J. Appl. Microbiol. 2013, 114, 1120–1131. [Google Scholar] [CrossRef] [PubMed]
- Longhi, C.; Scoarughi, G.L.; Poggiali, F.; Cellini, A.; Carpentieri, A.; Seganti, L.; Pucci, P.; Amoresano, A.; Cocconcelli, P.S.; Artini, M.; et al. Protease treatment affects both invasion ability and biofilm formation in Listeria monocytogenes. Microb. Pathog 2008, 45, 45–52. [Google Scholar] [CrossRef]
- Brauge, T.; Sadovskaya, I.; Faille, C.; Benezech, T.; Maes, E.; Guerardel, Y.; Midelet-Bourdin, G. Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix. FEMS Microbiol. Lett. 2016, 363, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Tezel, U.; Pavlostathis, S.G. Quaternary ammonium disinfectants: Microbial adaptation, degradation and ecology. Curr. Opin. Biotechnol. 2015, 33, 296–304. [Google Scholar] [CrossRef]
- Chambless, J.D.; Hunt, S.M.; Stewart, P.S. A three-dimensional computer model of four hypothetical mechanisms protecting biofilms from antimicrobials. Appl. Environ. Microbiol. 2006, 72, 2005–2013. [Google Scholar] [CrossRef] [Green Version]
- Møretrø, T.; Langsrud, S. Residential bacteria on surfaces in the food industry and their implications for food safety and quality. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1022–1041. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, V.; Wiedmann, M.; Teixeira, P.; Stasiewicz, M.J. Listeria monocytogenes persistence in food-associated environments: Epidemiology, strain characteristics, and implications for public health. J. Food Prot. 2014, 77, 150–170. [Google Scholar] [CrossRef]
- Freitag, N.E.; Port, G.C.; Miner, M.D. Listeria monocytogenes—From saprophyte to intracellular pathogen. Nat. Rev. Microbiol. 2009, 7, 623–628. [Google Scholar] [CrossRef]
- Buchanan, R.L.; Gorris, L.G.M.; Hayman, M.M.; Jackson, T.C.; Whiting, R.C. A review of Listeria monocytogenes: An update on outbreaks, virulence, dose-response, ecology, and risk assessments. Food Control 2017, 75, 1–13. [Google Scholar] [CrossRef]
- Wilks, S.A.; Michels, H.T.; Keevil, C.W. Survival of Listeria monocytogenes Scott A on metal surfaces: Implications for cross-contamination. Int. J. Food Microbiol. 2006, 111, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 2006, 55, 645–659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, M.; Chikindas, M.L. Listeria: A foodborne pathogen that knows how to survive. Int. J. Food Microbiol. 2007, 113, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Giaouris, E.; Heir, E.; Desvaux, M.; Hébraud, M.; Møretrø, T.; Langsrud, S.; Doulgeraki, A.; Nychas, G.J.; Kacániová, M.; Czaczyk, K.; et al. Intra-and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front. Microbiol. 2015, 6, 1–26. [Google Scholar] [CrossRef]
- Chenal-Francisque, V.; Lopez, J.; Cantinelli, T.; Caro, V.; Tran, C.; Leclercq, A.; Lecuit, M.; Brisse, S. World wide distribution of major clones of Listeria monocytogenes. Emerg. Infect. Dis. 2011, 17, 1110–1112. [Google Scholar] [CrossRef]
- Orsi, R.H.; Bakker, H.C.; de Wiedmann, M. Listeria monocytogenes lineages: Genomics, evolution, ecology, and phenotypic characteristics. Int. J. Med. Microbiol. 2011, 301, 79–96. [Google Scholar] [CrossRef]
- Dunn, K.A.; Bielawski, J.P.; Ward, T.J.; Urquhart, C.; Gu, H. Reconciling ecological and genomic divergence among lineages of Listeria under an “extended mosaic genome concept”. Mol. Biol. Evol. 2009, 26, 2605–2615. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.; López, V.; Villatoro, D.; López, P.; Dávila, J.C.; Martínez-Suárez, J.V. A 3-year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathog. Dis. 2010, 7, 1177–1184. [Google Scholar] [CrossRef]
- Carpentier, B.; Cerf, O. Review—Persistence of Listeria monocytogenes in food industry equipment and premises. Int. J. Food Microbiol. 2011, 145, 1–8. [Google Scholar] [CrossRef]
- Gómez, D.; Azón, E.; Marco, N.; Carramiñana, J.J.; Rota, C.; Ariño, A.; Yangüela, J. Antimicrobial resistance of Listeria monocytogenes and Listeria innocua from meat products and meat-processing environment. Food Microbiol. 2014, 42, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Schlech, W.F.; Lavigne, P.M.; Bortolussi, R.A.; Allen, A.C.; Haldane, E.V.; Wort, A.J.; Hightower, A.W.; Johnson, S.E.; King, S.H.; Nicholls, E.S.; et al. Epidemic listeriosis—evidence for transmission by food. N. Engl. J. Med. 1983, 308, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Salama, P.J.; Embarek, P.K.B.; Bagaria, J.; Fall, I.S. Learning from Listeria: Safer food for all. Lancet 2018, 391, 2305–2306. [Google Scholar] [CrossRef]
- EFSA-ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018, 16, 1–276. [Google Scholar] [CrossRef]
- Koutsoumanis, K.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; Hilbert, F.; Lindqvist, R.; et al. The public health risk posed by Listeria monocytogenes in frozen fruit and vegetables including herbs, blanched during processing. EFSA J. 2020, 18, 1–102. [Google Scholar] [CrossRef] [Green Version]
- Gelbíčová, T.; Zobaníková, M.; Tomáštíková, Z.; Van Walle, I.; Ruppitsch, W.; Karpíšková, R. An outbreak of listeriosis linked to turkey meat products in the Czech Republic, 2012–2016. Epidemiol. Infect. 2018, 146, 1407–1412. [Google Scholar] [CrossRef] [Green Version]
- Colagiorgi, A.; Bruini, I.; Di Ciccio, P.A.; Zanardi, E.; Ghidini, S.; Ianieri, A. Listeria monocytogenes biofilms in the wonderland of food industry. Pathogens 2017, 6, 41. [Google Scholar] [CrossRef] [Green Version]
- Cloete, T.E. Resistance mechanisms of bacteria to antimicrobial compounds. Int. Biodeterior. Biodegrad. 2003, 51, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Breidt, F., Jr.; Kathariou, S. Resistance of Listeria monocytogenes biofilms to sanitizing agents in a simulated food processing environment. Appl. Environ. Microbiol. 2006, 72, 7711–7717. [Google Scholar] [CrossRef] [Green Version]
- Ripolles-Avila, C.; Cervantes-Huaman, B.H.; Hascoët, A.S.; Yuste, J.; Rodríguez-Jerez, J.J. Quantification of mature Listeria monocytogenes biofilm cells formed by an in vitro model: A comparison of different methods. Int. J. Food Microbiol. 2019, 289, 209–214. [Google Scholar] [CrossRef]
- Chavant, P.; Martinie, B.; Meylheuc, T.; Bellon-Fontaine, M.N.; Hebraud, M. Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 2002, 68, 728–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackman, I.C.; Frank, J.F. Growth of Listeria monocytogenes as a biofilm on various food-processing surfaces. J. Food Prot. 1996, 59, 827–831. [Google Scholar] [CrossRef] [PubMed]
- Borucki, M.K.; Peppin, J.D.; White, D.; Loge, F.; Call, D.R. Variation in biofilm formation among strains of Listeria monocytogenes. Appl. Environ. Microbiol. 2003, 69, 7336–7342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renier, S.; Hébraud, M.; Desvaux, M. Molecular biology of surface colonization by Listeria monocytogenes: An additional facet of an opportunistic Gram-positive foodborne pathogen. Environ. Microbiol. 2011, 13, 835–850. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Barreto, A.S. HACCP: Hazard Analysis and Critical Control Points. In Handbook of Fermented Meat and Poultry, 2nd ed.; Wiley Blackwell: Hoboken, NJ, USA, 2014; pp. 469–485. ISBN 9781118522653. [Google Scholar]
- Holah, J.T.; BRI, C. UK Cleaning and Disinfection Practices in Food Processing; Woodhead Publishing Limited: Cambridge, UK, 2014; Volume 259, ISBN 9780857094292. [Google Scholar]
- Guerrero-Navarro, A.E.; Ríos-Castillo, A.G.; Ripolles-Avila, C.; Hascoët, A.S.; Felipe, X.; Rodriguez Jerez, J.J. Development of a dairy fouling model to assess the efficacy of cleaning procedures using alkaline and enzymatic products. LWT Food Sci. Technol. 2019, 106, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Holah, J.; Childs, D. Cleaning and disinfection validation. In Reference Module in Food Science; Elsevier: Lancashire, UK, 2019; pp. 1–17. ISBN 9780081005965. [Google Scholar]
- Hofmann, J.; Åkesson, S.; Curiel, G.; Wouters, P.; Timperley, A. Hygienic Design Principles; European Hygienic Engineering & Design Group: Frankfurt, Germany, 2018; pp. 1–13. [Google Scholar]
- Holah, J. Cleaning and disinfection objectives. In Reference Module in Food Science; Elsevier: Lancashire, UK, 2018. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Machado, I.; Pereira, M.O.; Vieira, M.J. Control of flow-generated biofilms with surfactants: Evidence of resistance and recovery. Food Bioprod. Process. 2006, 84, 338–345. [Google Scholar] [CrossRef] [Green Version]
- Troller, J.A. Sanitation in Food Processing; Academic Press: San Diego, CA, USA, 1993; ISBN 9780127006550 0127006559. [Google Scholar]
- Fontecha Umaña, F. Estudio de la Eficacia Bactericida y Bacteriostática de Productos Quiímicos Embebidos en Materiales. Ph.D. Thesis, Universitat Autònoma de Barcelona, Department of Animal and Food Science, Barcelona, Spain, 2014. [Google Scholar]
- Gram, L.; Bagge-Ravn, D.; Ng, Y.Y.; Gymoese, P.; Vogel, B.F. Influence of food soiling matrix on cleaning and disinfection efficiency on surface attached Listeria monocytogenes. Food Control 2007, 18, 1165–1171. [Google Scholar] [CrossRef]
- Simões, M.; Simões, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef] [Green Version]
- McEntire, J. Guidance on Environmental Monitoring and Control of Listeria for the Fresh Produce Industry. Available online: https://www.unitedfresh.org/guidance-on-environmental-monitoring-and-control-of-listeria-for-the-fresh-produce-industry-2nd-ed/ (accessed on 12 January 2021).
- Pricope, L.; Nicolau, A.; Wagner, M.; Rychli, K. The effect of sublethal concentrations of benzalkonium chloride on invasiveness and intracellular proliferation of Listeria monocytogenes. Food Control 2013, 31, 230–235. [Google Scholar] [CrossRef]
- Rodríguez-Melcón, C.; Capita, R.; Rodríguez-Jerez, J.J.; Martínez-Suárez, J.V.; Alonso-Calleja, C. Effect of low doses of disinfectants on the biofilm-forming ability of Listeria monocytogenes. Foodborne Pathog. Dis. 2019, 16, 262–268. [Google Scholar] [CrossRef]
- Henriques, A.R.; Gama, L.T.; Fraqueza, M.J. Tracking Listeria monocytogenes contamination and virulence-associated characteristics in the ready-to-eat meat-based food products industry according to the hygiene level. Int. J. Food Microbiol. 2017, 242, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, A.A.; Ballesteros, M.L.P.; Rosario, L.M.D.; Tumlos, R.B.; Ramos, H.J. Elimination of Salmonella enterica on common stainless steel food contact surfaces using UV-C and atmospheric pressure plasma jet. Food Control 2018, 86, 90–100. [Google Scholar] [CrossRef]
- Galié, S.; García-Gutiérrez, C.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Biofilms in the food industry: Health aspects and control methods. Front. Microbiol. 2018, 9, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Guerrero-Navarro, A.E.; Ríos-Castillo, A.G.; Ripolles-Avila, C.; Felipe, X.; Rodríguez-Jerez, J.J. Microscopic analysis and microstructural characterization of the organic and inorganic components of dairy fouling during the cleaning process. J. Dairy Sci. 2020, 103, 2117–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, D.; Rodríguez-Rubio, L.; Martínez, B.; Rodríguez, A.; García, P. Bacteriophages as weapons against bacterial biofilms in the food industry. Front. Microbiol. 2016, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Parasion, S.; Kwiatek, M.; Gryko, R.; Mizak, L.; Malm, A. Bacteriophages as an alternative strategy for fighting biofilm development. Pol. J. Microbiol. 2014, 63, 137–145. [Google Scholar] [CrossRef]
- Blana, V.A.; Lianou, A.; Nychas, G.J.E. Quorum sensing and microbial ecology of foods. In Quantitative Microbiology in Food Processing: Modeling the Microbial Ecology; Wiley Blackwell: Hoboken, NJ, USA, 2016; pp. 600–616. ISBN 9781118823071. [Google Scholar]
- Coughlan, L.M.; Cotter, P.D.; Hill, C.; Alvarez-Ordóñez, A. New weapons to fight old enemies: Novel strategies for the (bio)control of bacterial biofilms in the food industry. Front. Microbiol. 2016, 7, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Novel intervention techniques in the food industry. In Trends in Quorum Sensing and Quorum Quenching; CRC Press: Boca Raton, FL, USA, 2020; pp. 291–305. [Google Scholar]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Antibacterial mechanism of oregano essential oil. Ind. Crops Prod. 2019, 139, 111498. [Google Scholar] [CrossRef]
- Elhidar, N.; Nafis, A.; Kasrati, A.; Goehler, A.; Bohnert, J.A.; Abbad, A.; Hassani, L.; Mezrioui, N.E. Chemical composition, antimicrobial activities and synergistic effects of essential oil from Senecio anteuphorbium, a Moroccan endemic plant. Ind. Crops Prod. 2019, 130, 310–315. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.; Dai, J.; Cui, H.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Hascoët, A.S.; Ripolles-Avila, C.; Guerrero-Navarro, A.E.; Rodríguez-Jerez, J.J. Microbial ecology evaluation of an Iberian pig processing plant through implementing SCH sensors and the influence of the resident microbiota on Listeria monocytogenes. Appl. Sci. 2019, 9, 4611. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, U.T.; Burrows, L.L. DNase I and proteinase K impair Listeria monocytogenes biofilm formation and induce dispersal of pre-existing biofilms. Int. J. Food Microbiol. 2014, 187, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Montañez-Izquierdo, V.Y.; Salas-Vázquez, D.I.; Rodríguez-Jerez, J.J. Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control 2012, 23, 470–477. [Google Scholar] [CrossRef]
- Gao, Z.; Zhong, W.; Chen, K.; Tang, P.; Guo, J. Chemical composition and anti-biofilm activity of essential oil from Citrus medica L. var. sarcodactylis Swingle against Listeria monocytogenes. Ind. Crops Prod. 2020, 144, 1–8. [Google Scholar] [CrossRef]
- McIntyre, L.; Wilcott, L.; Naus, M. Listeriosis outbreaks in British Columbia, Canada, caused by soft ripened cheese contaminated from environmental sources. BioMed Res. Int. 2015, 2015, 18–20. [Google Scholar] [CrossRef]
- Aspri, M.; Field, D.; Cotter, P.D.; Ross, P.; Hill, C.; Papademas, P. Application of bacteriocin-producing Enterococcus faecium isolated from donkey milk, in the bio-control of Listeria monocytogenes in fresh whey cheese. Int. Dairy J. 2017, 73, 1–9. [Google Scholar] [CrossRef]
- Ramaswamy, V.; Cresence, V.M.; Rejitha, J.S.; Lekshmi, M.U.; Dharsana, K.S.; Prasad, S.P.; Vijila, H.M. Listeria—Review of epidemiology and pathogenesis. J. Microbiol. 2007, 40, 4–13. [Google Scholar]
- Mucchetti, G.; Bonvini, B.; Francolino, S.; Neviani, E.; Carminati, D. Effect of washing with a high pressure water spray on removal of Listeria innocua from Gorgonzola cheese rind. Food Control 2008, 19, 521–525. [Google Scholar] [CrossRef]
- Morandi, S.; Brasca, M.; Lodi, R.; Battelli, G. Impiego di ozono per il controllo di Listeria monocytogenes in diverse tipologie di formaggio. Scienza e Tecnica Lattiero-Casearia 2009, 60, 211–215. [Google Scholar]
- Bernini, V.; Dalzini, E.; Lazzi, C.; Bottari, B.; Bisotti, S.; Fontana, M.; Neviani, E. A multi-sampling approach to evaluate an infrared surface treatment for reducing Listeria monocytogenes contamination on whole gorgonzola cheese rinds. Food Control 2015, 55, 75–81. [Google Scholar] [CrossRef]
- Silva, C.C.; Silva, S.P.; Ribeiro, S.C. Application of bacteriocins and protective cultures in dairy food preservation. Front. Microbiol. 2018, 9, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Holah, J.T.; Taylor, J.H.; Dawson, D.J.; Hall, K.E. Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. J. Appl. Microbiol. Symp. Suppl. 2002, 92, 111–120. [Google Scholar] [CrossRef]
- Rodríguez-López, P.; Cabo, M.L. Tolerance development in Listeria monocytogenes-Escherichia coli dual-species biofilms after sublethal exposures to pronase-benzalkonium chloride combined treatments. Food Microbiol. 2017, 67, 58–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fallah, A.A.; Saei-Dehkordi, S.S.; Rahnama, M.; Tahmasby, H.; Mahzounieh, M. Prevalence and antimicrobial resistance patterns of Listeria species isolated from poultry products marketed in Iran. Food Control 2012, 28, 327–332. [Google Scholar] [CrossRef]
- Gohar, S.; Abbas, G.; Sajid, S.; Sarfraz, M.; Ali, S.; Ashraf, M.; Aslam, R.; Yaseen, K. Prevalence and antimicrobial resistance of Listeria monocytogenes isolated from raw milk and dairy products. Matrix Sci. Med. 2017, 1, 10–14. [Google Scholar] [CrossRef]
- Hellström, S. Contamination Routes and Control of Listeria monocytogenes in Food Production. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2011. [Google Scholar]
- Fagerlund, A.; Moretro, T.; Heir, E.; Briandet, R.; Langsrud, S.; Møretrø, T.; Heir, E.; Briandet, R.; Langsruda, S. Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl. Environ. Microbiol. 2017, 83, 1–21. [Google Scholar] [CrossRef] [Green Version]
- EFSA-ECDC. Multi-country outbreak of Listeria monocytogenes sequence type 6 infections linked to ready-to-eatmeat products—25 November 2019. EFSA J. 2019, 16, 1–15. [Google Scholar] [CrossRef]
- Kleter, G.A. Control and Prevention of Contamination and Spoilage in the Traditional Production of Smoked Fish in Ghana; RIKILT-Veiligheid & Gezondheid: Wageningen, The Netherlands, 2004; pp. 1–23. [Google Scholar]
- Shikongo-Nambabi, M.N.N.N.; Shoolongela, A.; Schneider, M. Control of bacterial contamination during marine fish processing. J. Biol. Life Sci. 2011, 3, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tatterson, I.N.; Windsor, M.L. Torry Advisory Note No. 45 (Revised) Cleaning in the Fish Industry. Available online: http://www.fao.org/3/x5922e/x5922e00.htm#Contents (accessed on 15 May 2020).
- Wekell, M.M.; Manger, R.; Colburn, K.; Adams, A.; Hill, W. Microbiological quality of seafoods: Viruses, bacteria and parasites. In Seafoods: Chemistry, Processing Technology and Quality; Springer US: New York, NY, USA, 1994; pp. 196–219. [Google Scholar]
- Holck, A.; Liland, K.H.; Carlehög, M.; Heir, E. Reductions of Listeria monocytogenes on cold-smoked and raw salmon fillets by UV-C and pulsed UV light. Innov. Food Sci. Emerg. Technol. 2018, 50, 1–10. [Google Scholar] [CrossRef]
- Mcleod, A.; Hovde Liland, K.; Haugen, J.E.; Sørheim, O.; Myhrer, K.S.; Holck, A.L. Chicken fillets subjected to UV-C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality. J. Food Saf. 2018, 38, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Brauge, T.; Faille, C.; Leleu, G.; Denis, C.; Hanin, A.; Midelet, G. Treatment with disinfectants may induce an increase in viable but non culturable populations of Listeria monocytogenes in biofilms formed in smoked salmon processing environments. Food Microbiol. 2020, 92, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Duong, N.T.H. The Sanitising Efficiency of Different Disinfectants used in the Fish Industry; University of Fisheries: Karela, India, 2005. [Google Scholar]
- Lasagabaster, A.; Jiménez, E.; Lehnherr, T.; Miranda-Cadena, K.; Lehnherr, H. Bacteriophage biocontrol to fight Listeria outbreaks in seafood. Food Chem. Toxicol. 2020, 145, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Sadekuzzaman, M.; Yang, S.; Mizan, M.F.R.; Kim, H.S.; Ha, S. Effectiveness of a phage cocktail as a biocontrol agent against L. monocytogenes biofilms. Food Control 2017, 78, 256–263. [Google Scholar] [CrossRef]
- De Roever, C. Microbiological safety evaluations and recommendations on fresh produce. Food Control 1998, 9, 321–347. [Google Scholar] [CrossRef]
- Soumet, C.; Ragimbeau, C.; Maris, P. Screening of benzalkonium chloride resistance in Listeria monocytogenes strains isolated during cold smoked fish production. Lett. Appl. Microbiol. 2005, 41, 291–296. [Google Scholar] [CrossRef] [Green Version]
- Popowska, M.; Olszak, M.; Markiewicz, Z. Susceptibility of Listeria monocytogenes strains isolated from dairy products and frozen vegetables to antibiotics inhibiting murein synthesis and to disinfectants. Pol. J. Microbiol. 2006, 55, 279–288. [Google Scholar]
- Contamination Patterns of Listeria monocytogenes in a Frozen-Vegetable Processing Plant. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=fsta2&NEWS=N&AN=2016-04-Jh3428 (accessed on 9 December 2020).
- Quantitative Assessment of Relative Risk to Public Health from Foodborne Listeria monocytogenes among Selected Categories of Ready-to-Eat Foods|FDA. Available online: https://www.fda.gov/food/cfsan-risk-safety-assessments/quantitative-assessment-relative-risk-public-health-foodborne-listeria-monocytogenes-among-selected (accessed on 9 December 2020).
- Pouillot, R.; Hoelzer, K.; Chen, Y.; Dennis, S.B. Listeria monocytogenes dose response revisited—Incorporating adjustments for variability in strain virulence and host susceptibility. Soc. Risk Anal. 2015, 35, 90–108. [Google Scholar] [CrossRef]
- Cossu, F.; Spanu, C.; Deidda, S.; Mura, E.; Casti, D.; Pala, C.; Lamon, S.; Spanu, V.; Ibba, M.; Marrocu, E.; et al. Listeria spp. and Listeria monocytogenes contamination in ready-to-eat sandwiches collected from vending machines. Ital. J. Food Saf. 2016, 5, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Draft Guidance for Industry: Control of Listeria monocytogenes in Ready-to-Eat Foods|FDA. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/draft-guidance-industry-control-listeria-monocytogenes-ready-eat-foods (accessed on 9 December 2020).
- Liewen, M.B.; Marth, E.H. Growth and inhibition of microorganisms in the presence of sorbic acid: A review. J. Food Prot. 1985, 48, 364–375. [Google Scholar] [CrossRef]
- Tassou, C.C.; Samaras, F.J.; Arkoudelos, J.S.; Mallidis, C.G. Survival of acid-adapted or non-adapted Salmonella Enteritidis, Listeria monocytogenes and Escherichia coli O157: H7, in traditional Greek salads. Int. J. Food Sci. Technol. 2009, 279–287. [Google Scholar] [CrossRef]
- Vermeulen, A.; Smigic, N.; Rajkovic, A.; Gysemans, K.; Bernaerts, K.; Geeraerd, A.; Impe, J.V.A.N.; Debevere, J.; Devlieghere, F. Performance of a growth—no growth model for Listeria monocytogenes developed for mayonnaise-based salads: Influence of strain variability, food matrix, inoculation level, and presence of sorbic and benzoic acid. J. Food Prot. 2007, 70, 2118–2126. [Google Scholar] [CrossRef] [PubMed]
- Guidelines for Conducting Listeria monocytogenes Challenge Testing of Foods|FAO. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201301047377 (accessed on 3 May 2020).
- Mitigation of Listeria monocytogenes in Ready-to-Eat Meats Using Lactic Acid Bacteria. Food Safety Magazine. Available online: https://www.foodsafetymagazine.com/magazine-archive1/december-2016january-2017/mitigation-of-ilisteria-monocytogenesi-in-ready-to-eat-meats-using-lactic-acid-bacteria/ (accessed on 8 December 2020).
- Gall, K.; Scott, V.N.; Collette, R.; Jahncke, M.; Hicks, D.; Wiedmann, M. Implementing targeted good manufacturing practices and sanitation procedures to minimize Listeria contamination of smoked seafood products. Food Prot. Trends 2004, 24, 302–315. [Google Scholar]
- Evaluation of Vinegar against Listeria monocytogenes in Ready-to-Eat (RTE) Deli Ham Stored at 4 Degrees. J. Food Prot. 2015, 78 (Suppl. A), 267. Available online: http://ovidsp.ovid.com/ovidweb.cgi?T=JS&PAGE=reference&D=fsta2&NEWS=N&AN=2016-04-Sj1594 (accessed on 12 January 2021).
Implicated Food Product | Type of Industry | Country | Surface x | Reference |
---|---|---|---|---|
Pasteurized milk cheese | Cheese retailers and cheese processing plant | Canada | Knives, cutting boards, counters, cheese plates, packers, refrigerator handles, brine solution | [25] |
Raw and cooked meat of blue crab | Meat processing plants | USA | Floor drain, raw crab cooler, receiving dock, gloves, table | [26] |
Whole whitefish, whole salmon and salmon fillet | Smoked fish processing plant | USA | Floors, drains, cutting table, fork truck bars, carts, coolers, trash can, slicer | [26] |
Cantaloupe | Cantaloupe farm and processing plant | USA | Cooler, truck, downstream equipment | [27] |
Ice cream | Ice cream facilities | USA | Floor, drain | [28] |
Pecorino Romano PDO and ricotta salata cheese made from pasteurized or thermized sheep milk | Sheep’s cheese making plants | Italy | Molds, filters, floors, drains, tables, conveyor belts, shelves, washing machines | [29] |
Ricotta salata made from pasteurized sheep’s milk | Semi-finished cheeses processing plant | Italy | Washing machine’s brush, manhole, knife, cutting machine, table, floor, trolley shelf | [30] |
Raw pork pieces and minced meat samples | Open meat markets | China | Meat mincers, cutting tables and weighing scales. | [31] |
Raw pork | Meat retail market | China | Chopping boards and knives, the inner and outer surfaces of chest freezers, meat mincers, hands of people, floors and walls | [32] |
Chilled roasted pork meat | Minced meat factory | Spain | Oven cart, larding needles | [33] |
Plastic-packaged RTE Meatballs | RTE meat production facility | Germany | Conveyor belts, pulleys, freezers, condensate lines or cable ducts, gullies | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazaheri, T.; Cervantes-Huamán, B.R.H.; Bermúdez-Capdevila, M.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms 2021, 9, 181. https://doi.org/10.3390/microorganisms9010181
Mazaheri T, Cervantes-Huamán BRH, Bermúdez-Capdevila M, Ripolles-Avila C, Rodríguez-Jerez JJ. Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms. 2021; 9(1):181. https://doi.org/10.3390/microorganisms9010181
Chicago/Turabian StyleMazaheri, Tina, Brayan R. H. Cervantes-Huamán, Maria Bermúdez-Capdevila, Carolina Ripolles-Avila, and José Juan Rodríguez-Jerez. 2021. "Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen?" Microorganisms 9, no. 1: 181. https://doi.org/10.3390/microorganisms9010181
APA StyleMazaheri, T., Cervantes-Huamán, B. R. H., Bermúdez-Capdevila, M., Ripolles-Avila, C., & Rodríguez-Jerez, J. J. (2021). Listeria monocytogenes Biofilms in the Food Industry: Is the Current Hygiene Program Sufficient to Combat the Persistence of the Pathogen? Microorganisms, 9(1), 181. https://doi.org/10.3390/microorganisms9010181