Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Seroprevalence of KKV in Humans and Cave-Dwelling Animals
Serologic Tests
2.3. Experimental Infections of Bat Bugs
2.3.1. Attempts to Demonstrate Virus in Cave Cimicids
2.3.2. Attempts to Infect Cimicids
2.4. Assessment of Aerosol Transmission Potential
3. Results
3.1. Antibody Prevalence in Other Vertebrates
3.1.1. Rodents
3.1.2. Dogs
3.1.3. Humans
3.2. Viral Transmission Studies
3.2.1. Transmission Studies with Cimicids
3.2.2. Transmission Studies with Sentinel Mice
4. Discussion
5. Conclusions
- Neutralizing antibodies to KKV were detected in roof rats inhabiting the cave, dogs in the valley and in humans. The prevalence of antibodies in humans was related to the length of exposure to the cave.
- Virus was isolated from pools of recently collected cimicids, but experimental infection of cimicids did not reveal virus multiplication in these arthropods.
- Sentinel mice in arthropod-proof cages tested positive for neutralizing antibodies after exposure to the cave environment.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Characterization of Kaeng Khoi Virus
Appendix A.2. Sensitivity to Sodium Deoxycholate (SDC)
Appendix A.3. Estimation of Size of Kaeng Khoi Virions
Appendix A.4. Pathogenicity and Infectivity
Appendix A.5. Serological Characterization
Appendix A.6. Identification by Thin Section Electron Microscopic Examination
Appendix A.7. Identification by Structural Polypeptide Analysis
Appendix A.8. Virus Isolation Procedures
References
- Neill, W. ArboCat Virus: Kaeng Khoi (KKV). Available online: https://wwwn.cdc.gov/Arbocat/VirusDetails.aspx?ID=219&SID=2 (accessed on 7 July 2021).
- Williams, J.E.; Imlarp, S.; Top, F.H., Jr.; Cavanaugh, D.C.; Russell, P.K. Kaeng Khoi Virus from Naturally Infected Bedbugs (Cimicidae) and Immature Free-Tailed Bats. Bull. World Health Organ. 1976, 53, 365. [Google Scholar]
- Osborne, J.C.; Rupprecht, C.E.; Olson, J.G.; Ksiazek, T.G.; Rollin, P.E.; Niezgoda, M.; Goldsmith, C.S.; An, U.S.; Nichol, S.T. Isolation of Kaeng Khoi Virus from Dead Chaerephon Plicata Bats in Cambodia. J. Gen. Virol. 2003, 84, 2685–2689. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, Y.; Fu, S.; Li, X.; Song, J.; Zhang, H.; Yang, W.; Zhang, Y.; Pan, H.; Liang, G. Isolation of Kaeng Khoi Virus (KKV) from Eucampsipoda Sundaica Bat Flies in China. Virus Res. 2017, 238, 94–100. [Google Scholar] [CrossRef] [PubMed]
- ICTV Virus Taxonomy: 2020 Release. Available online: https://talk.ictvonline.org/taxonomy/ (accessed on 7 July 2021).
- Abudurexiti, A.; Adkins, S.; Alioto, D.; Alkhovsky, S.V.; Avšič-Županc, T.; Ballinger, M.J.; Bente, D.A.; Beer, M.; Bergeron, É.; Blair, C.D.; et al. Taxonomy of the Order Bunyavirales: Update 2019. Arch. Virol. 2019, 164, 1949–1965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horne, K.M.; Vanlandingham, D.L. Bunyavirus-Vector Interactions. Viruses 2014, 6, 4373–4397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bird, B.H.; Ksiazek, T.G.; Nichol, S.T.; MacLachlan, N.J. Rift Valley Fever Virus. J. Am. Vet. Med Assoc. 2009, 234, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Elata, A.T.; Karsany, M.S.; Elageb, R.M.; Hussain, M.A.; Eltom, K.H.; Elbashir, M.I.; Aradaib, I.E. A Nosocomial Transmission of Crimean-Congo Hemorrhagic Fever to an Attending Physician in North Kordufan, Sudan. Virol. J. 2011, 8, 303. [Google Scholar] [CrossRef] [Green Version]
- Reed, C.; Lin, K.; Wilhelmsen, C.; Friedrich, B.; Nalca, A.; Keeney, A.; Donnelly, G.; Shamblin, J.; Hensley, L.E.; Olinger, G.; et al. Aerosol Exposure to Rift Valley Fever Virus Causes Earlier and More Severe Neuropathology in the Murine Model, Which Has Important Implications for Therapeutic Development. PLoS Negl. Trop. Dis. 2013, 7, e2156. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, F.P.; Travassos da Rosa, A.P. Mojui dos Campos. In International Catalogue of Arboviruses Including Certain Other Virus of Vertebrates, 3rd ed.; American Society of Tropical Medicine and Hygiene: San Antonio, TX, USA, 1985; pp. 695–696. [Google Scholar]
- Groseth, A.; Mampilli, V.; Weisend, C.; Dahlstrom, E.; Porcella, S.F.; Russell, B.J.; Tesh, R.B.; Ebihara, H. Molecular Characterization of Human Pathogenic Bunyaviruses of the Nyando and Bwamba/Pongola Virus Groups Leads to the Genetic Identification of Mojuí Dos Campos and Kaeng Khoi Virus. PLoS Negl. Trop. Dis. 2014, 8, e3147. [Google Scholar] [CrossRef]
- Kapuscinski, M.L.; Bergren, N.A.; Russell, B.J.; Lee, J.S.; Borland, E.M.; Hartman, D.A.; King, D.C.; Hughes, H.R.; Burkhalter, K.L.; Kading, R.C.; et al. Genomic Characterization of 99 Viruses from the Bunyavirus Families Nairoviridae, Peribunyaviridae, and Phenuiviridae, Including 35 Previously Unsequenced Viruses. PLoS Pathog. 2021, 17, e1009315. [Google Scholar] [CrossRef]
- Digoutte, J.P.; Gagnard, V.J.; Bres, P.; Pajot, F.X. Nyando virus infection in man. Bull. Soc. Pathol. Exot. Filiales 1972, 65, 751–758. [Google Scholar]
- Williams, M.C.; Woodall, J.P.; Corbet, P.S. Nyando Virus: A Hitherto Undescribed Virus Isolated from Anopheles Funestus Giles Collected in Kenya. Arch. Gesamte Virusforsch 1965, 15, 422–427. [Google Scholar] [CrossRef]
- Fagre, A.C.; Kading, R.C. Can Bats Serve as Reservoirs for Arboviruses? Viruses 2019, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- Bennett, A.J.; Paskey, A.C.; Kuhn, J.H.; Bishop-Lilly, K.A.; Goldberg, T.L. Diversity, Transmission, and Cophylogeny of Ledanteviruses (Rhabdoviridae: Ledantevirus) and Nycteribiid Bat Flies Parasitizing Angolan Soft-Furred Fruit Bats in Bundibugyo District, Uganda. Microorganisms 2020, 8, 750. [Google Scholar] [CrossRef]
- Ramírez-Martínez, M.M.; Bennett, A.J.; Dunn, C.D.; Yuill, T.M.; Goldberg, T.L. Bat Flies of the Family Streblidae (Diptera: Hippoboscoidea) Host Relatives of Medically and Agriculturally Important “Bat-Associated” Viruses. Viruses 2021, 13, 860. [Google Scholar] [CrossRef]
- Sándor, A.D.; Péter, Á.; Corduneanu, A.; Barti, L.; Csősz, I.; Kalmár, Z.; Hornok, S.; Kontschán, J.; Mihalca, A.D. Wide Distribution and Diversity of Malaria-Related Haemosporidian Parasites (Polychromophilus spp.) in Bats and Their Ectoparasites in Eastern Europe. Microorganisms 2021, 9, 230. [Google Scholar] [CrossRef] [PubMed]
- Szentiványi, T.; Markotter, W.; Dietrich, M.; Clément, L.; Ançay, L.; Brun, L.; Genzoni, E.; Kearney, T.; Seamark, E.; Estók, P.; et al. Host Conservation through Their Parasites: Molecular Surveillance of Vector-Borne Microorganisms in Bats Using Ectoparasitic Bat Flies. Parasite 2020, 27, 72. [Google Scholar] [CrossRef] [PubMed]
- Kamani, J.; Baneth, G.; Mitchell, M.; Mumcuoglu, K.Y.; Gutiérrez, R.; Harrus, S. Bartonella Species in Bats (Chiroptera) and Bat Flies (Nycteribiidae) from Nigeria, West Africa. Vector Borne Zoonotic Dis. 2014, 14, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornok, S.; Kovács, R.; Meli, M.L.; Gönczi, E.; Hofmann-Lehmann, R.; Kontschán, J.; Gyuranecz, M.; Dán, Á.; Molnár, V. First Detection of Bartonellae in a Broad Range of Bat Ectoparasites. Vet. Microbiol. 2012, 159, 541–543. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.A.; Duron, O.; Cordonin, C.; Gomard, Y.; Ramasindrazana, B.; Mavingui, P.; Goodman, S.M.; Tortosa, P. The Bacteriome of Bat Flies (Nycteribiidae) from the Malagasy Region: A Community Shaped by Host Ecology, Bacterial Transmission Mode, and Host-Vector Specificity. Appl. Environ. Microbiol. 2016, 82, 1778–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuh, A.J.; Amman, B.R.; Patel, K.; Sealy, T.K.; Swanepoel, R.; Towner, J.S. Human-Pathogenic Kasokero Virus in Field-Collected Ticks. Emerg. Infect Dis. 2020, 26, 2944–2950. [Google Scholar] [CrossRef]
- Gargili, A.; Estrada-Peña, A.; Spengler, J.R.; Lukashev, A.; Nuttall, P.A.; Bente, D.A. The Role of Ticks in the Maintenance and Transmission of Crimean-Congo Hemorrhagic Fever Virus: A Review of Published Field and Laboratory Studies. Antiviral Res. 2017, 144, 93–119. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, P.; Blanc, V.; Del Giudice, P.; Levy-Bencheton, A.; Chosidow, O.; Marty, P.; Brouqui, P. Bedbugs and Infectious Diseases. Clin. Infect Dis. 2011, 52, 200–210. [Google Scholar] [CrossRef] [PubMed]
- El Hamzaoui, B.; Laroche, M.; Bechah, Y.; Bérenger, J.M.; Parola, P. Testing the Competence of Cimex Lectularius Bed Bugs for the Transmission of Borrelia Recurrentis, the Agent of Relapsing Fever. Am. J. Trop. Med. Hyg. 2019, 100, 1407–1412. [Google Scholar] [CrossRef]
- Leulmi, H.; Bitam, I.; Berenger, J.M.; Lepidi, H.; Rolain, J.M.; Almeras, L.; Raoult, D.; Parola, P. Competence of Cimex Lectularius Bed Bugs for the Transmission of Bartonella Quintana, the Agent of Trench Fever. PLoS Negl. Trop. Dis. 2015, 9, e0003789. [Google Scholar] [CrossRef]
- Jupp, P.G.; McElligott, S.E.; Lecatsas, G. The Mechanical Transmission of Hepatitis B Virus by the Common Bedbug (Cimex lectularius L.) in South Africa. S. Afr. Med. J. 1983, 63, 77–81. [Google Scholar] [PubMed]
- Jupp, P.G.; McElligott, S.E. Transmission Experiments with Hepatitis B Surface Antigen and the Common Bedbug (Cimex lectularius L). S. Afr. Med. J. 1979, 56, 54–57. [Google Scholar]
- Brown, C.R.; Moore, A.T.; O’Brien, V.A.; Padhi, A.; Knutie, S.A.; Young, G.R.; Komar, N. Natural Infection of Vertebrate Hosts by Different Lineages of Buggy Creek Virus (Family Togaviridae, Genus Alphavirus). Arch. Virol. 2010, 155, 745–749. [Google Scholar] [CrossRef] [Green Version]
- Brault, A.C.; Armijos, M.V.; Wheeler, S.; Wright, S.; Fang, Y.; Langevin, S.; Reisen, W.K. Stone Lakes Virus (Family Togaviridae, Genus Alphavirus), a Variant of Fort Morgan Virus Isolated From Swallow Bugs (Hemiptera: Cimicidae) West of the Continental Divide. J. Med. Entomol. 2009, 46, 1203–1209. [Google Scholar] [CrossRef] [Green Version]
- Campbell, P.A.; Caldwell, J.; Kind, P. Inhibition of Plaque-Forming Cells by Diethylaminoethyl Dextran. J. Bacteriol. 1967, 94, 791. [Google Scholar] [CrossRef] [Green Version]
- Clarke, D.H.; Casals, J. Techniques for Hemagglutination and Hemagglutination-Inhibition with Arthropod-Borne Viruses. Am. J. Trop. Med. Hyg. 1958, 7, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Ueshima, N. New Species and Records of Cimicidae with Keys (Hemiptera). Pan-Pac. Entomol. 1968, 44, 264–279. [Google Scholar]
- Xu, Z.; Yang, W.; Feng, Y.; Li, Y.; Fu, S.; Li, X.; Song, J.; Zhang, H.; Zhang, Y.; Liu, W.J.; et al. Isolation and Identification of a Highly Divergent Kaeng Khoi Virus from Bat Flies (Eucampsipoda sundaica) in China. Vector Borne Zoonotic Dis. 2019, 19, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Jansen van Vuren, P.; Wiley, M.R.; Palacios, G.; Storm, N.; Markotter, W.; Birkhead, M.; Kemp, A.; Paweska, J.T. Isolation of a Novel Orthobunyavirus from Bat Flies (Eucampsipoda africana). J. Gen. Virol. 2017, 98, 935–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould, E. Studies of Maternal-Infant Communication and Development of Vocalizations in the Bats Myotis and Eptesicus. Commun. Behav. Biol. 1971, 5, 263–313. [Google Scholar]
- Moss, C.F. Ontogeny of Vocal Signals in the Big Brown Bat, Eptesicus Fuscus. In Animal Sonar: Processes and Performance; NATO ASI Science; Nachtigall, P.E., Moore, P.W.B., Eds.; Springer: Boston, MA, USA, 1988; pp. 115–120. ISBN 978-1-4684-7493-0. [Google Scholar]
- Yan, J.; Grantham, M.; Pantelic, J.; Bueno de Mesquita, P.J.; Albert, B.; Liu, F.; Ehrman, S.; Milton, D.K. Infectious Virus in Exhaled Breath of Symptomatic Seasonal Influenza Cases from a College Community. Proc. Natl. Acad. Sci. USA 2018, 115, 1081–1086. [Google Scholar] [CrossRef] [Green Version]
- Fennelly, K.P.; Jones-López, E.C.; Ayakaka, I.; Kim, S.; Menyha, H.; Kirenga, B.; Muchwa, C.; Joloba, M.; Dryden-Peterson, S.; Reilly, N.; et al. Variability of Infectious Aerosols Produced during Coughing by Patients with Pulmonary Tuberculosis. Am. J. Respir. Crit. Care Med. 2012, 186, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Stadnytskyi, V.; Bax, C.E.; Bax, A.; Anfinrud, P. The Airborne Lifetime of Small Speech Droplets and Their Potential Importance in SARS-CoV-2 Transmission. PNAS 2020, 117, 11875–11877. [Google Scholar] [CrossRef] [PubMed]
- Wanger, T.C.; Darras, K.; Bumrungsri, S.; Tscharntke, T.; Klein, A.-M. Bat Pest Control Contributes to Food Security in Thailand. Biol. Conserv. 2014, 171, 220–223. [Google Scholar] [CrossRef]
- Furey, N.M.; Racey, P.A.; Ith, S.; Touch, V.; Cappelle, J. Reproductive Ecology of Wrinkle-Lipped Free-Tailed Bats Chaerephon Plicatus (Buchannan, 1800) in Relation to Guano Production in Cambodia. Diversity 2018, 10, 91. [Google Scholar] [CrossRef] [Green Version]
- Calisher, C.H.; Shope, R.E. Bunyaviridae: The Bunyaviruses. In Laboratory Diagnosis of Infectious Diseases Principles and Practice: Volume II Viral, Rickettsial, and Chlamydial Diseases; Lennette, E.H., Halonen, P., Murphy, F.A., Balows, A., Hausler, W.J., Eds.; Springer: New York, NY, USA, 1988; pp. 626–646. ISBN 978-1-4612-3900-0. [Google Scholar]
- Bangham, J.A.; Lea, E.J. The Interaction of Detergents with Bilayer Lipid Membranes. Biochim. Biophys. Acta 1978, 511, 388–396. [Google Scholar] [CrossRef]
- Murphy, F.A.; Harrison, A.K.; Whitfield, S.G. Bunyaviridae: Morphologic and Morphogenetic Similarities of Bunyamwera Serologic Supergroup Viruses and Several Other Arthropod-Borne Viruses. Intervirology 1973, 1, 297–316. [Google Scholar] [CrossRef] [PubMed]
Number of Positive Sera | ||||||||
---|---|---|---|---|---|---|---|---|
Antibody Titers | ||||||||
Area | Sample Total | Number (%) Positive | 10 | 10 * | 20 | 40 | 80 | 160 |
Tham Thava (GM) | 18 | 12 (67) | 3 | 1 | 1 | 3 | 2 | 2 |
Wat Kao Chong Phram (GM) | 23 | 10 (43) | 6 | 2 | 1 | 1 | - | - |
Tham Wat Kao Wong Kat (GM) | 9 | 7 (78) | 2 | - | 3 | - | 2 | - |
Tham Kao Kad (GM) | 14 | 6 (43) | 6 | - | - | - | - | - |
Tham Kaeng Khoi (GM) | 44 | 26 (61) | 7 | 11 | 2 | 1 | 3 | 2 |
Kaeng Khoi valley residents (Non-GM) | 61 | 6 (10) | - | 6 | - | - | - | - |
% Guano Miners with Antibodies | % Valley Residents with Antibodies | |||||||
---|---|---|---|---|---|---|---|---|
Age Groups | No. in Age Group | KKV (N) | CHIKV (HAI) | JEV (HAI) | No.in Age Group | KKV (N) | CHIKV (HAI) | JEV (HAI) |
5–16 | 33 | 30 | 24 | 46 | 35 | 3 | 11 | 20 |
17–40 | 49 | 63 | 51 | 80 | 13 | 31 | 69 | 77 |
40+ | 26 | 81 | 85 | 81 | 6 | 16 | 100 | 67 |
Time Post-Feeding | Amount of Virus SM (i.c.) LD50 |
---|---|
1 h | 10 6.8 |
1 day | 10 5.3 |
3 days | neg * |
15–29 days | neg |
Antibody Titer of Positive Mice | ||||||||
---|---|---|---|---|---|---|---|---|
Exposure Room | Type of Cage | Dates of Exposure (Month/Day) | Total Days Exposed | pc/tc 1 | p/t 2 (% pos) | 8 | 40 | 200 |
1 | OC | 6/22–6/26 | 2.8 | 7/7 | 18/32 (56) | 18 3 | ||
OC | 3/03–3/28 | 19 | 5/5 | 21/21 (100) | 1 | 2 | 18 | |
OC | 1/19–2/06 | 18 | 3/3 | 3/11 (27) | 3 3 | |||
2 | OC | 6/22–6/26 | 2.8 | 4/4 | 9/31 (29) | |||
1 | APC | 3/03–3/26 | 19 | 3/3 | 8/23 (35) | 4 | 3 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neill, W.A.; Kading, R.C. Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand. Microorganisms 2021, 9, 2022. https://doi.org/10.3390/microorganisms9102022
Neill WA, Kading RC. Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand. Microorganisms. 2021; 9(10):2022. https://doi.org/10.3390/microorganisms9102022
Chicago/Turabian StyleNeill, William A., and Rebekah C. Kading. 2021. "Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand" Microorganisms 9, no. 10: 2022. https://doi.org/10.3390/microorganisms9102022
APA StyleNeill, W. A., & Kading, R. C. (2021). Investigations on Vector-Borne and Aerosol Transmission Potential of Kaeng Khoi Virus in Cave-Dwelling Wrinkle-Lipped Free-Tailed Bats (Chaerephon plicatus) in Thailand. Microorganisms, 9(10), 2022. https://doi.org/10.3390/microorganisms9102022