Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents, Microorganisms, and Culture Conditions
2.2. Optimization Trials Using Different Bacterial Combinations
2.3. Biodegradation by Axenic Cultures
2.4. Investigation of Growth in Sodium Acetate
2.5. High-Throughput Sequencing of 16S rRNA Amplicons
2.6. Bioinformatic Analyses
2.7. Analytical Methods
3. Results
3.1. Biodegradation of EPO and FLU Using Different Bacterial Combinations
3.2. Biodegradation of EPO by Axenic Cultures
3.3. Growth of Bacterial Strains in Sodium Acetate
3.4. Bacterial Structure of the Original Enriched Consortia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatt, P.; Bhatt, K.; Sharma, A.; Zhang, W.; Mishra, S.; Chen, S. Biotechnological basis of microbial consortia for the removal of pesticides from the environment. Crit. Rev. Biotechnol. 2021, 41, 317–338. [Google Scholar] [CrossRef] [PubMed]
- Zengler, K.; Zaramela, L.S. The social network of microorganisms—How auxotrophies shape complex communities. Nat. Rev. Microbiol. 2018, 16, 383–390. [Google Scholar] [CrossRef]
- Borchert, E.; Hammerschmidt, K.; Hentschel, U.; Deines, P. Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology. Trends Microbiol. 2021. [Google Scholar] [CrossRef] [PubMed]
- Gorter, F.A.; Manhart, M.; Ackermann, M. Understanding the evolution of interspecies interactions in microbial communities. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arias-Sánchez, F.I.; Vessman, B.; Mitri, S. Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PLoS Biol. 2019, 17, e3000356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, K.A.; Tzilivakis, J.; Warner, D.J.; Green, A. An international database for pesticide risk assessments and management. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1050–1064. [Google Scholar] [CrossRef] [Green Version]
- Alexandrino, D.A.M.; Mucha, A.P.; Almeida, C.M.R.; Carvalho, M.F. Microbial degradation of two highly persistent fluorinated fungicides—Epoxiconazole and fludioxonil. J. Hazard. Mater. 2020, 394, 122545. [Google Scholar] [CrossRef]
- Mavriou, Z.; Alexandropoulou, I.; Melidis, P.; Karpouzas, D.G.; Ntougias, S. Biotreatment and bacterial succession in an upflow immobilized cell bioreactor fed with fludioxonil wastewater. Environ. Sci. Pollut. Res. 2021, 28, 3774–3786. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Feng, A.; Guo, Z.; Zhang, Y. Application of stirred mill to upgrading of graphite concentrate by flotation. Can. Metall. Q. 2018, 57, 245–251. [Google Scholar] [CrossRef]
- Smalling, K.L.; Hladik, M.L.; Sanders, C.J.; Kuivila, K.M. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings. J. Environ. Sci. Health Part B 2018, 53, 176–183. [Google Scholar] [CrossRef]
- Casado, J.; Brigden, K.; Santillo, D.; Johnston, P. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry. Sci. Total Environ. 2019, 670, 1204–1225. [Google Scholar] [CrossRef] [PubMed]
- Bošković, N.; Brandstätter-Scherr, K.; Sedláček, P.; Bílková, Z.; Bielská, L.; Hofman, J. Adsorption of epoxiconazole and tebuconazole in twenty different agricultural soils in relation to their properties. Chemosphere 2020, 261, 127637. [Google Scholar] [CrossRef] [PubMed]
- Alexandrino, D.A.M.; Ribeiro, I.; Pinto, L.M.; Cambra, R.; Oliveira, R.S.; Pereira, F.; Carvalho, M.F. Biodegradation of mono-, di- and trifluoroacetate by microbial cultures with different origins. New Biotechnol. 2018, 43, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Parada, A.E.; Needham, D.M.; Fuhrman, J.A. Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 2016, 18, 1403–1414. [Google Scholar] [CrossRef]
- Comeau, A.M.; Douglas, G.M.; Langille, M.G.I. Microbiome Helper: A Custom and Streamlined Workflow for Microbiome Research. mSystems 2017, 2, e00127-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmieder, R.; Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011, 27, 863–864. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef] [Green Version]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J.; et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ. Microbiol 2009, 75, 7537–7541. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Pruesse, E.; Peplies, J.; Glöckner, F.O. SINA: Accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 2012, 28, 1823–1829. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and applications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Lopes, F.M.; Batista, K.A.; Batista, G.L.A.; Mitidieri, S.; Bataus, L.A.M.; Fernandes, K.F. Biodegradation of epoxyconazole and piraclostrobin fungicides by Klebsiella sp. from soil. World J. Microbiol. Biotechnol. 2010, 26, 1155–1161. [Google Scholar] [CrossRef]
- Thomas, K.A.; Hand, L.H. Assessing the metabolic potential of phototrophic communities in surface water environments: Fludioxonil as a model compound. Environ. Toxicol. Chem. 2012, 31, 2138–2146. [Google Scholar] [CrossRef]
- Coppola, L.; Comitini, F.; Casucci, C.; Milanovic, V.; Monaci, E.; Marinozzi, M.; Taccari, M.; Ciani, M.; Vischetti, C. Fungicides degradation in an organic biomixture: Impact on microbial diversity. N. Biotechnol 2011, 29, 99–106. [Google Scholar] [CrossRef]
- Vischetti, C.; Monaci, E.; Coppola, L.; Marinozzi, M.; Casucci, C. Evaluation of BiomassBed system in bio-cleaning water contaminated by fungicides applied in vineyard. Int. J. Environ. Anal. Chem. 2012, 92, 949–962. [Google Scholar] [CrossRef]
- Marinozzi, M.; Coppola, L.; Monaci, E.; Karpouzas, D.G.; Papadopoulou, E.; Menkissoglu-Spiroudi, U.; Vischetti, C. The dissipation of three fungicides in a biobed organic substrate and their impact on the structure and activity of the microbial community. Environ. Sci. Pollut. Res. 2013, 20, 2546–2555. [Google Scholar] [CrossRef]
- Masís-Mora, M.; Lizano-Fallas, V.; Tortella, G.; Beita-Sandí, W.; Rodríguez-Rodríguez, C.E. Removal of triazines, triazoles and organophophates in biomixtures and application of a biopurification system for the treatment of laboratory wastewaters. Chemosphere 2019, 233, 733–743. [Google Scholar] [CrossRef]
- Kaziem, A.E.; Gao, B.; Li, L.; Zhang, Z.; He, Z.; Wen, Y.; Wang, M.-h. Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole. J. Hazard. Mater. 2020, 386, 121951. [Google Scholar] [CrossRef]
- Lava, R.; Calore, F.; Mazzola, M.; Moretto, C.G.; Pretto, U.; Salmaso, P.; Bizzotto, A.; Carvutto, R.; Acerbi, M.; Tommasi, J.; et al. Groundwater contamination by fluorinated aromatics: Benzotrifluoride and its derivatives. Chemosphere 2021, 265, 129029. [Google Scholar] [CrossRef]
- Ji, C.; Stockbridge, R.B.; Miller, C. Bacterial fluoride resistance, Fluc channels, and the weak acid accumulation effect. J. Gen. Physiol. 2014, 144, 257–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chistoserdova, L.; Kalyuzhnaya, M.G.; Lidstrom, M.E. The Expanding World of Methylotrophic Metabolism. Annu. Rev. Microbiol. 2009, 63, 477–499. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Maitra, S.S. Biodegradation of endocrine disruptor dibutyl phthalate (DBP) by a newly isolated Methylobacillus sp. V29b and the DBP degradation pathway. 3 Biotech 2016, 6, 200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, H.; Gao, J.; Wang, S.; Li, D.; Wang, Z. The key active degrader, metabolic pathway and microbial ecology of triclosan biodegradation in an anoxic/oxic system. Bioresour. Technol. 2020, 317, 124014. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial competition: Surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pascoal, F.; Magalhães, C.; Costa, R. The Link Between the Ecology of the Prokaryotic Rare Biosphere and Its Biotechnological Potential. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hatt, J.K.; Tsementzi, D.; Rodriguez-R, L.M.; Ruiz-Pérez, C.A.; Weigand, M.R.; Kizer, H.; Maresca, G.; Krishnan, R.; Poretsky, R.; et al. Quantifying the Importance of the Rare Biosphere for Microbial Community Response to Organic Pollutants in a Freshwater Ecosystem. Appl. Environ. Microbiol. 2017, 83, e03321-16. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Zhang, K.; Li, Z.; Ren, C.; Chen, J.; Lin, Y.-H.; Liu, J.; Men, Y. Microbial Cleavage of C–F Bonds in Two C6 Per- and Polyfluorinated Compounds via Reductive Defluorination. Environ. Sci. Technol. 2020, 54, 14393–14402. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Duarte, P.; Almeida, C.M.R.; Carvalho, M.F.; Mucha, A.P. Potential of bacterial consortia obtained from different environments for bioremediation of paroxetine and bezafibrate. J. Environ. Chem. Eng. 2020, 8, 103881. [Google Scholar] [CrossRef]
Strain | Taxonomy | Target Fungicide | Culture Medium | GenBank® Accession Number |
---|---|---|---|---|
1AE | Comamonas sp. | EPO | PCA | MK127552 |
2AE | Pseudomonas fluorescens | EPO | PCA | MK127553 |
4AE | Azospirillum thiophilum | EPO | PCA | MK128510 |
5AE | Hydrogenophaga eletricum | EPO | PCA | MK128663 |
8AE | Methylobacillus sp. | EPO | MM with EPO | MK128665 |
1AF | Pseudomonas fluorescens | FLU | PCA | MK128959 |
2AF | Rhodobacter sp. | FLU | PCA | MK128963 |
3AF | Ochrobactrum anthropic | FLU | PCA | MK128962 |
4AF | Pseudomonas putida | FLU | PCA | MK128965 |
6AF | Hydrogenophaga electricum | FLU | MM with FLU | MK128969 |
8AF | Pannonibacter phragmitetus | FLU | MM with FLU | MN853325 |
Isolated Strain | Representation in the Genus | Representation in the Consortium |
---|---|---|
Comamonas sp. 1AE | 100 | <1 |
Pseudomonas fluorescens 2AE | n/a * | n/a * |
Azospirillum thiophilum 4AE | 1.8 | 1.1 |
Hydrogenophaga eletricum 5AE | 100 | 2.8 |
Methylobacillus sp. 8AE | 100 | 6.6 |
Pseudomonas fluorescens 1AF | n/a * | n/a * |
Rhodobacter sp. 2AF | 100 | <1 |
Ochrobactrum anthropic 3AF | 13.5 | <1 |
Pseudomonas putida 4AF | 30.8 | <1 |
Hydrogenophaga electricum 6AF | 100 | <1 |
Pannonibacter phragmitetus 8AF | <1 | <1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexandrino, D.A.M.; Mucha, A.P.; Tomasino, M.P.; Almeida, C.M.R.; Carvalho, M.F. Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms 2021, 9, 2109. https://doi.org/10.3390/microorganisms9102109
Alexandrino DAM, Mucha AP, Tomasino MP, Almeida CMR, Carvalho MF. Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms. 2021; 9(10):2109. https://doi.org/10.3390/microorganisms9102109
Chicago/Turabian StyleAlexandrino, Diogo A. M., Ana P. Mucha, Maria Paola Tomasino, C. Marisa R. Almeida, and Maria F. Carvalho. 2021. "Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia" Microorganisms 9, no. 10: 2109. https://doi.org/10.3390/microorganisms9102109
APA StyleAlexandrino, D. A. M., Mucha, A. P., Tomasino, M. P., Almeida, C. M. R., & Carvalho, M. F. (2021). Combining Culture-Dependent and Independent Approaches for the Optimization of Epoxiconazole and Fludioxonil-Degrading Bacterial Consortia. Microorganisms, 9(10), 2109. https://doi.org/10.3390/microorganisms9102109