In Vitro Synergism of Penicillin and Ceftriaxone against Enterococcus faecalis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enterococcal Strains and Antibiotics
2.2. Synergism Testing by Checkerboard Assays
2.3. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fernández-Hidalgo, N.; Escolà-Vergé, L.; Pericàs, J.M. Enterococcus faecalis endocarditis: What’s next? Future Microbiol. 2020, 15, 349–364. [Google Scholar] [CrossRef]
- Habib, G.; Lancellotti, P.; Antunes, M.J.; Bongiorni, M.G.; Casalta, J.P.; Del Zotti, F.; Dulgheru, R.; El Khoury, G.; Erba, P.A.; Iung, B.; et al. ESC Guidelines for the management of infective endocarditis: The task force for the management of infective endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur. Heart J. 2015, 36, 3075–3128. [Google Scholar] [PubMed]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G., Jr.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective endocarditis in adults: Diagnosis, antimicrobial therapy, and management of complications: A scientific statement for healthcare professionals from the american heart association. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef] [PubMed]
- El Rafei, A.; DeSimone, D.C.; Narichania, A.D.; Sohail, M.R.; Vikram, H.R.; Li, Z.; Steckelberg, J.M.; Wilson, W.R.; Baddour, L.M. Comparison of Dual β-Lactam therapy to penicillin-aminoglycoside combination in treatment of Enterococcus faecalis infective endocarditis. J. Infect. 2018, 77, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Andrews, M.-M.; von Reyn, C.F. Patient selection criteria and management guidelines for outpatient parenteral antibiotic therapy for native valve infective endocarditis. Clin. Infect. Dis. 2001, 33, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Pericà, S.J.M.; Llopis, J.; González-Ramallo, V.; Goenaga, M.Á.; Muñoz, P.; García-Leoni, M.E.; Fariñas, M.C.; Fariñas, M.C.; Ambrosioni, J.; Luque, R.; et al. Outpatient parenteral antibiotic treatment for infective endocarditis: A prospective cohort study from the GAMES cohort. Clin. Infect. Dis. 2019, 69, 1690–1700. [Google Scholar] [CrossRef] [PubMed]
- Gil-Navarro, M.V.; Lopez-Cortes, L.E.; Luque-Marquez, R.; Galvez-Acebal, J.; de Alarcon-Gonzalez, A. Outpatient parenteral antimicrobial therapy in Enterococcus faecalis infective endocarditis. J. Clin. Pharm. Ther. 2018, 43, 220–223. [Google Scholar] [CrossRef]
- Nakamura, T.; Enoki, Y.; Uno, S.; Uwamino, Y.; Iketani, O.; Hasegawa, N.; Matsumoto, K. Stability of benzylpenicillin potassium and ampicillin in an elastomeric infusion pump. J. Infect. Chemother. 2018, 24, 856–859. [Google Scholar] [CrossRef]
- Tice, A.D.; Rehm, S.J.; Dalovisio, J.R.; Bradley, J.S.; Martinelli, L.P.; Graham, D.R.; Gainer, R.B.; Kunkel, M.J.; Yancey, R.W.; Williams, D.N.; et al. Practice guidelines for outpatient parenteral antimicrobial therapy. Clin. Infect. Dis. 2004, 38, 1651–1671. [Google Scholar] [CrossRef] [Green Version]
- Maher, M.; Jensen, K.J.; Lee, D.; E Nix, D. Stability of ampicillin in normal saline and buffered normal saline. Int. J. Pharm. Compd. 2016, 20, 338–342. [Google Scholar]
- Huskey, M.; Lewis, P.; Brown, S.D. Stability of ampicillin in normal saline following refrigerated storage and 24-hour pump recirculation. Hosp. Pharm. 2020. [Google Scholar] [CrossRef]
- Iversen, K.; Ihlemann, N.; Gill, S.U.; Madsen, T.; Elming, H.; Jensen, K.T.; Bruun, N.E.; Høfsten, D.E.; Fursted, K.; Christensen, J.J.; et al. Partial oral versus intravenous antibiotic treatment of endocarditis. N. Engl. J. Med. 2019, 380, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Carlson, J.R.; Matsumoto, E. Treatment of enterococcus faecalis infective endocarditis with penicillin G plus ceftriaxone. J. Infect. Dis. 2020, 52, 135–138. [Google Scholar] [CrossRef]
- Tritle, B.J.; Timbrook, T.T.; Fisher, M.A.; Spivak, E.S. Penicillin as a potential agent for dual β-lactam therapy for enterococcal endocarditis. Clin Infect Dis. 2020, 70, 1263–1264. [Google Scholar] [CrossRef] [PubMed]
- Briggs, S.; Broom, M.; Duffy, E.; Everts, R.; Everts, G.; Lowe, B.; McBride, S.; Bhally, H. Outpatient continuous-infusion benzylpenicillin combined with either gentamicin or ceftriaxone for enterococcal endocarditis. J. Antimicrob. Chemother. 2021. [Google Scholar] [CrossRef] [PubMed]
- EUCAST. EUCAST Reading Guide for Broth Microdilution, Version 3.0 January 2021. Available online: https://www.eucast.org/ast_of_bacteria/mic_determination/?no_cache=1 (accessed on 5 March 2021).
- Stein, C.; Makarewicz, O.; Bohnert, J.A.; Pfeifer, Y.; Kesselmeier, M.; Hagel, S.; Pletz, M.W. Three dimensional checkerboard synergy analysis of colistin, meropenem, tigecycline against multidrug-resistant clinical klebsiella pneumonia isolates. PLoS ONE 2015, 10, e0126479. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Hidalgo, L.; de Alarcón, A.; López-Cortes, L.E.; Luque-Márquez, R.; López-Cortes, L.F.; Gutiérrez-Valencia, A.; Gil-Navarro, M.V. Is once-daily high-dose ceftriaxone plus ampicillin an alternative for enterococcus faecalis infective endocarditis in outpatient parenteral antibiotic therapy programs? Antimicrob. Agents Chemother. 2020, 65, e02099-20. [Google Scholar] [CrossRef] [PubMed]
- Patel, I.H.; Chen, S.; Parsonnet, M.; Hackman, M.R.; A Brooks, M.; Konikoff, J.; A Kaplan, S. Pharmacokinetics of ceftriaxone in humans. Antimicrob. Agents Chemother. 1981, 20, 634–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollock, A.A.; Tee, P.E.; Patel, I.H.; Spicehandler, J.; Simberkoff, M.S.; Rahal, J.J. Pharmacokinetic characteristics of intravenous ceftriaxone in normal adults. Antimicrob. Agents Chemother. 1982, 22, 816–823. [Google Scholar] [CrossRef] [Green Version]
- Thieme, L.; Klinger-Strobel, M.; Hartung, A.; Stein, C.; Makarewicz, O.; Pletz, M.W. In vitro synergism and anti-biofilm activity of ampicillin, gentamicin, ceftaroline and ceftriaxone against Enterococcus faecalis. J. Antimicrob. Chemother. 2018, 73, 1553–1561. [Google Scholar] [CrossRef] [Green Version]
- Gavaldà, J.; Torres, C.; Tenorio, C.; López, P.; Zaragoza, M.; Capdevila, J.A.; Almirante, B.; Ruiz, F.; Borrell, N.; Gomis, X.; et al. Efficacy of ampicillin plus ceftriaxone in treatment of experimental endocarditis due to enterococcus faecalis strains highly resistant to aminoglycosides. Antimicrob. Agents Chemother. 1999, 43, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EUCAST. EUCAST MIC Distributions for Ceftriaxone. Available online: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=57&search%5Bspecies%5D=-1&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50 (accessed on 5 March 2021).
- Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 2003, 52, 1. [Google Scholar] [CrossRef] [PubMed]
- Bonapace, C.R.; Bosso, J.A.; Friedrich, L.V.; White, R.L. Comparison of methods of interpretation of checkerboard synergy testing. Diagn. Microbiol. Infect. Dis. 2002, 44, 363–366. [Google Scholar] [CrossRef]
- Djorić, D.; Little, J.L.; Kristich, C.J. Multiple low-reactivity class b penicillin-binding proteins are required for cephalosporin resistance in enterococci. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Mainardi, J.L.; Gutmann, L.; Acar, J.F.; Goldstein, F.W. Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob. Agents Chemother. 1995, 39, 1984–1987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cusumano, J.; Daffinee, K.; Bodo, E.; Laplante, K. Alternative Dual Beta-Lactam Combinations for Enterococcus Faecalis Infective Endocarditis; abstract P2804; ECCMID: Amsterdam, The Netherlands, 2019. [Google Scholar]
Isolate a | Clinical Background b | Gender | Age (Years) | MIC CRO (mg/L) | MIC PEN (mg/L) | MIC AMP (mg/L) | FICI d of PEN/CRO | FICI of AMP/CRO |
---|---|---|---|---|---|---|---|---|
5187 | urosepsis | male | 79 | 1–2 c | 1 | 1 | 0.75 (1.13) | 0.63 (0.88) |
245 | endocarditis | male | 76 | 2 c | 1 | 0.5 | 0.75 (1.03) | 0.63 (0.88) |
26,786 | endocarditis | male | 67 | 2 | 1 | 0.25 | 0.56 (0.75) | 0.74 (1.05) |
404 | endocarditis | female | 78 | 4 | 0.5 | 0.25 | 0.75 (0.75) | 0.49 (0.68) |
ATCC | / | / | / | 4 | 1 | 1 | 0.75 (0.75) | 0.50 (0.69) |
6747 | biliary tract infection | male | 81 | 4 c | 1 | 1 | 0.75 (0.75) | 0.50 (0.63) |
11,223 | endocarditis | female | 65 | 8 | 2 | 0.5 | 0.38 (0.56) | 0.31 (0.50) |
22,424 | endocarditis | male | 68 | 8 | 1 | 0.5 | 0.25 (0.56) | 0.37 (0.47) |
8669 | OI | male | 80 | 8 c | 1 | 1 | 0.63 (0.75) | 0.25 (0.38) |
9367 | recurrent bacteraemia | female | 85 | 8 c | 2 | 2 | 0.50 (0.63) | 0.38 (0.63) |
1653 | urosepsis | female | 87 | 8 c | 2 | 1 | 0.38 (0.63) | 0.38 (0.56) |
848 | OI | male | 60 | 8 | 2 | 1 | 0.38 (0.56) | 0.31 (0.47) |
5597 | OI | female | 55 | 8–16 c | 2 | 1 | 0.31 (0.52) | 0.50 (0.63) |
10,485 | endocarditis | male | 74 | 16 | 1 | 0.5 | 0.38 (0.81) | 0.24 (0.53) |
6886 | wound infection | female | 68 | 16 c | 1 | 2 | 0.63 (0.75) | 0.31 (0.52) |
281 | sepsis | female | 79 | 16 c | 1 | 1 | 0.50 (0.63) | 0.31 (0.38) |
67,230 | endocarditis | male | 39 | 16 | 2 | 1 | 0.38 (0.47) | 0.25 (0.45) |
2164 | OI | female | 78 | 16 c | 2 | 2 | 0.25 (0.56) | 0.38 (0.63) |
4497 | urosepsis | female | 67 | 32 c | 2 | 1 | 0.31 (0.45) | 0.38 (0.56) |
10,021 | urosepsis | female | 42 | 32 | 1 | 0.5 | 0.56 (1.01) | 0.15 (0.34) |
13,703 | bacteraemia | male | 54 | 256 | 2 | 1 | 0.16 (0.27) | 0.16 (0.37) |
7914 | OI | male | 54 | 256 | 1 | 0.25 | 0.25 (0.38) | 0.26 (0.37) |
905 | endocarditis | male | 75 | 512 | 2 | 1 | 0.31 (0.52) | 0.27 (0.44) |
6037 | urosepsis | male | 86 | 1024 c | 1 | 1 | 0.27 (0.51) | 0.12 (0.25) |
7183 | urosepsis | male | 76 | 1024 | 2 | 1 | 0.31 (0.55) | 0.38 (0.52) |
3043 | OI | female | 74 | >1024 | 2 | 0.5 | N. A. | N. A. |
8653 | OI | male | 56 | >1024 | 2 | 1 | N. A. | N. A. |
3062 | urosepsis | male | 77 | >1024 | 4 | 1 | N. A. | N. A. |
9190 | wound infection | female | 59 | >1024 | 4 | 1 | N. A. | N. A. |
Isolate | MICCRO Alone [mg/L] | Lowest CRO Concentration Resulting in Two-Fold Reduction in MICPEN or MICAMP | Lowest CRO Concentration Resulting in Four-Fold Reduction in MICPEN or MICAMP | Lowest CRO Concentration Resulting in Eight-Fold Reduction in MICPEN or MICAMP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Penicillin | Ampicillin | Penicillin | Ampicillin | Penicillin | Ampicillin | ||||||||
CRO conc. [mg/L] | FICI a | CRO conc. [mg/L] | FICI | CRO conc. [mg/L] | FICI | CRO conc. [mg/L] | FICI | CRO conc. [mg/L] | FICI | CRO conc. [mg/L] | FICI | ||
5187 | 1–2 | 1 | 1.50 | 0.5 | 1.00 | 1 | 1.25 | 0.5 | 0.75 | N.A. | N.A. | 0.5 | 0.625 |
245 | 2 | 0.5 | 0.75 | 0.5 | 0.75 | 1 | 0.75 | 0.5 | 0.50 | N.A. | N.A. | 0.5 | 0.375 |
26,786 | 2 | 0.25 | 0.625 | 0.5 | 0.75 | 1 | 0.75 | 1 | 0.74 | 1 | 0.625 | N.A. | N.A. |
404 | 4 | 1 | 0.75 | 1 | 0.75 | 2 | 0.75 | 1 | 0.49 | N.A. | N.A. | 2 | 0.625 |
ATCC | 4 | 1 | 0.75 | 0.5 | 0.625 | 2 | 0.75 | 1 | 0.50 | N.A. | N.A. | 2 | 0.625 |
6747 | 4 | 1 | 0.75 | 0.5 | 0.625 | 2 | 0.75 | 1 | 0.50 | N.A. | N.A. | 2 | 0.625 |
11,223 | 8 | 1 | 0.625 | 1 | 0.625 | 1 | 0.375 | 1 | 0.375 | 4 | 0.625 | 4 | 0.625 |
22,424 | 8 | 1 | 0.625 | 1 | 0.625 | 2 | 0.5 | 1 | 0.375 | 4 | 0.625 | 2 | 0.375 |
8669 | 8 | 1 | 0.625 | 0.5 | 0.563 | 4 | 0.75 | 1 | 0.375 | N.A. | N.A. | 2 | 0.375 |
9367 | 8 | 1 | 0.625 | 0.5 | 0.563 | 2 | 0.50 | 1–2 | 0.50 | 4 | 0.625 | 2 | 0.375 |
1653 | 8 | 1 | 0.625 | 0.5 | 0.563 | 1–2 | 0.50 | 1 | 0.375 | 4 | 0.625 | 2–4 | 0.625 |
848 | 8 | 1 | 0.625 | 0.5–1 | 0.625 | 1 | 0.375 | 1 | 0.375 | 4 | 0.625 | 2 | 0.375 |
5597 | 8–16 | 1 | 0.625 | 0.5 | 0.563 | 2 | 0.50 | 2 | 0.25 | 8 | 1.125 | 4 | 0.625 |
10,485 | 16 | 1 | 0.56 | 0.25 | 0.52 | 2 | 0.375 | 1 | 0.31 | 4 | 0.375 | 2 | 0.25 |
6886 | 16 | 1 | 0.563 | 0.5–1 | 0.563 | 4 | 0.50 | 1 | 0.313 | 4 | 0.375 | 4 | 0.375 |
281 | 16 | 1–2 | 0.625 | 0.5 | 0.53 | 4–8 | 0.75 | 1 | 0.313 | 8 | 0.625 | 4 | 0.375 |
67,230 | 16 | 1 | 0.563 | 0.5–1 | 0.563 | 2 | 0.375 | 1–2 | 0.375 | 4 | 0.375 | 4 | 0.375 |
2164 | 16 | 1 | 0.563 | 1 | 0.563 | 2 | 0.375 | 2–4 | 0.50 | 4 | 0.375 | 8 | 0.625 |
4497 | 32 | 1 | 0.53 | 0.5 | 0.563 | 2–4 | 0.375 | 2 | 0.313 | 8 | 0.375 | 4 | 0.25 |
10,021 | 32 | 2 | 0.56 | 0.125 | 0.50 | N.A. | N.A. | 0.5 | 0.266 | N.A. | N.A. | 2 | 0.18 |
13,703 | 256 | 1 | 0.50 | 1 | 0.50 | 1 | 0.26 | 1 | 0.25 | 16 | 0.25 | 8 | 0.16 |
7914 | 256 | 1 | 0.50 | 1 | 0.50 | 8 | 0.28 | 4 | 0.26 | 64 | 0.375 | 64 | 0.375 |
905 | 512 | 2–4 | 0.51 | 1 | 0.50 | 32 | 0.313 | 4–8 | 0.266 | N.A. | N.A. | 64 | 0.25 |
6037 | 1024 | 8 | 0.51 | 0.5 | 0.50 | 128 | 0.375 | 0.5–1 | 0.251 | 512 | 0.625 | 2–4 | 0.13 |
7183 | 1024 | 16 | 0.52 | 0.5–1 | 0.50 | 64 | 0.313 | 64 | 0.313 | 256 | 0.375 | N.A. | N.A. |
3043 | >1024 | 512 | N.A. | 4 | N.A. | 1024 | N.A. | 128 | N.A. | N.A. | N.A. | N.A. | N.A. |
8653 | >1024 | 512 | N.A. | 2 | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. | N.A. |
3062 | >1024 | 128 | N.A. | 32–64 | N.A. | 256–512 | N.A. | 256 | N.A. | 512–1024 | N.A. | N.A. | N.A. |
9190 | >1024 | 64–128 | N.A. | 2 | N.A. | 512 | N.A. | 256 | N.A. | N.A. | N.A. | N.A. | N.A. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thieme, L.; Briggs, S.; Duffy, E.; Makarewicz, O.; Pletz, M.W. In Vitro Synergism of Penicillin and Ceftriaxone against Enterococcus faecalis. Microorganisms 2021, 9, 2150. https://doi.org/10.3390/microorganisms9102150
Thieme L, Briggs S, Duffy E, Makarewicz O, Pletz MW. In Vitro Synergism of Penicillin and Ceftriaxone against Enterococcus faecalis. Microorganisms. 2021; 9(10):2150. https://doi.org/10.3390/microorganisms9102150
Chicago/Turabian StyleThieme, Lara, Simon Briggs, Eamon Duffy, Oliwia Makarewicz, and Mathias W. Pletz. 2021. "In Vitro Synergism of Penicillin and Ceftriaxone against Enterococcus faecalis" Microorganisms 9, no. 10: 2150. https://doi.org/10.3390/microorganisms9102150
APA StyleThieme, L., Briggs, S., Duffy, E., Makarewicz, O., & Pletz, M. W. (2021). In Vitro Synergism of Penicillin and Ceftriaxone against Enterococcus faecalis. Microorganisms, 9(10), 2150. https://doi.org/10.3390/microorganisms9102150