Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Metagenome Analysis
2.2. Environmental DNA Extraction and Sequencing
2.3. Assembly and Taxonomic Assignment of Contigs
2.4. Functional Gene Assignment and Pathway Mapping of Carbohydrate Metabolism
3. Results
3.1. Hydrochemistry
3.2. Metagenomics
3.3. Functional Annotation of Reads Based on SEED Database
3.4. Mapping of Genes Involved in Carbon Fixation in GAL and MUP
3.5. Mapping of Methane Metabolism in GAL
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Whitman, W.B.; Coleman, D.C.; Wiebe, W.J. Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 1998, 95, 6578–6583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothschild, L.; Mancinelli, R. Life in extreme environments. Nature 2001, 409, 1092–1101. [Google Scholar] [CrossRef]
- Rampelotto, P.H. Extremophiles and Extreme Environments. Life 2013, 3, 482–485. [Google Scholar] [CrossRef]
- Selvarajan, R.; Maredza, A.; Tekere, M. Microbial exploration in extreme conditions. In Metagenomic Analysis and Future Perspectives; Benedetti, C., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; Chapter 8; pp. 15–181. ISBN 978-1-63321-698-3. [Google Scholar]
- Uribe-Lorío, L.; Brenes-Guillén, L.; Hernández-Ascencio, W.; Mora-Amador, R.; González, G.; Ramírez-Umaña, C.J.; Díez, B.; Pedrós-Alió, C. The influence of temperature and pH on bacterial community composition of microbial mats in hot springs from Costa Rica. MicrobiologyOpen 2019, 8, e893. [Google Scholar] [CrossRef] [Green Version]
- Bang, C.; Dagan, T.; Deines, P.; Dubilier, N.; Duschl, W.J.; Fraune, S.; Hentschel, U.; Hirt, H.; Hülter, N.F.; Lachnit, T.; et al. Metaorganisms in extreme environments: Do microbes play a role in organismal adaptation? Zoology 2018, 127, 1–19. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kluber, L.A.; Johnston, E.R.; Allen, S.A.; Hendershot, J.N.; Hanson, P.J.; Schadt, C.W. Constraints on microbial communities, decomposition and methane production in deep peat deposits. PLoS ONE 2020, 15, e0223744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nayak, D.D.; Liu, A.; Agrawal, N.; Rodriguez-Carerro, R.; Dong, S.-H.; Mitchell, D.A.; Nair, S.K.; Metcalf, W.W. Functional interactions between posttranslationally modified amino acids of methyl-coenzyme M reductase in Methanosarcina acetivorans. PLoS Biol. 2020, 18, e3000507. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Cen, Z.; Zhao, J. The Survival Mechanisms of Thermophiles at High Temperatures: An Angle of Omics. Physiology 2015, 30, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Coker, J.A. Extremophiles and biotechnology: Current uses and prospects. F1000Research 2016, 5, 396. [Google Scholar] [CrossRef] [PubMed]
- Osborne, P.; Hall, L.J.; Kronfeld-Schor, N.; Thybert, D.; Haerty, W. A rather dry subject; investigating the study of arid-associated microbial communities. Environ. Microbiome 2020, 15, 20. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, L.; Asrat, A.; Wessel, G.M.; Simachew, A. In silico determination of nitrogen metabolism in microbes from extreme conditions using metagenomics. Arch. Microbiol. 2021, 203, 2521–2540. [Google Scholar] [CrossRef]
- Master, S. Gaet’ale- a reactivated thermal spring and potential tourist hazard in the Asale salt flats, Danakil Depression, Ethiopia. J. Appl. Volcanol. 2016, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Pérez, E.; Chebude, Y. Chemical Analysis of Gaet’ale, a Hypersaline Pond in Danakil Depression (Ethiopia): New Record for the Most Saline Water Body on Earth. Aquat. Geochem. 2017, 23, 109–117. [Google Scholar] [CrossRef]
- Franzson, H.; Helgadóttir, H.M.; Óskarsson, F. Surface Exploration and First Conceptual Model of the Dallol Geo-thermal Area, Northern Afar, Ethiopia. In Proceedings of the World Geothermal Congress, Melbourne, Australia, 19–25 April 2015. [Google Scholar]
- Asrat, A. The Danakil Depression: An exceptional place where different types of extreme environments coexist. In Africa’s Top Geological Sites; Struik Nature: Cape Town, South Africa, 2016; pp. 189–196. [Google Scholar]
- Mitchell, K.R.; Takacs-Vesbach, C.D. A comparison of methods for total community DNA preservation and ex-traction from various thermal environments. J. Ind. Microbiol. Biotechnol. 2008, 35, 1139–1147. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Bruns, M.A.; Tiedje, J.M. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 1996, 62, 316–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfink, B.; Xie, C.; Huson, D.H. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015, 12, 59–60. [Google Scholar] [CrossRef] [PubMed]
- Huson, D.; Beier, S.; Flade, I.; Górska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.-J.; Tappu, R. MEGAN Community Edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016, 12, e1004957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Albrecht, B.; Bağcı, C.; Bessarab, I.; Górska, A.; Jolic, D.; Williams, R.B.H. MEGAN-LR: New algorithms allow accurate binning and easy interactive exploration of metagenomic long reads and contigs. Biol. Direct 2018, 13, 6. [Google Scholar] [CrossRef] [Green Version]
- Ciccarelli, F.; Doerks, T.; von Mering, C.; Creevey, C.; Snel, B.; Bork, P. Toward Automatic Reconstruction of a Highly Resolved Tree of Life. Science 2006, 311, 1283–1287. [Google Scholar] [CrossRef] [Green Version]
- Overbeek, R.; Begley, T.; Butler, R.M.; Choudhuri, J.V.; Chuang, H.Y.; Cohoon, M.; de Crécy-Lagard, V.; Diaz, N.; Disz, T.; Edwards, R.; et al. The Subsystems Approach to Genome Annotation and Its Use in the Project to Annotate 1000 Genomes. Nucleic Acids Res. 2005, 33, 5691–5702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bağcı, C.; Beier, S.; Górska, A.; Huson, D.H. Introduction to the Analysis of Environmental Sequences: Metagenomics with MEGAN. In Evolutionary Genomics. Methods in Molecular Biology; Anisimova, M., Ed.; Humana: New York, NY, USA, 2019; Volume 1910. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2019, 29, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebresilassie, S.; Gebretsadik, H.T.; Kabeto, K. Preliminary study on geology, mineral potential and characteristics of hot springs from Dallol area, Afar rift, northeastern Ethiopia: Implications for natural resource exploration. Momona Ethiop. J. Sci. 2011, 3. [Google Scholar] [CrossRef] [Green Version]
- Dubber, D.; Gray, N.F. Replacement of chemical oxygen demand (COD) with total organic carbon (TOC) for monitoring wastewater treatment performance to minimize disposal of toxic analytical waste. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2010, 45, 1595–1600. [Google Scholar] [CrossRef]
- Ajayi, T.; Gomes, J.S.; Bera, A. A review of CO2 storage in geological formations emphasizing modeling, monitoring and capacity estimation approaches. Pet. Sci. 2019, 16, 1028–1063. [Google Scholar] [CrossRef] [Green Version]
- Wasser, V.K.; Lopez, T.M.; Anderson, K.R.; Izbekov, P.E.; Freymueller, J.T. Multidisciplinary Constraints on Magma Compressibility, the Pre-Eruptive Exsolved Volatile Fraction, and the H2O/CO2 Molar Ratio for the 2006 Augustine Eruption, Alaska. Geochem. Geophys. Geosystems 2021, 22, e2021GC009911. [Google Scholar] [CrossRef]
- Ohba, T.; Capaccioni, B.; Caudron, C. (Eds.) Geochemistry and Geophysicsof Active Volcanic Lakes; Special Publications, 437; Geological Society: London, UK, 2017. [Google Scholar] [CrossRef]
- Meiser, A.; Otte, J.; Schmitt, I.; Grande, F.D. Sequencing genomes from mixed DNA samples—Evaluating the metagenome skimming approach in lichenized fungi. Sci. Rep. 2017, 7, 14881. [Google Scholar] [CrossRef] [PubMed]
- Spear, J.R.; Walker, J.J.; Pace, N.R. Microbial Ecology and Energetics in Yellowstone Hot Springs. Yellowstone Sci. 2006, 14, 17–24. [Google Scholar]
- Johnson, D.B.; Rolfe, S.; Hallberg, K.B.; Iversen, E. Isolation and phylogenetic characterization of acidophilic micro-organisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ. Microbiol. 2001, 3, 630–637. [Google Scholar] [CrossRef] [PubMed]
- Mã©Ndez-Garcãa, C.; Pelã¡ez, A.I.; Mesa, V.; Sã¡nchez, J.; Golyshina, O.V.; Ferrer, M. Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 2015, 6, 475. [Google Scholar] [CrossRef] [Green Version]
- Mesa, V.; Rodríguez-Gallego, J.L.; González-Gil, R.; Lauga, B.; Sánchez, J.; Méndez-García, C.; Peláez, A.I. Bacterial, Archaeal, and Eukaryotic Diversity across Distinct Microhabitats in an Acid Mine Drainage. Front. Microbiol. 2017, 8, 1756. [Google Scholar] [CrossRef] [PubMed]
- Schuler, C.G.; Havig, J.; Hamilton, T.L. Hot Spring Microbial Community Composition, Morphology, and Carbon Fixation: Implications for Interpreting the Ancient Rock Record. Front. Earth Sci. 2017, 5, 97. [Google Scholar] [CrossRef] [Green Version]
- Mernagh, T.P.; Bastrakov, E.N.; Clarke, J.D.A.; de Caritat, P.; Dulfer, H.; English, P.M.; Jaireth, S.; Thomas, M.; Trafford, J. Lake Tyrrell, Australia, and Its Potential for Strategic Resources. Promotional Brochure; Geoscience Australia: Canberra, Australia, 2014; 6p. [Google Scholar]
- Widdison, P.E.; Burt, T.P. Nitrogen Cycle. In Encyclopedia of Ecology; Jørgensen, S.E., Fath, B.D., Eds.; Academic Press: London, UK, 2008; pp. 2526–2533. ISBN 9780080454054. [Google Scholar] [CrossRef]
- Berg, I.; Kockelkorn, D.; Ramos-Vera, W.H.; Say, R.F.; Zarzycki, J.; Hügler, M.; Alber, B.E.; Fuchs, G. Autotrophic carbon fixation in archaea. Nat. Rev. Microbiol. 2010, 8, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Boyd, E.S.; Amenabar, M.J.; Poudel, S.; Templeton, A.S. Bioenergetic constraints on the origin of autotrophic metabolism. Philos. Trans. R. Soc. 2020, 378, 20190151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, A.L.; Bastviken, D.; Gudasz, C.; Tranvik, L.J.; Enrich-Prast, A. Dark Carbon Fixation: An Important Process in Lake Sediments. PLoS ONE 2013, 8, e65813. [Google Scholar] [CrossRef] [PubMed]
- Bar-Even, A.; Noor, E.; Lewis, N.; Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl. Acad. Sci. USA 2010, 107, 8889–8894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scholl, J.; Dengler, L.; Bader, L.; Forchhammer, K. Phosphoenolpyruvate carboxylase from the cyanobacterium Synechocystis sp. PCC 6803 is under global metabolic control by P II signaling. Mol. Microbiol. 2020, 114, 292–307. [Google Scholar] [CrossRef] [Green Version]
- Kurth, J.M.; Camp, H.J.M.O.D.; Welte, C.U. Several ways one goal—methanogenesis from unconventional substrates. Appl. Microbiol. Biotechnol. 2020, 104, 6839–6854. [Google Scholar] [CrossRef] [PubMed]
- Berghuis, B.A.; Yu, F.B.; Schulz, F.; Blainey, P.C.; Woyke, T.; Quake, S.R. Hydrogenotrophic methanogenesis in archaeal phylum Verstraetearchaeota reveals the shared ancestry of all methanogens. Proc. Natl. Acad. Sci. USA 2019, 116, 5037–5044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- A Carr, S.; Schubotz, F.; Dunbar, R.B.; Mills, C.T.; Dias, R.; E Summons, R.; Mandernack, K.W. Acetoclastic Methanosaeta are dominant methanogens in organic-rich Antarctic marine sediments. ISME J. 2017, 12, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Kurade, M.B.; Saha, S.; Salama, E.; Patil, S.M.; Govindwar, S.P.; Jeon, B. Acetoclastic methanogenesis led by Meth-anosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresour. Technol. 2019, 272, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; He, P.; Lin, Y.; Shao, L.; Lü, F. A Methanogenic Consortium Was Active and Exhibited Long-Term Survival in an Extremely Acidified Thermophilic Bioreactor. Front. Microbiol. 2019, 10, 2757. [Google Scholar] [CrossRef] [PubMed]
- Kotsyurbenko, O.R.; Chin, K.-J.; Glagolev, M.; Stubner, S.; Simankova, M.V.; Nozhevnikova, A.N.; Conrad, R. Acetoclastic and hydrogenotrophic methane production and methanogenic populations in an acidic West-Siberian peat bog. Environ. Microbiol. 2004, 6, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Javor, B.J. CO2 fixation in halobacteria. Arch. Microbiol. 1988, 149, 433–440. [Google Scholar] [CrossRef]
- Kimura, H.; Nashimoto, H.; Shimizu, M.; Hattori, S.; Yamada, K.; Koba, K.; Yoshida, N.; Kato, K. Microbial methane production in deep aquifer associated with the accretionary prism in Southwest Japan. ISME J. 2009, 4, 531–541. [Google Scholar] [CrossRef] [PubMed]
- McGenity, T.J.; Sorokin, D.Y. Methanogens and methanogenesis in hypersaline environment. In Biogenesis of Hydrocarbons. Handbook of Hydrocarbon and Lipid Microbiology; Stams, A., Sousa, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 283–309. [Google Scholar] [CrossRef]
- Grazziotin, A.L.; Vidal, N.M.; Venancio, T.M. Uncovering major genomic features of essential genes in Bacteria and a methanogenic Archaea. FEBS J. 2015, 282, 3395–3411. [Google Scholar] [CrossRef] [PubMed]
- Fowler, J.; Toth, C.R.A.; Gieg, L.M. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments. Front. Microbiol. 2016, 7, 562. [Google Scholar] [CrossRef] [Green Version]
- Mee, M.T.; Collins, J.J.; Church, G.M.; Wang, H.H. Syntrophic exchange in synthetic microbial communities. Proc. Natl. Acad. Sci. USA 2014, 111, E2149–E2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sieber, J.R.; McInerney, M.J.; Plugge, C.M.; Schink, B.; Gunsalus, R.P. Methanogenesis: Syntrophic Metabolism. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar] [CrossRef]
- Santero, E.; Floriano, B.; Govantes, F. Harnessing the power of microbial metabolism. Curr. Opin. Microbiol. 2016, 31, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Steiger, M.G.; Mattanovich, D.; Sauer, M. Microbial organic acid production as carbon dioxide sink. FEMS Microbiol. Lett. 2017, 364, fnx212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
GAL | MUP | |
---|---|---|
GPS location (UTM.EW/UTM.NS) | 0642556/1571715 | 0645190/15 58764 |
Altitude (meter) | −115 | −111 |
Description of sampling sites | Deep orange/oily | Small mixing greenish color pond adjacent to Lake As’ale |
Average pH | 0 to 1 | 4.25 |
Average salinity (%) | 68 | 36 |
Average temperature | NA | 30 °C |
Average EC (mS/cm) | NA | 235 at 30 °C |
Mg2+ (g/L) | 19.5 | 7.8 |
NO2− (g/L) | 0.12 | 2.4 |
NO3− (g/L) | 0.11 | 0.13 |
TP (g/L) | 0.45 | Nil |
COD (g/L) | 17.5 | 1.925 |
SO42− (g/L) | Nil | 0.1 |
Cl− (g/L) | 432.8 | 219.1 |
δ18O (/mil) | −5.99 | −1.38 |
δ2H (/mil) | 15.83 | 3.42 |
GAL | MUP | |
Sequence ID | LTW0002 | LTW0007 |
Estimated DNA conc. for sequencing (ng/µL) | 2.128 | 58 |
Length of single read (bp) | 100 | 100 |
Total number of reads (Mbp) | 29.74 | 11.01 |
GC content (%) | 52 | 61 |
No. of contigs | 161,889 | 59,342 |
Max. contig length (Kbp) | 429.7 | 48.5 |
N50 (bp) | 2344 | 383 |
Total length (Mbp) | 125.6 | 22.9 |
Metagenome size (bp/ NGS seq, read) | 38,505,818/3,480,089 | 22,881,057/110,16,361 |
GAL | MUP | |
---|---|---|
No. of bases that must be assigned to taxon/taxa | 10,326 | 2836 |
Total No. of contigs aligned by DIAMOND | 76,755 | 42,549 |
Average No. of normalized counts of aligned bases per contig assigned by DIAMOND (bases/contig) | 143 | 236.6 |
Total No. of normalized counts of aligned bases assigned to NCBI taxonomy (Mb) | 11.1 | 10.1 |
Total No. of normalized count of aligned bases assigned to NCBI taxonomy at species level (Mb) | 3.3 | 3.6 |
Total normalized count with no hit | 266 | 715 |
Total normalized count not assigned (Mb) | 3.1 | 4.1 |
No. of OTUs profiled at species level | 132 | 154 |
No. of Archaea | 0 | 128 |
No. of Bacteria | 132 | 23 |
GAL | MUP | |
---|---|---|
Total assigned reads using SEED (absolute) | 51.9 Mb | 14.2 Mb |
Total functionally annotated reads (absolute) | 9.2 Mb | 1.2 Mb |
Total no. of predicted genes | 1100 | 700 |
Total aligned bases assigned in Carbohydrate metabolism | 1.35 Mb | 130 Kb |
No. of predicted genes in Carbohydrate metabolism | 230 | 150 |
Total aligned bases assigned in Nitrogen metabolism | 165 Kb | 10 Kb |
No. of predicted genes in Nitrogen metabolism | 27 | 12 |
Total aligned bases assigned in Phosphorus metabolism | 2.86 Kb | 29 Kb |
No. of predicted genes in Phosphorus metabolism | 4 | 33 |
Total aligned bases assigned in Sulfur metabolism | 138 Kb | 15 Kb |
No. of predicted genes in Sulfur metabolism | 16 | 14 |
Subsystems in Carbon Fixation | Total No. of Bases Aligned in Kilo Bases (kb) | |
---|---|---|
GAL | MUP | |
Calvin–Benson cycle | 26 | 4.5 |
Calvin–Benson–Bassham cycle | 25.8 | 3.1 |
Carboxysome | 34.8 | 0.4 |
CO2 uptake carboxysome | 18.1 | 1.9 |
Ethylmalonyl-CoA pathway of C2 assimilation | 18.5 | 2.5 |
Ethylmalonyl-CoA pathway of C2 assim., GJO | 18.5 | 2.5 |
Pentose phosphate pathway | 41.3 | 3.1 |
Pentose phosphate pathway in plants | 40.6 | 2.7 |
Photorespiration (oxidative C2 cycle) | 15.6 | 10.9 |
Photorespiration (oxidative C2 cycle) plants | 32 | 6.7 |
TCA Cycle | 0.8 | 19.3 |
TCA cycle in plants | 11.7 | 16.5 |
Total No. of protein coding genes | 26 | 39 |
Total No. of KO | 26 | 38 |
EC Number | Enzyme Description | Taxonomic Representation (Family Level) | Coverage (%) | Identity (%) |
---|---|---|---|---|
1.1.1.37 | Malate dehydrogenase | Halobacteriaceae | 100 | 91 |
1.1.1.40 | NADP-dependent malic enzyme | Halobacteriaceae | 88.4 | 86 |
4.1.1.31 | Phosphoenolpyruvate carboxylase | Haloferacaceae | 8 | 79 |
EC Number | Enzyme Description | Taxonomic Representation (Family Level) | Coverage (%) | Identity (%) |
---|---|---|---|---|
1.8.98.1 | CoB-CoM heterodisulfide reductase subunit C | Burkholderiaceae | 71 | 100 |
Dimethylamine methyltransferase corrinoid protein | Bradyrhizobiaceae | 100 | 95 | |
Dimethylamine:corrinoid methyltransferase | Bradyrhizobiaceae | 100 | 91 | |
1.5.99.9 | F420-dependent methylenetetrahydromethanopterin dehydrogenase | Burkholderiaceae | 18 | 100 |
Formylmethanofuran dehydrogenase (molybdenum) operon gene G | Bradyrhizobiaceae | 95 | 52 | |
1.2.99.5 | Formylmethanofuran dehydrogenase (molybdenum) subunit C | Bradyrhizobiaceae | 81 | 86 |
1.2.99.5 | Formylmethanofuran dehydrogenase (tungsten) subunit D | Enterobacteriaceae | 50 | 100 |
1.2.99.5 | Formylmethanofuran dehydrogenase subunit B | Comamonadaceae Bradyrhizobiaceae | 59 99.5 | 99 91 |
2.3.1.101 | Formylmethanofuran–tetrahydromethanopterin N-formyltransferase | Bacteria | 100 | 100 |
2.8.4.1 | Methyl coenzyme M reductase gamma subunit | Comamonadaceae Bradyrhizobiaceae | 100 63 | 100 91 |
2.8.4.1 | Methyl coenzyme M reductase I beta subunit | Burkholderiaceae | 90 | 81 |
2.8.4.1 | Methyl coenzyme M reductase I alpha subunit | Bradyrhizobiaceae | 100 | 83–96 |
2.8.4.1 | Methyl coenzyme M reductase II alpha subunit | Thermaceae | 26 | 97 |
2.8.4.1 | Methyl coenzyme M reductase I gamma subunit | Burkholderiaceae | 73 | 98 |
2.8.4.1 | Methyl coenzyme M reductase II gamma subunit | Burkholderiaceae | 41 | 98 |
Monomethylamine methyltransferase corrinoid protein | Bradyrhizobiaceae | 97 | 80 | |
Monomethylamine permease | Bacilli | 100 | 100 | |
Monomethylamine:corrinoid methyltransferase | Burkholderiaceae | 82 | 96 | |
pyrrolysine-containing | Comamonadaceae | 98 | 79.5 | |
2.1.1.86 | N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit G | Bradyrhizobiaceae | 68 | 79 |
2.1.1.86 | N5-methyltetrahydromethanopterin:coenzyme M methyltransferase subunit H | Rhodothermus | 87 | 76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tilahun, L.; Asrat, A.; Wessel, G.M.; Simachew, A. Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles. Microorganisms 2021, 9, 2211. https://doi.org/10.3390/microorganisms9112211
Tilahun L, Asrat A, Wessel GM, Simachew A. Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles. Microorganisms. 2021; 9(11):2211. https://doi.org/10.3390/microorganisms9112211
Chicago/Turabian StyleTilahun, Lulit, Asfawossen Asrat, Gary M. Wessel, and Addis Simachew. 2021. "Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles" Microorganisms 9, no. 11: 2211. https://doi.org/10.3390/microorganisms9112211
APA StyleTilahun, L., Asrat, A., Wessel, G. M., & Simachew, A. (2021). Prediction of Genes That Function in Methanogenesis and CO2 Pathways in Extremophiles. Microorganisms, 9(11), 2211. https://doi.org/10.3390/microorganisms9112211