Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Cultures
2.2. GC-MS Analysis of 2-Heptanone
2.3. Sequence Analysis
3. Results and Discussion
3.1. 2-Heptanone Production in Bacterial Cultures
3.2. Biosynthetic Genes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vanengelsdorp, D.; Meixner, M.D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. Invertebr. Pathol. 2010, 103, S80–S95. [Google Scholar] [CrossRef]
- Rosenkranz, P.; Aumeier, P.; Ziegelmann, B. Biology and control of Varroa destructor. J. Invertebr. Pathol. 2010, 103, S96–S119. [Google Scholar] [CrossRef]
- Lodesani, M.; Costa, C. Limits of chemotherapy in beekeeping: Development of resistance and the problem of residues. Bee World 2005, 86, 102–109. [Google Scholar] [CrossRef]
- Tauber, J.P.; Collins, W.R.; Schwarz, R.S.; Chen, Y.; Grubbs, K.; Huang, Q.; Lopez, D.; Peterson, R.; Evans, J.D. Natural product medicines for honey bees: Perspective and protocols. Insects 2019, 10, 356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzgall, P.; Kirsch, P.; Cork, A. Sex pheromones and their impact on pest management. J. Chem. Ecol. 2010, 36, 80–100. [Google Scholar] [CrossRef]
- Beemelmanns, C.; Guo, H.; Rischer, M.; Poulsen, M. Natural products from microbes associated with insects. Beilstein J. Org. Chem. 2016, 12, 314–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Tan, K. Honey bee alarm pheromone mediates communication in plant-pollinator-predator interactions. Insects 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plettner, E.; Eliash, N.; Singh, N.K.; Pinnelli, G.R.; Soroker, V. The chemical ecology of host-parasite interaction as a target of Varroa destructor control agents. Apidologie 2017, 48, 78–92. [Google Scholar] [CrossRef] [Green Version]
- Manyi-Loh, C.E.; Ndip, R.N.; Clarke, A.M. Volatile compounds in honey: A review on their involvement in aroma, botanical origin determination and potential biomedical activities. Int. J. Mol. Sci. 2011, 12, 9514–9532. [Google Scholar] [CrossRef] [Green Version]
- Shearer, D.A.; Boch, R. 2-Heptanone in the mandibular gland secretion of the honey-bee. Nature 1965, 206, 530. [Google Scholar] [CrossRef]
- Rieth, J.P.; Wilson, W.T.; Levin, M.D. Repelling Honeybees from Insecticide-Treated Flowers with 2-Heptanone. J. Apic. Res. 1986, 25, 78–84. [Google Scholar] [CrossRef]
- Baracchi, D.; Cabirol, A.; Devaud, J.-M.; Haase, A.; d’Ettorre, P.; Giurfa, M. Pheromone components affect motivation and induce persistent modulation of associative learning and memory in honey bees. Commun. Biol. 2020, 3, 447. [Google Scholar] [CrossRef] [PubMed]
- Papachristoforou, A.; Kagiava, A.; Papaefthimiou, C.; Termentzi, A.; Fokialakis, N.; Skaltsounis, A.-L.; Watkins, M.; Arnold, G.; Theophilidis, G. The Bite of the Honeybee: 2-Heptanone Secreted from Honeybee Mandibles during a Bite Acts as a Local Anaesthetic in Insects and Mammals. PLoS ONE 2012, 7, e47432. [Google Scholar] [CrossRef] [Green Version]
- Erickson, E.; Degrandi-Hoffman, G.; Becker, C.; Whitson, R.; Deeby, T. Control of Parasitic Mites of Honey Bees. US Patent 2005/0090560A1, 28 April 2005. [Google Scholar]
- Borries, F.A.; Kudla, A.M.; Kim, S.; Allston, T.D.; Eddingsaas, N.C.; Shey, J.; Orts, W.J.; Klamczynski, A.P.; Glenn, G.M.; Miri, M.J. Ketalization of 2-heptanone to prolong its activity as mite repellant for the protection of honey bees. J. Sci. Food Agric. 2019, 99, 6267–6277. [Google Scholar] [CrossRef]
- Zhu, M.; Xu, X.; Li, Y.; Wang, P.; Niu, S.; Zhang, K.; Huang, X. Biosynthesis of the Nematode Attractant 2-Heptanone and Its Co-evolution Between the Pathogenic Bacterium Bacillus nematocida and Non-pathogenic Bacterium Bacillus subtilis. Front. Microbiol. 2019, 10, 1489. [Google Scholar] [CrossRef]
- Fridman, E.; Wang, J.; Iijima, Y.; Froehlich, J.E.; Gang, D.R.; Ohlrogge, J.; Pichersky, E. Metabolic, genomic, and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant. Cell 2005, 17, 1252–1267. [Google Scholar] [CrossRef] [Green Version]
- Gallegos, J.; Arce, C.; Jordano, R.; Arce, L.; Medina, L.M. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry. Food Chem. 2017, 220, 362–370. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, J.; Li, C.; Ma, Y. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Microbiol. Open 2019, 8, e00813. [Google Scholar] [CrossRef] [Green Version]
- Lamei, S.; Stephan, J.G.; Riesbeck, K.; Vasquez, A.; Olofsson, T.; Nilson, B.; de Miranda, J.R.; Forsgren, E. The secretome of honey bee-specific lactic acid bacteria inhibits Paenibacillus larvae growth. J. Apic. Res. 2019, 58, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Butler, È.; Alsterfjord, M.; Olofsson, T.C.; Karlsson, C.; Malmström, J.; Vásquez, A. Proteins of novel lactic acid bacteria from Apis mellifera mellifera: An insight into the production of known extra-cellular proteins during microbial stress. BMC Microbiol. 2013, 13, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokop, Z.P.; Horton, M.A.; Newton, I.L.G. Interactions between cooccurring lactic acid bacteria in honey bee hives. Appl. Environ. Microbiol. 2015, 81, 7261–7270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribière, C.; Hegarty, C.; Stephenson, H.; Whelan, P.; O’Toole, P.W. Gut and Whole-Body Microbiota of the Honey Bee Separate Thriving and Non-thriving Hives. Microb. Ecol. 2019, 78, 195–205. [Google Scholar] [CrossRef] [PubMed]
- McFrederick, Q.S.; Thomas, J.M.; Neff, J.L.; Vuong, H.Q.; Russell, K.A.; Hale, A.R.; Mueller, U.G. Flowers and Wild Megachilid Bees Share Microbes. Microb. Ecol. 2016, 73, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Corby-Harris, V.; Maes, P.; Anderson, K.E. The Bacterial Communities Associated with Honey Bee (Apis mellifera) Foragers. PLoS ONE 2014, 9, e95056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, K.E.; Sheehan, T.H.; Mott, B.M.; Maes, P.; Snyder, L.; Schwan, M.R.; Walton, A.; Jones, B.M.; Corby-Harris, V. Microbial ecology of the hive and pollination landscape: Bacterial associates from floral nectar, the alimentary tract and stored food of honey bees (Apis mellifera). PLoS ONE 2013, 8, e83125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccà, M.L.; Lodesani, M. Isolation of bacterial microbiota associated to honey bees and evaluation of potential biocontrol agents of Varroa destructor. Benef. Microbes 2020, 11, 641–654. [Google Scholar] [CrossRef]
- Manici, L.M.; Saccà, M.L.; Lodesani, M. Secondary Metabolites Produced by Honey Bee-Associated Bacteria for Apiary Health: Potential Activity of Platynecine. Curr. Microbiol. 2020, 77, 3441–3449. [Google Scholar] [CrossRef]
- Endo, A.; Salminen, S. Honeybees and beehives are rich sources for fructophilic lactic acid bacteria. Syst. Appl. Microbiol. 2013, 36, 444–448. [Google Scholar] [CrossRef]
- Zallot, R.; Oberg, N.; Gerlt, J.A. The EFI Web Resource for Genomic Enzymology Tools: Leveraging Protein, Genome, and Metagenome Databases to Discover Novel Enzymes and Metabolic Pathways. Biochemistry 2019, 58, 4169–4182. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Zuckerkandl, E.; Pauling, L. Evolutionary Divergence and Convergence in Proteins. In Evolving Genes and Proteins; Bryson, V., Vogel, H.J., Eds.; Academic Press: Cambridge, MA, USA, 1965; pp. 97–166. [Google Scholar]
- Silva-Junior, E.A.; Ruzzini, A.C.; Paludo, C.R.; Nascimento, F.S.; Currie, C.R.; Clardy, J.; Pupo, M.T. Pyrazines from bacteria and ants: Convergent chemistry within an ecological niche. Sci. Rep. 2018, 8, 2595. [Google Scholar] [CrossRef] [Green Version]
- Riley, R.G.; Silverstein, R.M.; Moser, J.C. Isolation, identification, synthesis and biological activity of volatile compounds from the heads of Atta ants. J. Insect Physiol. 1974, 20, 1629–1637. [Google Scholar] [CrossRef]
- Boch, R.; Shearer, D.A.; Petrasovits, A. Efficacies of two alarm substances of the honey bee. J. Insect Physiol. 1970, 16, 17–24. [Google Scholar] [CrossRef]
- Breed, M.D.; Guzmán-Novoa, E.; Hunt, G.J. Defensive behavior of honey bees: Organization, Genetics, and Comparisons with Other Bees. Annu. Rev. Entomol. 2003, 49, 271–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olofsson, T.C.; Butler, E.; Markowicz, P.; Lindholm, C.; Larsson, L.; Vasquez, A. Lactic acid bacterial symbionts in honeybees—An unknown key to honey’s antimicrobial and therapeutic activities. Int. Wound J. 2014, 13, 668–679. [Google Scholar] [CrossRef] [PubMed]
- Corby-Harris, V.; Snyder, L.A.; Schwan, M.R.; Maes, P.; McFrederick, Q.S.; Anderson, K.E. Origin and Effect of Alpha 2.2 Acetobacteraceae in Honey Bee Larvae and Description of Parasaccharibacter apium gen. nov., sp. nov. Appl. Environ. Microbiol. 2014, 80, 7460–7472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, J.-H.; Lee, J.-Y.; Hyun, D.-W.; Jung, M.-J.; Bae, J.-W. Bombella apis sp. nov., an acetic acid bacterium isolated from the midgut of a honey bee. Int. J. Syst. Evol. Microbiol. 2017, 67, 2184–2188. [Google Scholar] [CrossRef] [PubMed]
- Peghaire, E.; Moné, A.; Delbac, F.; Debroas, D.; Chaucheyras-Durand, F.; El Alaoui, H. A Pediococcus strain to rescue honeybees by decreasing Nosema ceranae-and pesticide-induced adverse effects. Pestic. Biochem. Physiol. 2020, 163, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Kalinger, R.S.; Pulsifer, I.P.; Hepworth, S.R.; Rowland, O. Fatty Acyl Synthetases and Thioesterases in Plant Lipid Metabolism: Diverse Functions and Biotechnological Applications. Lipids 2020, 55, 25–455. [Google Scholar] [CrossRef]
- Saccà, M.L.; Manici, L.M. Honey bee-associated bacteria as producers of bioactive compounds for protecting hives. A biosynthetic gene-based approach. Microbiol. Res. 2021, 252, 126860. [Google Scholar] [CrossRef]
- Alberoni, D.; Baffoni, L.; Gaggìa, F.; Ryan, P.M.; Murphy, K.; Ross, P.R.; Stanton, C.; Di Gioia, D. Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Benef. Microbes 2018, 9, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Rering, C.C.; Beck, J.J.; Hall, G.W.; McCartney, M.M.; Vannette, R.L. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator. New Phytol. 2018, 220, 750–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Bacterial Strain | ng/mL |
---|---|
Acetobacteraceae bacterium BO_L(L)1 | 2.6 ± 0.7 |
Acetobacteraceae bacterium IM_G(L)3 | 1.9 ± 0.1 |
Bacillus thuringiensis BI_G1 | n.d. |
Bacillus thuringiensis PD_L1 | 2.2 ± 0.1 |
Bacillus thuringiensis RN_G(L)2 | n.d. |
Bifidobacterium asteroides LE_V(L)2 | tr |
Apilactobacillus kunkeei BO_G1 | tr |
Apilactobacillus kunkeei LE_L(L)2 | tr |
Apilactobacillus kunkeei LG_V1 | 1.5 ± 0.3 |
Cluster N. | UniProt ID | Description | Species |
---|---|---|---|
1 | A0A084J093 | Acyl-CoA thioester hydrolase| YbgC/YbaW family protein | Bacillus mycoides |
1 | A0A0B5WC13 | Acyl-CoA thioesterase | Bacillus thuringiensis |
1 | A0A0D7XW04 | Acyl-CoA thioester hydrolase | Bacillus amyloliquefaciens |
1 | A0A0G8F1L1 | 4-hydroxybenzoyl-CoA thioesterase | Bacillus cereus |
1 | A0A0J7ARV0 | 4HBT domain-containing protein | Bacillus cereus |
1 | A0A151V143 | 4-hydroxybenzoyl-CoA thioesterase family active site | Bacillus cereus |
1 | A0A162TGX7 | Acyl-CoA thioesterase | Bacillus cereus |
1 | A0A1D3PLM8 | Acyl-CoA thioesterase | Bacillus toyonensis |
1 | A0A1G4L174 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
1 | A0A1S7F927 | 4HBT domain-containing protein | Bacillus thuringiensis |
1 | A0A1T2PXZ8 | Acyl-CoA thioesterase | Bacillus cereus |
1 | A0A1Y0XGB6 | Acyl-CoA thioesterase YneP | Bacillus amyloliquefaciens |
1 | A0A242ZAB1 | 4HBT domain-containing protein | Bacillus thuringiensis serovar londrina |
1 | A0A243IF77 | 4HBT domain-containing protein | Bacillus thuringiensis subsp. konkukian |
1 | A0A243J5G2 | 4HBT domain-containing protein | Bacillus thuringiensis serovar pirenaica |
1 | A0A2A2P5K3 | 4HBT domain-containing protein | Bacillus toyonensis |
1 | A0A2I5JZ13 | YbgC/FadM family acyl-CoA thioesterase | Bacillus velezensis |
1 | A0A2V1ZRD1 | Acyl-CoA thioester hydrolase | Bacillus sp. |
1 | A0A482G407 | Putative acyl-CoA thioesterase | Bacillus nematocida |
1 | A0A4R4B7S5 | Acyl-CoA thioester hydrolase | Bacillus thuringiensis |
1 | A0A4Y6EXE5 | Acyl-CoA thioesterase | Bacillus tropicus |
1 | A0A5B8PKI2 | Acyl-CoA thioesterase | Bacillus cereus |
1 | A0A6D1TAX7 | Acyl-CoA thioesterase | Bacillus sp. |
1 | A7Z572 | YbgC/FadM family acyl-CoA thioesterase | Bacillus velezensis |
1 | B7IRQ3 | Putative 4-hydroxybenzoyl-CoA thioesterase | Bacillus cereus |
1 | C3G682 | 4-hydroxybenzoyl-CoA thioesterase | Bacillus thuringiensis serovar andalousiensis |
1 | I2C620 | 4HBT domain-containing protein | Bacillus amyloliquefaciens |
2 | A0A080KJT2 | Putative thioesterase | Gilliamella apicola |
2 | A0A1B9JPC2 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9JYC2 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9L9A8 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9LT81 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9M7F3 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9MQ32 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9MSC5 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
2 | A0A1B9NKB4 | 4-hydroxybenzoyl-CoA thioesterase | Gilliamella apicola |
3 | A0A1M6K1F7 | Acyl-CoA thioester hydrolase | Roseomonas rosea |
3 | A0A1Q2YQW1 | Acyl-CoA thioester hydrolase YbgC | Roseomonas sp. |
3 | A0A1V2H861 | 4-hydroxybenzoyl-CoA thioesterase | Roseomonas deserti |
3 | A0A354VA44 | Tol-pal system-associated acyl-CoA thioesterase | Acetobacteraceae bacterium |
3 | A0A379N4G1 | Acyl-CoA thioester hydrolase YbgC | Roseomonas mucosa |
3 | A0A4Q4CV88 | YbgC/FadM family acyl-CoA thioesterase | Acetobacteraceae bacterium |
3 | D5RRA5 | Putative tol-pal system-associated acyl-CoA thioesterase | Roseomonas cervicalis |
4 | C2Z9V0 | 4-hydroxybenzoyl-CoA thioesterase | Bacillus cereus |
4 | J8F5A1 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
4 | J8LJ53 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
4 | R8L9R0 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
4 | R8P530 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
4 | R8QEN4 | YbgC/YbaW family acyl-CoA thioester hydrolase | Bacillus cereus |
5 | A0A1L2Z0L8 | 1|4-dihydroxy-2-naphthoyl-CoA hydrolase | Bacillus thuringiensis subsp. israelensis |
5 | A0A2A2NYU0 | Thioesterase | Bacillus toyonensis |
5 | A0A2A7HHQ3 | Acyl-CoA thioesterase | Bacillus cereus |
5 | A0A2A7W716 | Thioesterase | Bacillus wiedmannii |
5 | A0A2B8HQR2 | Acyl-CoA thioesterase | Bacillus thuringiensis |
5 | A0A4U2U5Z0 | Acyl-CoA thioesterase | Bacillus cereus |
6 | A0A1B9JQR5 | Tol-pal system-associated acyl-CoA thioesterase | Gilliamella apicola |
6 | A0A1B9M1U5 | Tol-pal system-associated acyl-CoA thioesterase | Gilliamella apicola |
6 | A0A1B9MHG5 | Tol-pal system-associated acyl-CoA thioesterase | Gilliamella apicola |
6 | A0A1B9NL25 | Tol-pal system-associated acyl-CoA thioesterase | Gilliamella apicola |
7 | A0A1R0FB95 | (3S)-malyl-CoA thioesterase | Bartonella apis |
7 | A0A1U9ME42 | (3S)-malyl-CoA thioesterase | Bartonella apis |
7 | A0A1U9MKW6 | (3S)-malyl-CoA thioesterase | Bartonella apis |
8 | A0A2C6J477 | 4-hydroxybenzoyl-CoA thioesterase | Parasaccharibacter apium |
8 | A0A6N7F3K1 | YbgC/FadM family acyl-CoA thioesterase | Bombella apis |
8 | A0A7U7G6Z5 | 4-hydroxybenzoyl-CoA thioesterase family active site | Parasaccharibacter apium |
9 | A0A062X6R3 | Acyl-CoA thioester hydrolase| YbgC/YbaW family | Ligilactobacillus animalis |
9 | R0ET36 | Acyl-CoA thioester hydrolase| YbgC/YbaW family | Pediococcus acidilactici |
S1 | B5B0E4 | Thioesterase-like protein | Lycopersicon hirsutum f glabratum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccà, M.L.; Bianchi, G.; Lo Scalzo, R. Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms 2021, 9, 2218. https://doi.org/10.3390/microorganisms9112218
Saccà ML, Bianchi G, Lo Scalzo R. Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms. 2021; 9(11):2218. https://doi.org/10.3390/microorganisms9112218
Chicago/Turabian StyleSaccà, Maria Ludovica, Giulia Bianchi, and Roberto Lo Scalzo. 2021. "Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria" Microorganisms 9, no. 11: 2218. https://doi.org/10.3390/microorganisms9112218
APA StyleSaccà, M. L., Bianchi, G., & Lo Scalzo, R. (2021). Biosynthesis of 2-Heptanone, a Volatile Organic Compound with a Protective Role against Honey Bee Pathogens, by Hive Associated Bacteria. Microorganisms, 9(11), 2218. https://doi.org/10.3390/microorganisms9112218