Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Bacterial Identification and Antimicrobial Susceptibility Testing
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Who.int. Antimicrobial Resistance. Available online: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed on 11 July 2020).
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Who.int. WHO Publishes List of Bacteria for which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 11 July 2020).
- Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010, 362, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The Burden of Health Care-Associated Infection Worldwide. Available online: https://www.who.int/infection-prevention/publications/burden_hcai/en/. (accessed on 12 July 2020).
- Vincent, J.-L.; Rello, J.; Marshall, J.; Silva, E.; Anzueto, A.; Martin, C.D.; Moreno, R.; Lipman, J.; Gomersall, C.; Sakr, Y.; et al. International Study of the Prevalence and Outcomes of Infection in Intensive Care Units. JAMA 2009, 302, 2323–2329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozer, B.; Ozbakıs Akkurt, B.C.; Duran, N.; Onlen, Y.; Savas, L.; Turhanoglu, S. Evaluation of nosocomial infections and risk factors in critically ill patients. Med. Sci. Monit. 2011, 17, 17–22. [Google Scholar] [CrossRef] [Green Version]
- Ylipalosaari, P.; Ala-Kokko, T.I.; Laurila, J.; Ohtonen, P.; Syrjälä, H. Intensive care acquired infection is an independent risk factor for hospital mortality: A prospective cohort study. Crit. Care 2006, 10, R66. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.E. High antimicrobial resistant rates among Gram-negative pathogens in intensive care units. A retrospective study at a tertiary care hospital in Southwest Saudi Arabia. Saudi Med. J. 2018, 39, 1035–1043. [Google Scholar] [CrossRef] [Green Version]
- Shorman, M.; Al-Tawfiq, J.A. Risk factors associated with vancomycin-resistant enterococcus in intensive care unit settings in saudi arabia. Interdiscip. Perspect. Infect. Dis. 2013, 2013, 369674. [Google Scholar] [CrossRef] [Green Version]
- Somily, A.M.; Alsubaie, S.S.; BinSaeed, A.A.; Torchyan, A.A.; Alzamil, F.A.; Al-Aska, A.I.; Al-Khattaf, F.S.; Khalifa, L.A.; Al-Thawadi, S.I.; Alaidan, A.A.; et al. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae in the neonatal intensive care unit: Does vancomycin play a role? Am. J. Infect. Control 2014, 42, 277–282. [Google Scholar] [CrossRef]
- Amer, M.R.; Akhras, N.S.; Mahmood, W.A.; Al-Jazairi, A.S. Antimicrobial stewardship program implementation in a medical intensive care unit at a tertiary care hospital in Saudi Arabia. Ann. Saudi Med. 2013, 33, 547–554. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.; Carmeli, Y.; Falagas, M.; Giske, C.; Harbarth, S.; Hindler, J.; Kahlmeter, G.; Olsson-Liljequist, B. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maseda, E.; Mensa, J.; Valía, J.C.; Gomez-Herreras, J.I.; Ramasco, F.; Samso, E.; Chiveli, M.A.; Pereira, J.; González, R.; Aguilar, G.; et al. Bugs, hosts and ICU environment: Countering pan-resistance in nosocomial microbiota and treating bacterial infections in the critical care setting. Rev. Esp. Anestesiol. Reanim. 2014, 61, e1–e19. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, N.P.; Acharya, S.P.; Mishra, S.K.; Parajuli, K.; Rijal, B.P.; Pokhrel, B.M. High burden of antimicrobial resistance among gram negative bacteria causing healthcare associated infections in a critical care unit of Nepal. Antimicrob. Resist. Infect. Control 2017, 6, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strich, J.R.; Palmore, T.N. Preventing Transmission of Multidrug-Resistant Pathogens in the Intensive Care Unit. Infect. Dis. Clin. N. Am. 2017, 31, 535–550. [Google Scholar] [CrossRef]
- Fares, A. Factors influencing the seasonal patterns of infectious diseases. Int. J. Prev. Med. 2013, 4, 128. [Google Scholar] [PubMed]
- Bianco, A.; Capano, M.S.; Mascaro, V.; Pileggi, C.; Pavia, M. Prospective surveillance of healthcare-associated infections and patterns of antimicrobial resistance of pathogens in an Italian intensive care unit. Antimicrob. Resist. Infect. Control 2018, 7, 48. [Google Scholar] [CrossRef] [PubMed]
- Sligl, W.I.; Dragan, T.; Smith, S.W. Nosocomial Gram-negative bacteremia in intensive care: Epidemiology, antimicrobial susceptibilities, and outcomes. Int. J. Infect. Dis. 2015, 37, 129–134. [Google Scholar] [CrossRef] [Green Version]
- Lachhab, Z.; Frikh, M.; Maleb, A.; Kasouati, J.; Doghmi, N.; Ben Lahlou, Y.; Belefquih, B.; Lemnouer, A.; Elouennass, M. Bacteraemia in Intensive Care Unit: Clinical, Bacteriological, and Prognostic Prospective Study. Can. J. Infect. Dis. Med. Microbiol. 2017, 2017, 4082938. [Google Scholar] [CrossRef]
- Vom Steeg, L.G.; Klein, S.L. SeXX Matters in Infectious Disease Pathogenesis. PLoS Pathog. 2016, 12, e1005374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mythri, H.; Kashinath, K. Nosocomial infections in patients admitted in intensive care unit of a tertiary health center, India. Ann. Med. Health Sci. Res. 2014, 4, 738–741. [Google Scholar] [CrossRef] [Green Version]
- Iwuafor, A.A.; Ogunsola, F.T.; Oladele, R.O.; Oduyebo, O.O.; Desalu, I.; Egwuatu, C.C.; Nnachi, A.U.; Akujobi, C.N.; Ita, I.O.; Ogban, G.I. Incidence, Clinical Outcome and Risk Factors of Intensive Care Unit Infections in the Lagos University Teaching Hospital (LUTH), Lagos, Nigeria. PLoS ONE 2016, 11, e0165242. [Google Scholar] [CrossRef]
- Oliveira, P.M.N.; Buonora, S.N.; Souza, C.L.P.; Simões Júnior, R.; Silva, T.C.D.; Bom, G.J.T.; Teixeira, C.; Silva, A. Surveillance of multidrug-resistant bacteria in pediatric and neonatal intensive care units in Rio de Janeiro State, Brazil. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pokhrel, B.; Koirala, T.; Shah, G.; Joshi, S.; Baral, P. Bacteriological profile and antibiotic susceptibility of neonatal sepsis in neonatal intensive care unit of a tertiary hospital in Nepal. BMC Pediatr. 2018, 18, 208. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, Z.; Huang, W.; Yan, L.; Tang, J.; Liu, C.W. Epidemiologic analysis and control strategy of Klebsiella pneumoniae infection in intensive care units in a teaching hospital of People’s Republic of China. Infect. Drug Resist. 2019, 12, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galán, J.C.; González-Candelas, F.; Rolain, J.M.; Cantón, R. Antibiotics as selectors and accelerators of diversity in the mechanisms of resistance: From the resistome to genetic plasticity in the β-lactamases world. Front. Microbiol. 2013, 4, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ak, O.; Batirel, A.; Ozer, S.; Çolakoğlu, S. Nosocomial infections and risk factors in the intensive care unit of a teaching and research hospital: A prospective cohort study. Med. Sci. Monit. 2011, 17, 29–34. [Google Scholar] [CrossRef] [PubMed]
- Moremi, N.; Claus, H.; Mshana, S.E. Antimicrobial resistance pattern: A report of microbiological cultures at a tertiary hospital in Tanzania. BMC Infect. Dis. 2016, 16, 756. [Google Scholar] [CrossRef] [Green Version]
- Frattari, A.; Savini, V.; Polilli, E.; Di Marco, G.; Lucisano, G.; Corridoni, S.; Spina, T.; Costantini, A.; Nicolucci, A.; Fazii, P.; et al. Control of Gram-negative multi-drug resistant microorganisms in an Italian ICU: Rapid decline as a result of a multifaceted intervention, including conservative use of antibiotics. Int. J. Infect. Dis. 2019, 84, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Kumari, H.B.; Nagarathna, S.; Chandramuki, A. Antimicrobial resistance pattern among aerobic gram-negative bacilli of lower respiratory tract specimens of intensive care unit patients in a neurocentre. Indian J. Chest Dis. Allied Sci. 2007, 49, 19–22. [Google Scholar]
- Tran, G.M.; Ho-Le, T.P.; Ha, D.T.; Tran-Nguyen, C.H.; Nguyen, T.S.M.; Pham, T.T.N.; Nguyen, T.A.; Nguyen, D.A.; Hoang, H.Q.; Tran, N.V.; et al. Patterns of antimicrobial resistance in intensive care unit patients: A study in Vietnam. BMC Infect. Dis. 2017, 17, 429. [Google Scholar] [CrossRef] [Green Version]
- Moolchandani, K.; Sastry, A.S.; Deepashree, R.; Sistla, S.; Harish, B.N.; Mandal, J. Antimicrobial Resistance Surveillance among Intensive Care Units of a Tertiary Care Hospital in Southern India. J. Clin. Diagn. Res. 2017, 11, DC01–DC07. [Google Scholar] [CrossRef]
- Leelarasamee, A.; Janyapoon, K. Antimicrobial resistance of 100 serial gram-negative isolates in two intensive care units. J. Med. Assoc. Thai. 1992, 75, 680–687. [Google Scholar]
- Siwakoti, S.; Subedi, A.; Sharma, A.; Baral, R.; Bhattarai, N.R.; Khanal, B. Incidence and outcomes of multidrug-resistant gram-negative bacteria infections in intensive care unit from Nepal—A prospective cohort study. Antimicrob. Resist. Infect. Control 2018, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana. Antimicrob. Resist. Infect. Control 2018, 7, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonomo, R.A.; Szabo, D. Mechanisms of Multidrug Resistance in Acinetobacter Species and Pseudomonas aeruginosa. Clin. Infect. Dis. 2006, 43, S49–S56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanin, A.; Eladawy, A.; Mohamed, H.; Salah, Y.; Lotfy, A.; Mostafa, H.; Ghaith, D.; Mukhtar, A. Prevalence of extensively drug-resistant gram negative bacilli in surgical intensive care in Egypt. Pan Afr. Med. J. 2014, 19, 177. [Google Scholar] [CrossRef]
- Souza, G.L.; Rocha, R.F.d.A.; Silveira, A.D.N.; Dias Duarte de Carvalho, H.; Oliveira, C.D.M.; Leite, E.M.M.; Silva, E.U.; Giarola, L.G.; Couto, B.R.G.M.; Starling, C.E.F. 2475. Incidence of Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Gram-Negative Bacteria in Brazilian Intensive Care Units. Open Forum Infect. Dis. 2019, 6, S857. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Chen, X.; Huang, D.; Wei, L. Distribution and drug resistance profiles of pathogenic bacteria isolated from patients with nosocomial infection in intensive care unit. Nan Fang Yi Ke Da Xue Xue Bao 2012, 32, 1513–1515. [Google Scholar]
- Phu, V.D.; Wertheim, H.F.; Larsson, M.; Nadjm, B.; Dinh, Q.D.; Nilsson, L.E.; Rydell, U.; Le, T.T.; Trinh, S.H.; Pham, H.M.; et al. Burden of Hospital Acquired Infections and Antimicrobial Use in Vietnamese Adult Intensive Care Units. PLoS ONE 2016, 11, e0147544. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Wei, H.; Zhao, Y.; Shang, L.; Di, L.; Lyu, C.; Liu, J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn. J. Basic Med. Sci. 2019, 19, 86. [Google Scholar] [CrossRef] [Green Version]
Category | Number (n) | Percentage (%) | |
---|---|---|---|
Gram-negative bacteria [437 (76.7%)] | K. pneumoniae | 120 | 21.0 |
P. aeruginosa | 67 | 11.8 | |
P. mirabilis | 66 | 11.6 | |
E. coli | 63 | 11.0 | |
A. baumannii | 39 | 6.8 | |
E. aerogenes | 16 | 2.8 | |
Providencia stuartii | 15 | 2.6 | |
S. marcescens | 15 | 2.6 | |
Others | 36 | 6.3 | |
Gram-positive bacteria [133 (23.3%)] | Staphylococcus aureus | 75 | 13.2 |
Enterococcus faecalis | 12 | 2.1 | |
Streptococcus spp. | 19 | 3.3 | |
Staphylococcus capitis | 5 | 0.9 | |
Staphylococcus haemolyticus | 4 | 0.7 | |
Staphylococcus epidermidis | 3 | 0.5 | |
Others | 15 | 2.6 | |
Gender | Males | 313 | 55.0 |
Females | 257 | 45.0 | |
Quarter | Quarter 1 | 250 | 43.9 |
Quarter 2 | 136 | 23.9 | |
Quarter 3 | 76 | 13.3 | |
Quarter 4 | 108 | 19.0 | |
Age (in years) | >75 | 199 | 35.0 |
61–75 | 118 | 20.7 | |
46–60 | 92 | 16.1 | |
31–45 | 52 | 9.1 | |
16–30 | 69 | 12.1 | |
≤15 | 40 | 7.0 | |
Type of specimen | Blood | 164 | 28.8 |
Urine | 134 | 23.5 | |
Wound swab | 94 | 16.5 | |
Sputum | 75 | 13.2 | |
Nasal swab | 54 | 9.5 | |
Tracheal wash | 23 | 4.0 | |
Conjunctival swab | 18 | 3.2 | |
Others | 8 | 1.4 |
Category | Number (n) | Percentage (%) | |
---|---|---|---|
Gender | Males | 221 | 50.6 |
Females | 216 | 49.4 | |
Name of the Gram-negative Bacteria | K. pneumoniae | 120 | 27.5 |
P. aeruginosa | 67 | 15.3 | |
P. mirabilis | 66 | 15.1 | |
E. coli | 63 | 14.4 | |
A. baumannii | 39 | 8.9 | |
E. aerogenes | 16 | 3.7 | |
Providencia stuartii | 15 | 3.4 | |
S. marcescens | 15 | 3.4 | |
Others | 36 | 8.2 | |
Quarter | Quarter 1 | 207 | 47.4 |
Quarter 2 | 108 | 24.7 | |
Quarter 3 | 48 | 11.0 | |
Quarter 4 | 74 | 16.9 | |
Age (in years) | >75 | 141 | 32.3 |
61–75 | 95 | 21.7 | |
46–60 | 78 | 17.8 | |
31–45 | 38 | 8.7 | |
16–30 | 58 | 13.3 | |
≤15 | 27 | 6.2 | |
Type of specimen | Urine | 131 | 30.0 |
Blood | 112 | 25.6 | |
Wound swab | 86 | 19.7 | |
Sputum | 65 | 14.9 | |
Tracheal wash | 20 | 4.6 | |
Conjunctival swab | 17 | 3.9 | |
Others | 6 | 1.4 |
Microorganism | <3 abs * | MDR ^ | XDR ˜ | PDR ** |
---|---|---|---|---|
K. pneumoniae (n = 120) | 14 | 100 | 26 | 6 |
P. aeruginosa (n = 67) | 3 | 60 | 26 | 4 |
P. mirabilis (n = 66) | 8 | 57 | 6 | 1 |
E. coli (n = 63) | 13 | 50 | 13 | 0 |
A. baumannii (n = 39) | 0 | 39 | 31 | 0 |
E. aerogenes (n = 16) | 1 | 13 | 11 | 2 |
S. marcescens (n = 15) | 1 | 12 | 0 | 2 |
E. cloacae (n = 10) | 1 | 9 | 3 | 0 |
Burkholderia cepacia complex (n = 3) | 0 | 0 | 0 | 3 |
Cedecea lapagei (n = 2) | 0 | 2 | 1 | 0 |
Citrobacter koseri (n = 2) | 0 | 2 | 0 | 0 |
Hafnia alvei (n = 2) | 0 | 0 | 0 | 2 |
P. vulgaris (n = 2) | 0 | 2 | 0 | 0 |
Pantoea agglomerans (n = 2) | 0 | 2 | 0 | 0 |
Providencia rettgeri (n = 2) | 0 | 2 | 1 | 0 |
Providencia stuartii (n = 2) | 2 | 13 | 4 | 0 |
Providencia vulgaris (n = 2) | 0 | 2 | 1 | 0 |
Stenotrophomonas maltophilia (n = 2) | 0 | 1 | 1 | 0 |
Edwardsiella ictaluri (n = 1) | 0 | 1 | 0 | 0 |
K. oxytoca (n = 1) | 0 | 1 | 0 | 0 |
Moellerella wisconsensis (n = 1) | 0 | 1 | 0 | 0 |
Morganella morganii (n = 1) | 0 | 1 | 0 | 0 |
Serratia fonticola (n = 1) | 0 | 1 | 1 | 0 |
Serratia Liquefaciens (n = 1) | 0 | 1 | 0 | 0 |
Sphingomonas paucimobilis (n = 1) | 2 | 0 | 0 | 0 |
Total (437) | 45 (10.3%) | 372 (85.1%) | 125 (28.6%) | 20 (4.6%) |
Characteristic | <3 abs * | MDR ^ | XDR ˜ | PDR ** |
---|---|---|---|---|
Gender | ||||
Male (n = 221) | 29 | 180 | 56 | 12 |
Female (n = 216) | 16 | 192 | 69 | 8 |
Type of sample | ||||
Urine (n = 131) | 24 | 106 | 22 | 1 |
Blood (n = 112) | 8 | 101 | 42 | 3 |
Wound swab (n = 86) | 10 | 71 | 27 | 5 |
Sputum (n = 65) | 0 | 59 | 19 | 6 |
Tracheal wash (n = 20) | 1 | 18 | 8 | 1 |
Conjunctival swab (n = 17) | 2 | 12 | 3 | 3 |
Others (n = 6) | 0 | 5 | 4 | 1 |
Age (in years) | ||||
>75 (n = 141) | 12 | 122 | 39 | 7 |
61–75 (n = 95) | 9 | 83 | 27 | 3 |
46–60 (n = 78) | 8 | 68 | 17 | 2 |
31–45 (n = 38) | 4 | 31 | 14 | 3 |
16–30 (n = 58) | 11 | 45 | 19 | 2 |
≤15 (n = 27) | 1 | 23 | 9 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wani, F.A.; Bandy, A.; Alenzi, M.J.S.; Alzarea, A.I.; Alanazi, A.S.; Sayeed, M.U.; Thirunavukkarasu, A.; Tantry, B.; Dar, M. Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients. Microorganisms 2021, 9, 2246. https://doi.org/10.3390/microorganisms9112246
Wani FA, Bandy A, Alenzi MJS, Alzarea AI, Alanazi AS, Sayeed MU, Thirunavukkarasu A, Tantry B, Dar M. Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients. Microorganisms. 2021; 9(11):2246. https://doi.org/10.3390/microorganisms9112246
Chicago/Turabian StyleWani, Farooq Ahmed, Altaf Bandy, Mohammed Jayed S. Alenzi, Abdulaziz Ibrahim Alzarea, Abdullah S. Alanazi, Mohammed Ubaidullah Sayeed, Ashokkumar Thirunavukkarasu, Bilal Tantry, and Mushtaq Dar. 2021. "Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients" Microorganisms 9, no. 11: 2246. https://doi.org/10.3390/microorganisms9112246
APA StyleWani, F. A., Bandy, A., Alenzi, M. J. S., Alzarea, A. I., Alanazi, A. S., Sayeed, M. U., Thirunavukkarasu, A., Tantry, B., & Dar, M. (2021). Resistance Patterns of Gram-Negative Bacteria Recovered from Clinical Specimens of Intensive Care Patients. Microorganisms, 9(11), 2246. https://doi.org/10.3390/microorganisms9112246