Buffalo Milk as a Source of Probiotic Functional Products
Abstract
:1. Introduction
2. Buffalo Milk Characteristics and Its Dairy Products
3. Probiotics
3.1. Probiotic Strains Required Properties
3.2. Mechanism of Action and Human Health Effects of Probiotics
3.3. Probiotic Microorganisms of Buffalo Milk
3.3.1. Lactobacillus
3.3.2. Streptococcus
3.3.3. Lactococcus, Leuconostoc and Pseudomonas
4. Functional Food: Milk-Based Products from Buffaloes
4.1. Cheese
4.2. Yoghurt
4.3. Kefir
4.4. Butter and Ghee
4.5. Dairy Beverages
5. Health Effects of Probiotics
6. Probiotic Adverse Effects
7. Other Functional Properties of Buffalo Milk
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noce, A.; Qanbari, S.; González-Prendes, R.; Brenmoehl, J.; Luigi-Sierra, M.G.; Theerkorn, M.; Fiege, M.A.; Pilz, H.; Bota, A.; Vidu, L.; et al. Genetic diversity of Bubalus bubalis in Germany and global relations of its genetic background. Front. Genet. 2021, 11, 1664. [Google Scholar] [CrossRef]
- Becskei, Z.; Savić, M.; Ćirković, D.; Rašeta, M.; Puvača, N.; Pajić, M.; Dordević, S.; Paskaš, S. Assessment of water buffalo milk and traditional milk products in a sustainable production system. Sustainability 2020, 12, 6616. [Google Scholar] [CrossRef]
- Abd El-Salam, M.H.; El-Shibiny, S. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Salzano, A.; Neglia, G.; D’Onofrio, N.; Balestrieri, M.L.; Limone, A.; Cotticelli, A.; Marrone, R.; Anastasio, A.; D’Occhio, M.J.; Campanile, G. Green feed increases antioxidant and antineoplastic activity of buffalo milk: A globally significant livestock. Food Chem. 2021, 344, 128669. [Google Scholar] [CrossRef]
- Mota-Rojas, D.; Braghieri, A.; Álvarez-Macías, A.; Serrapica, F.; Ramírez-Bribiesca, E.; Cruz-Monterrosa, R.; Masucci, F.; Mora-Medina, P.; Napolitano, F. The Use of Draught Animals in Rural Labour. Animals 2021, 11, 2683. [Google Scholar] [CrossRef] [PubMed]
- FAO Livestock Primary. Available online: https://www.fao.org/faostat/en/#home (accessed on 23 July 2021).
- Cesarani, A.; Biffani, S.; Garcia, A.; Lourenco, D.; Bertolini, G.; Neglia, G.; Misztal, I.; Macciotta, N.P.P. Genomic investigation of milk production in Italian buffalo. Ital. J. Anim. Sci. 2021, 20, 539–547. [Google Scholar] [CrossRef]
- Borghese, A. Buffalo livestock and products in Europe. Buffalo Bull. 2013, 32, 50–74. [Google Scholar]
- Basilicata, M.G.; Pepe, G.; Sommella, E.; Ostacolo, C.; Manfra, M.; Sosto, G.; Pagano, G.; Novellino, E.; Campiglia, P. Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion. Food Res. Int. 2018, 105, 1003–1010. [Google Scholar]
- Zicarelli, L. Buffalo milk: Its properties, dairy yield and mozzarella production. Vet. Res. Commun. 2004, 28, 127–135. [Google Scholar] [CrossRef]
- Quigley, L.; O’Sullivan, O.; Stanton, C.; Beresford, T.P.; Ross, R.P.; Fitzgerald, G.F.; Cotter, P.D. The complex microbiota of raw milk. FEMS Microbiol. Rev. 2013, 37, 664–698. [Google Scholar]
- Sheehan, W.J.; Phipatanakul, W. Tolerance to water buffalo milk in a child with cow milk allergy. Ann. Allergy Asthma Immunol. 2009, 102, 349. [Google Scholar] [CrossRef] [Green Version]
- Murtaza, M.A.; Pandya, A.J.; Khan, M.M.H. Buffalo Milk Utilization for Dairy Products. In Handbook of Milk of Non-Bovine Mammals; Park, Y.W., Haenlein, G.F.W., Wendorff, W.L., Eds.; John Wiley & Sons, Ltd.: Oxford, UK, 2017; pp. 284–342. ISBN 9781119110279. [Google Scholar]
- Murtaza, M.A. Cheddar-type cheeses. In Reference Module in Food Science; Beddows, C., Ed.; Academic Press: Cambridge, MA, USA, 2016; pp. 1–8. [Google Scholar]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [PubMed] [Green Version]
- Siciliano, R.A.; Reale, A.; Mazzeo, M.F.; Morandi, S.; Silvetti, T.; Brasca, M. Paraprobiotics: A new perspective for functional foods and nutraceuticals. Nutrients 2021, 13, 1225. [Google Scholar] [CrossRef] [PubMed]
- Markowiak, P.; Ślizewska, K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef] [PubMed]
- Rolim, F.R.L.; Neto, O.C.F.; Oliveira, M.E.G.; Oliveira, C.J.B.; Queiroga, R.C.R.E. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends Food Sci. Technol. 2020, 100, 138–154. [Google Scholar] [CrossRef]
- Misra, S.S.; Sharma, A.; Bhattacharya, T.K.; Kumar, P.; Roy, S.S. Association of breed and polymorphism of α-and α-casein genes with milk quality and daily milk and constituent yield traits of buffaloes (Bubalus bubalis). Buffalo Bull. 2008, 27, 294–301. [Google Scholar]
- Akgun, A.; Yazici, F.; Gulec, H.A. Effect of reduced fat content on the physicochemical and microbiological properties of buffalo milk yoghurt. LWT-Food Sci. Technol. 2016, 74, 521–527. [Google Scholar] [CrossRef]
- Barlowska, J.; Szwajkowska, M.; Litwińczuk, Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Compr. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Islam, M.A.; Alam, M.K.; Islam, M.N.; Khan, M.A.S.; Ekeberg, D.; Rukke, E.O.; Vegarud, G.E. Principal milk components in buffalo, holstein cross, indigenous cattle and red chittagong cattle from Bangladesh. Asian-Australas. J. Anim. Sci. 2014, 27, 886–897. [Google Scholar]
- Dimitrov, T.; Mihaylova, G.; Boycheva, S.; Naydenova, N.; Tsankova, M. Changes in the amino acid composition of buffalo milk after chemical activation of its lactoperoxidase system. Ital. J. Anim. Sci. 2007, 6, 1050–1052. [Google Scholar]
- Khan, B.B.; Iqbal, A. The water buffalo: An underutilized source of milk and meat-A review. Pakistan J. Zool. Supple. 2009, 9, 517–521. [Google Scholar]
- Talpur, F.N.; Bhanger, M.I.; Khooharo, A.A.; Memon, G.Z. Seasonal variation in fatty acid composition of milk from ruminants reared under the traditional feeding system of Sindh, Pakistan. Livest. Sci. 2008, 118, 166–172. [Google Scholar]
- Patiño, E.M.; Pochon, D.O.; Faisal, E.L.; Cedrés, J.F.; Mendez, F.I.; Stefani, C.G.; Crudeli, G. Influence of breed, year season and lactation stage on the buffalo milk mineral content. Ital. J. Anim. Sci. 2007, 6, 1046–1049. [Google Scholar] [CrossRef] [Green Version]
- Giacinti, G.; Basiricò, L.; Ronchi, B.; Bernabucci, U. Lactoferrin concentration in buffalo milk. Ital. J. Anim. Sci. 2013, 12, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Di Luccia, A.; Picariello, G.; Trani, A.; Alviti, G.; Loizzo, P.; Faccia, M.; Addeo, F. Occurrence of β-casein fragments in cold-stored and curdled river buffalo (Bubalus bubalis L.) milk. J. Dairy Sci. 2009, 92, 1319–1329. [Google Scholar] [CrossRef] [Green Version]
- Moio, L.; Langlois, D.; Etievant, P.; Addeo, F. Powerful Odorants in Bovine, Ovine, Caprine and Water Buffalo Milk Determined by Means of Gas Chromatography-Olfactometry. J. Dairy Res. 1993, 60, 215–222. [Google Scholar] [CrossRef]
- Metchnikoff, E. The Prolongation of Life; G. P. Putnams’s Sons: New York, NY, USA, 1907. [Google Scholar]
- Reque, P.M.; Brandelli, A. Encapsulation of probiotics and nutraceuticals: Applications in functional food industry. Trends Food Sci. Technol. 2021, 114, 1–10. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy vs. non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Vergin, F. Anti-und Probiotika. Hippokrates 1954, 25, 116–119. [Google Scholar]
- FAO; WHO. Guidelines for the Evaluation of Probiotics in Food; FAO: Rome, Italy; WHO: Geneva, Switzerland, 2002. [Google Scholar]
- Figueroa-González, I.; Quijano, G.; Ramírez, G.; Cruz-Guerrero, A. Probiotics and prebiotics-perspectives and challenges. J. Sci. Food Agric. 2011, 91, 1341–1348. [Google Scholar] [CrossRef]
- Simões da Silva, T.M.; Piazentin, A.C.M.; Mendonça, C.M.N.; Converti, A.; Bogsan, C.S.B.; Mora, D.; de Souza Oliveira, R.P. Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. J. Dairy Sci. 2020, 103, 7890–7897. [Google Scholar] [CrossRef] [PubMed]
- Saarela, M.; Virkajärvi, I.; Alakomi, H.L.; Sigvart-Mattila, P.; Mättö, J. Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int. Dairy J. 2006, 16, 1477–1482. [Google Scholar] [CrossRef]
- Ricci, A.; Allende, A.; Bolton, D.; Chemaly, M.; Davies, R.; Girones, R.; Herman, L.; Koutsoumanis, K.; Lindqvist, R.; Nørrung, B.; et al. Scientific opinion on the update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA. EFSA J. 2017, 15, e04664. [Google Scholar]
- European Commission. On a Generic Approach to the Safety Assessment of Micro-Organisms Used in Feed/Food and Feed/Food Production; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- EFSA Qualified Presumption of Safety (QPS). Available online: https://www.efsa.europa.eu/en/topics/topic/qualified-presumption-safety-qps (accessed on 23 July 2021).
- Bis-Souza, C.V.; Pateiro, M.; Domínguez, R.; Penna, A.L.B.; Lorenzo, J.M.; Silva Barretto, A.C. Impact of fructooligosaccharides and probiotic strains on the quality parameters of low-fat Spanish Salchichón. Meat Sci. 2020, 159, 107936. [Google Scholar]
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance-A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Opinion of the Scientific Committee on a request from EFSA related to a generic approach to the safety assessment by EFSA of microorganisms used in food/feed and the production of food/feed additives. EFSA J. 2005, 3, 1–12. [Google Scholar]
- Oelschlaeger, T.A. Mechanisms of probiotic actions-A review. Int. J. Med. Microbiol. 2010, 300, 57–62. [Google Scholar] [CrossRef]
- Pineiro, M.; Asp, N.G.; Reid, G.; Macfarlane, S.; Morelli, L.; Brunser, O.; Tuohy, K. FAO Technical meeting on prebiotics. J. Clin. Gastroenterol. 2008, 42 (Suppl. 3), S156–S159. [Google Scholar] [CrossRef]
- Suganya, K.; Koo, B.-S. Gut–Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020, 21, 7551. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Li, P.; Gu, Q. Complete genome sequence of Lactobacillus plantarum LZ95, a potential probiotic strain producing bacteriocins and B-group vitamin riboflavin. J. Biotechnol. 2016, 229, 1–2. [Google Scholar] [CrossRef]
- Plaza-Diaz, J.; Ruiz-Ojeda, F.J.; Gil-Campos, M.; Gil, A. Mechanisms of action of probiotics. Adv. Nutr. 2019, 10, S49–S66. [Google Scholar] [PubMed] [Green Version]
- Lee, B.H.; Lo, Y.H.; Pan, T.M. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods 2013, 5, 905–913. [Google Scholar]
- Lee, A.; Lee, Y.J.; Yoo, H.J.; Kim, M.; Chang, Y.; Lee, D.S.; Lee, J.H. Consumption of dairy yogurt containing Lactobacillus paracasei ssp. paracasei, Bifidobacterium animalis ssp. lactis and Heat-Treated Lactobacillus plantarum improves immune function including natural killer cell activity. Nutrients 2017, 9, 558. [Google Scholar]
- Vargas-Ramella, M.; Pateiro, M.; Gavahian, M.; Franco, D.; Zhang, W.; Khaneghah, A.M.; Guerrero-Sánchez, Y.; Lorenzo, J.M. Impact of pulsed light processing technology on phenolic compounds of fruits and vegetables. Trends Food Sci. Technol. 2021, 115, 1–11. [Google Scholar]
- Omar, J.M.; Chan, Y.M.; Jones, M.L.; Prakash, S.; Jones, P.J.H. Lactobacillus fermentum and Lactobacillus amylovorus as probiotics alter body adiposity and gut microflora in healthy persons. J. Funct. Foods 2013, 5, 116–123. [Google Scholar] [CrossRef]
- Shiby, V.K.; Mishra, H.N. Fermented milks and milk products as functional foods—A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 482–496. [Google Scholar]
- Chen, M.J.; Tang, H.Y.; Chiang, M.L. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1. Food Microbiol. 2017, 66, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Farag, M.A.; Jomaa, S.A.; El-wahed, A.A.; El-seedi, H.R. The many faces of kefir fermented dairy products: Quality characteristics, flavour chemistry, nutritional value, health benefits, and safety. Nutrients 2020, 12, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iyer, R.; Tomar, S.K.; Uma Maheswari, T.; Singh, R. Streptococcus thermophilus strains: Multifunctional lactic acid bacteria. Int. Dairy J. 2010, 20, 133–141. [Google Scholar]
- De Vuyst, L.; Tsakalidou, E. Streptococcus macedonicus, a multi-functional and promising species for dairy fermentations. Int. Dairy J. 2008, 18, 476–485. [Google Scholar] [CrossRef]
- Beltrán-Barrientos, L.M.; González-Córdova, A.F.; Hernández-Mendoza, A.; Torres-Inguanzo, E.H.; Astiazarán-García, H.; Esparza-Romero, J.; Vallejo-Cordoba, B. Randomized double-blind controlled clinical trial of the blood pressure–lowering effect of fermented milk with Lactococcus lactis: A pilot study. J. Dairy Sci. 2018, 101, 2819–2825. [Google Scholar] [CrossRef] [Green Version]
- Sabir, F.; Beyatli, Y.; Cokmus, C.; Onal-Darilmaz, D. Assessment of potential probiotic properties of Lactobacillus spp., Lactococcus spp., and Pediococcus spp. strains isolated from Kefir. J. Food Sci. 2010, 75, M568–M573. [Google Scholar] [CrossRef] [PubMed]
- Soleymanzadeh, N.; Mirdamadi, S.; Mirzaei, M.; Kianirad, M. Novel β-casein derived antioxidant and ACE-inhibitory active peptide from camel milk fermented by Leuconostoc lactis PTCC1899: Identification and molecular docking. Int. Dairy J. 2019, 97, 201–208. [Google Scholar] [CrossRef]
- Soleymanzadeh, N.; Mirdamadi, S.; Kianirad, M. Antioxidant activity of camel and bovine milk fermented by lactic acid bacteria isolated from traditional fermented camel milk (Chal). Dairy Sci. Technol. 2016, 96, 443–457. [Google Scholar] [CrossRef] [Green Version]
- Morales, P.; Fernández-García, E.; Nuñez, M. Production of volatile compounds in cheese by Pseudomonas fragi strains of dairy origin. J. Food Prot. 2005, 68, 1399–1407. [Google Scholar] [CrossRef]
- Stanborough, T.; Fegan, N.; Powell, S.M.; Singh, T.; Tamplin, M.; Chandry, P.S. Genomic and metabolic characterization of spoilage-associated Pseudomonas species. Int. J. Food Microbiol. 2018, 268, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Palmer, J.; Teh, K.H.; Calinisan, M.M.A.; Flint, S. Milk fat influences proteolytic enzyme activity of dairy Pseudomonas species. Int. J. Food Microbiol. 2020, 320, 108543. [Google Scholar] [CrossRef]
- Sakandar, H.A.; Zhang, H. Trends in Probiotic(s)-Fermented milks and their in vivo functionality: A review. Trends Food Sci. Technol. 2021, 110, 55–65. [Google Scholar] [CrossRef]
- EFSA-BIOHAZ Panel The 2019 updated list of QPS status recommended biological agents in support of EFSA risk assessments. EFSA J. 2021, 17, 1–5.
- Marino, M.; Dubsky de Wittenau, G.; Saccà, E.; Cattonaro, F.; Spadotto, A.; Innocente, N.; Radovic, S.; Piasentier, E.; Marroni, F. Metagenomic profiles of different types of Italian high-moisture Mozzarella cheese. Food Microbiol. 2019, 79, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Ong, L.; Lefèvre, C.; Kentish, S.E.; Gras, S.L. The microstructure and physicochemical properties of probiotic buffalo yoghurt during fermentation and storage: A comparison with bovine yoghurt. Food Bioprocess Technol. 2014, 7, 937–953. [Google Scholar]
- Tan, W.S.; Budinich, M.F.; Ward, R.; Broadbent, J.R.; Steele, J.L. Optimal growth of Lactobacillus casei in a Cheddar cheese ripening model system requires exogenous fatty acids. J. Dairy Sci. 2012, 95, 1680–1689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, O.; Mortas, M.; Atalar, I.; Dervisoglu, M.; Kahyaoglu, T. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 2015, 98, 1517–1525. [Google Scholar] [PubMed] [Green Version]
- Leite, A.M.d.O.; Miguel, M.A.L.; Peixoto, R.S.; Rosado, A.S.; Silva, J.T.; Paschoalin, V.M.F. Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Brazilian J. Microbiol. 2013, 44, 341–349. [Google Scholar] [CrossRef]
- Ménard, O.; Ahmad, S.; Rousseau, F.; Briard-Bion, V.; Gaucheron, F.; Lopez, C. Buffalo vs. cow milk fat globules: Size distribution, zeta-potential, compositions in total fatty acids and in polar lipids from the milk fat globule membrane. Food Chem. 2010, 120, 544–551. [Google Scholar]
- FAO. Buffalo Production and Research; FAO: Rome, Italy, 2007. [Google Scholar]
- Ahmad, S.; Anjum, F.M.; Huma, N.; Sameen, A.; Zahoor, T. Composition and physico-chemical characteristics of buffalo milk with particular emphasis on lipids, proteins, minerals, enzymes and vitamins. J. Anim. Plant Sci. 2013, 23, 62–74. [Google Scholar]
- Erkaya, T.; Ürkek, B.; Doğru, Ü.; Çetin, B.; Şengül, M. Probiotic butter: Stability, free fatty acid composition and some quality parameters during refrigerated storage. Int. Dairy J. 2015, 49, 102–110. [Google Scholar] [CrossRef]
- Gao, J.; Li, X.; Zhang, G.; Sadiq, F.A.; Simal-Gandara, J.; Xiao, J.; Sang, Y. Probiotics in the dairy industry—Advances and opportunities. Compr. Rev. Food Sci. Food Saf. 2021, 3937–3982. [Google Scholar] [CrossRef]
- Liu, Y.; Tran, D.Q.; Rhoads, J.M. Probiotics in disease prevention and treatment. J. Clin. Pharmacol. 2018, 58, S164–S179. [Google Scholar]
- Barreto, F.M.; Colado Simão, A.N.; Morimoto, H.K.; Batisti Lozovoy, M.A.; Dichi, I.; Miglioranza, L.H.d.S. Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition 2014, 30, 939–942. [Google Scholar] [CrossRef]
- Hariri, M.; Salehi, R.; Feizi, A.; Mirlohi, M.; Ghiasvand, R.; Habibi, N. A randomized, double-blind, placebo-controlled, clinical trial on probiotic soy milk and soy milk: Effects on epigenetics and oxidative stress in patients with type II diabetes. Genes Nutr. 2015, 10, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hertzler, S.R.; Clancy, S.M. Kefir improves lactose digestion and tolerance in adults with lactose maldigestion. J. Am. Diet. Assoc. 2003, 103, 582–587. [Google Scholar]
- Liu, Z.; Qin, H.; Yang, Z.; Xia, Y.; Liu, W.; Yang, J.; Jiang, Y.; Zhang, H.; Yang, Z.; Wang, Y.; et al. Randomised clinical trial: The effects of perioperative probiotic treatment on barrier function and post-operative infectious complications in colorectal cancer surgery - A double-blind study. Aliment. Pharmacol. Ther. 2011, 33, 50–63. [Google Scholar] [CrossRef] [PubMed]
- Nobaek, S.; Johansson, M.-L.; Molin, G.; Ahrné, S.; Jeppsson, B. Alteration of intestinal microflora is associated with reduction in abdominal bloating and pain in patients with irritable bowel syndrome. Am. J. Gastroenterol. 2000, 95, 1231–1238. [Google Scholar] [CrossRef]
- Sharafedtinov, K.K.; Plotnikova, O.A.; Alexeeva, R.I.; Sentsova, T.B.; Songisepp, E.; Stsepetova, J.; Smidt, I.; Mikelsaar, M. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients - A randomized double-blind placebo-controlled pilot study. Nutr. J. 2013, 12, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rajkumar, H.; Mahmood, N.; Kumar, M.; Varikuti, S.R.; Challa, H.R.; Myakala, S.P. Effect of probiotic (VSL#3) and omega-3 on lipid profile, insulin sensitivity, inflammatory markers, and gut colonization in overweight adults: A randomized, controlled trial. Mediators Inflamm. 2014, 2014, 348959. [Google Scholar]
- Bhathena, J.; Martoni, C.; Kulamarva, A.; Urbanska, A.M.; Malhotra, M.; Prakash, S. Orally delivered microencapsulated live probiotic formulation lowers serum lipids in hypercholesterolemic hamsters. J. Med. Food 2009, 12, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Weston, S.; Halbert, A.; Richmond, P.; Prescott, S.L. Effects of probiotics on atopic dermatitis: A randomised controlled trial. Arch. Dis. Child. 2005, 90, 892–897. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Hsiao, P.J.; Hong, W.S.; Dai, T.Y.; Chen, M.J. Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 2012, 95, 63–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Lee, T.Y.; Hong, W.S.; Hsieh, H.H.; Chen, M.J. Effects of Lactobacillus kefiranofaciens M1 isolated from kefir grains on enterohemorrhagic Escherichia coli infection using mouse and intestinal cell models. J. Dairy Sci. 2013, 96, 7467–7477. [Google Scholar] [CrossRef]
- Hong, W.S.; Chen, Y.P.; Chen, M.J. The antiallergic effect of kefir lactobacilli. J. Food Sci. 2010, 75, H244–H253. [Google Scholar] [CrossRef] [PubMed]
- Niers, L.; Martín, R.; Rijkers, G.; Sengers, F.; Timmerman, H.; Van Uden, N.; Smidt, H.; Kimpen, J.; Hoekstra, M. The effects of selected probiotic strains on the development of eczema (the PandA study). Allergy Eur. J. Allergy Clin. Immunol. 2009, 64, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Agerholm-Larsen, L.; Raben, A.; Haulrik, N.; Hansen, A.S.; Manders, M.; Astrup, A. Effect of 8 week intake of probiotic milk products on risk factors for cardiovascular diseases. Eur. J. Clin. Nutr. 2000, 54, 288–297. [Google Scholar] [CrossRef] [PubMed]
- Alisi, A.; Bedogni, G.; Baviera, G.; Giorgio, V.; Porro, E.; Paris, C.; Giammaria, P.; Reali, L.; Anania, F.; Nobili, V. Randomised clinical trial: The beneficial effects of VSL#3 in obese children with non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2014, 39, 1276–1285. [Google Scholar] [PubMed]
- Aller, R.; De Luis, D.A.; Izaola, O.; Conde, R.; Gonzalez Sagrado, M.; Primo, D.; De La Fuente, B.; Gonzalez, J. Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: A double blind randomized clinical trial. Eur. Rev. Med. Pharmacol. Sci. 2011, 15, 1090–1095. [Google Scholar] [PubMed]
- D’Onofrio, N.; Cacciola, N.A.; Martino, E.; Borrelli, F.; Fiorino, F.; Lombardi, A.; Neglia, G.; Balestrieri, M.L.; Campanile, G. ROS-mediated apoptotic cell death of human colon cancer LoVo cells by milk δ-calerobetaine. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef]
Compound | Value | Reference |
---|---|---|
Milk density (g/cm3) | 1.037 | [2] |
Chemical composition | ||
Dry matter (%) | 16.10 | [2] |
Solid non-fat (%) | 10.48 | [2] |
Protein (%) | 2.70–5.20 | [3,10,21,22] |
Casein (g/100 mL of milk) | 3.07–3.20 | [19] |
Fat (%) | 6.02–8.80 | [2,3,10,21] |
Lactose (%) | 4.51–5.36 | [2,3,21,22] |
Total ash (%) | 0.60–0.90 | [2,3,22] |
Energy (kJ/kg) | 3450–4.054 | [2,21] |
Amino acids (g/100 g protein) | ||
Threonine | 1.99–5.71 | [22,23] |
Cysteine | 0.59 | [23] |
Valine | 6.76–8.28 | [22,23] |
Methionine | 0.93–1.99 | [22,23] |
Isoleucine | 3.32–5.71 | [22,23] |
Leucine | 6.12–9.79 | [22,23] |
Tyrosine | 3.36–3.86 | [22,23] |
Phenylalanine | 3.97–4.71 | [22,23] |
Lysine | 7.50–9.84 | [23,22] |
Cholesterol (mg/100 g of milk) | 6.50–17.96 | [3,24] |
Fatty acids (%) | ||
C4:0 | 3.66–4.18 | [25] |
C6:0 | 1.67–2.78 | [25] |
C8:0 | 1.82–2.98 | [25] |
C10:0 | 1.80–3.21 | [25] |
C12:0 | 2.39–3.92 | [25] |
C14:0 | 9.96–10.97 | [25] |
C16:0 | 26.49–30.17 | [25] |
C16:1n-7 | 1.24–2.02 | [25] |
C18:0 | 10.78–13.79 | [25] |
C18:1n-9 | 23.33–25.17 | [25] |
C18:2n-6 | 1.07–1.84 | [25] |
SFA | 63.31–68.31 | [25] |
MUFA | 25.27–28.32 | [25] |
PUFA | 2.43–3.10 | [25] |
CLA | 0.41–0.58 | [25] |
Minerals (mg/100 g) | ||
Ca | 112–148 | [22,26] |
P | 99–107 | [22,26] |
K | 86–92 | [22,26] |
Mg | 8–14 | [22,26] |
Na | 35–37 | [22,26] |
Zn | 0.41–0.46 | [22,26] |
Fe | 0.16 | [26] |
Cu | 0.04 | [22,26] |
Mn | 0.03–0.07 | [22,26] |
Genera | Species |
---|---|
Lactobacillus | acidophilus, casei, crispatus, delbrueckii subsp. bulgaricusa, fermentum, gasseri, johnsonii, paracasei, plantarum, reuteri, rhamnosus, helveticus, lactis, sporogenes |
Bifidobacterium | bifidum, breve, infantis, longum, lactis, animalis, adolescentis, essensis, laterosporus |
Escherichia, Saccharomyces, Kluyveromyces, Streptococcus, Enterococcusb, Propionibacterium, Pediococcus, Leuconostoc, Bacillus, Clostridium | Escherichia coli Nissle, Saccharomyces boulardii, S. cerevisiae, Kluyveromyces lactis, Streptococcus thermophilus a, S. cremoris, S. diacetylactis, S. intermedius, S. salivarius, Enterococcus francium b, Propionibacterium freudenreichii, P. freudenreichii subsp. shermanii, P. jensenii, L. lactis, Pediococcus, Leuconostoc lactis subsp. cremoris, L. lactis subsp. lactis, Bacillus cereus, Clostridium butyricum |
Genera | Species | Technological Effects | Products | Ref. |
---|---|---|---|---|
Most prevalent | ||||
Lactobacillus | plantarum(Q), paracasei(Q), fermentum(Q), delbrueckii(Q), kefiranofaciens(Q) | Proteolysis, lipolysis, and aroma compounds | Cheese | [11] |
Lactococcus | lactis(Q) | * Starter cultures; flavour compounds; acidification; proteolysis; citrate utilisation; fat metabolism; bacteriocin production. | Cheese | [11] |
Streptococcus | thermophilus(Q), macedonicus | *Starter culture; lactose to lactate; exopolysaccharide and bacteriocins production. | Yoghurt, cheese | [11] |
Less prevalent | ||||
Leuconostoc | lactis(Q) | CO2 production; lactose and citrate metabolization; bacteriocins production. | - | [11] |
Pseudomonas | fragi | Spoilage via heat-stable enzymes and fruity off-odour. | Milk and its products | [63,64] |
Probiotic Microorganism | Source | Health Benefits | Ref. | |
---|---|---|---|---|
Lactobacillus | plantarum | Fermented milk (commercial product) | Total cholesterol, low-density lipoprotein cholesterol (LDL) and γ-glutamyl transpeptidase reduction | [79] |
Fermented soy milk | Type II diabetes (antioxidative properties and decrease of risk). | [80] | ||
Kefir and yoghurt | Lactose intolerance: symptoms reduction | [81] | ||
Yoghurt | Immune function improvement: NK cell function and IFN-γ concentration | [51] | ||
Encapsulated bacteria | Gut mucosal barrier improvement (post-operative treatment) | [82] | ||
Rose-hip drink | Irritable bowel syndrome symptoms treatment | [83] | ||
Cheese | Obese hypertensive treatment | [84] | ||
Commercial probiotic mixture | Overweight beneficial effects: HDL cholesterol, insulin sensitivity, and amelioration of inflammation (hsCRP) | [85] | ||
paracasei | Yoghurt | Immune function improvement: NK cell function and IFN-γ concentration | [51] | |
Fermented soy milk | Anti-obesity | [50] | ||
Commercial probiotic mixture | Overweight beneficial effects: HDL cholesterol, insulin sensitivity, and amelioration of inflammation (hsCRP) | [85] | ||
fermentum | Microencapsulated probiotic | Total cholesterol, LDL cholesterol, and triglyceride reduction | [86] | |
Commercial probiotic | Atopic dermatitis treatment | [87] | ||
delbrueckii | Commercial probiotic mixture | Overweight beneficial effects: HDL cholesterol, insulin sensitivity, and amelioration of inflammation (hsCRP) | [85] | |
kefiranofaciens | Kefir grains | Anti-colitis | [88] | |
Enterohemorrhagic Escherichia coli (EHEC) preventing infection and its effects. | [89] | |||
Antiallergic effect | [90] | |||
Lactococcus | lactis | Fermented milk | Blood pressure lowering effect | [59] |
Mixture of probiotic bacteria | Atopic dermatitis (eczema) prevention | [91] | ||
Streptococcus | thermophilus | Yoghurt | Overweight treatment: LDL cholesterol reduction and fibrinogen increase | [92] |
Commercial probiotic | Child obesity and nonalcoholic fatty liver disease (steatohepatitis) treatment | [93] | ||
Tablets with Lactobacillus bulgaricus | Nonalcoholic fatty liver disease treatment | [94] | ||
macedonicus | Commercial probiotic mixture | Overweight beneficial effects: HDL cholesterol, insulin sensitivity and amelioration of inflammation (hsCRP) | [85] | |
Leuconostoc | lactis | Fermented milk | Blood pressure regulation (antioxidant and ACE-I activities) | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Ramella, M.; Pateiro, M.; Maggiolino, A.; Faccia, M.; Franco, D.; De Palo, P.; Lorenzo, J.M. Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms 2021, 9, 2303. https://doi.org/10.3390/microorganisms9112303
Vargas-Ramella M, Pateiro M, Maggiolino A, Faccia M, Franco D, De Palo P, Lorenzo JM. Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms. 2021; 9(11):2303. https://doi.org/10.3390/microorganisms9112303
Chicago/Turabian StyleVargas-Ramella, Márcio, Mirian Pateiro, Aristide Maggiolino, Michele Faccia, Daniel Franco, Pasquale De Palo, and José M. Lorenzo. 2021. "Buffalo Milk as a Source of Probiotic Functional Products" Microorganisms 9, no. 11: 2303. https://doi.org/10.3390/microorganisms9112303
APA StyleVargas-Ramella, M., Pateiro, M., Maggiolino, A., Faccia, M., Franco, D., De Palo, P., & Lorenzo, J. M. (2021). Buffalo Milk as a Source of Probiotic Functional Products. Microorganisms, 9(11), 2303. https://doi.org/10.3390/microorganisms9112303